1
|
Mantilla Á, Guerrero-Araque D, Sierra-Uribe JH, Lartundo-Rojas L, Gómez R, Calderon HA, Zanella R, Ramírez-Ortega D. Highly efficient mobility, separation and charge transfer in black SnO 2-TiO 2 structures with co-catalysts: the key step for the photocatalytic hydrogen evolution. RSC Adv 2024; 14:26259-26271. [PMID: 39161446 PMCID: PMC11332590 DOI: 10.1039/d4ra03731f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
Oxygen vacancies and co-catalysts enhance photocatalytic hydrogen production by improving the charge carrier separation. Herein, the black SnO2-TiO2 structure (BST) was synthesized for the first time by two consecutive methods. First, the sol-gel nucleation method allowed TiO2 to form on the SnO2 nanoparticles, creating a strong interaction and direct contact between them. Subsequently, this structure was reduced by NaBH4 during thermal treatment, generating (Ti3+/Sn2+) states to form the BST. Then, 2 wt% of Co, Cu or Pd was impregnated onto BST. The results showed that the activity raised with the presence of Ti3+/Sn2+ states, reaching a hydrogen generation rate of 147.50 μmol g-1 h-1 with BST in comparison with the rate of 99.50 μmol g-1 h-1 for white SnO2-TiO2. On the other hand, the interaction of the co-catalysts with the BST structure helped to increase the photocatalytic hydrogen production rates: 154.10 μmol g-1 h-1, 384.18 μmol g-1 h-1 and 480.20 μmol g-1 h-1 for cobalt-BST, copper-BST and palladium-BST, respectively. The results can be associated with the creation of Ti3+/Sn2+ at the BST interface that changes the lifetime of the charge carrier, improving the separation of photogenerated electrons and holes and the co-catalysts in the structures move the flat band position and increasing the photocurrent response to having electrons with greater reducing power.
Collapse
Affiliation(s)
- Ángeles Mantilla
- Instituto Politécnico Nacional, Laboratorio de Fotocatálisis, CICATA-Legaria Legaria 694, Col. Irrigación 11500 Mexico City Mexico
| | - Diana Guerrero-Araque
- CONAHCyT-Universidad Autónoma Metropolitana, Departamento de Química Av. San Rafael Atlixco 156 09340 Mexico City Mexico
| | - Jhon Harrison Sierra-Uribe
- Universidad Autónoma Metropolitana, Departamento de Química Av. San Rafael Atlixco 156 09340 Mexico City Mexico
| | - Luis Lartundo-Rojas
- Instituto Politécnico Nacional, Centro de Nanociencias y Micro y Nanotecnología, Zacatenco Mexico City Mexico
| | - Ricardo Gómez
- Universidad Autónoma Metropolitana, Departamento de Química Av. San Rafael Atlixco 156 09340 Mexico City Mexico
| | - Héctor A Calderon
- Instituto Politécnico Nacional, ESFM, Departamento de Física, UPALM Miguel Othon de Mendizabal s/n 07320 Mexico City Mexico
| | - Rodolfo Zanella
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria Circuito Exterior S/N, Coyoacan 04510 Mexico City Mexico
| | - David Ramírez-Ortega
- Instituto Politécnico Nacional, Laboratorio de Fotocatálisis, CICATA-Legaria Legaria 694, Col. Irrigación 11500 Mexico City Mexico
- Instituto Politécnico Nacional-ENCB Edificio 8, Av. Luis Enrique Erro S/N, UPALM 07738 Mexico City Mexico
| |
Collapse
|
2
|
Zhan F, Wen G, Li R, Feng C, Liu Y, Liu Y, Zhu M, Zheng Y, Zhao Y, La P. A comprehensive review of oxygen vacancy modified photocatalysts: synthesis, characterization, and applications. Phys Chem Chem Phys 2024; 26:11182-11207. [PMID: 38567530 DOI: 10.1039/d3cp06126d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Photocatalytic technology is a novel approach that harnesses solar energy for efficient energy conversion and effective pollution abatement, representing a rapidly advancing field in recent years. The development and synthesis of high-performance semiconductor photocatalysts constitute the pivotal focal point. Oxygen vacancies, being intrinsic defects commonly found in metal oxides, are extensively present within the lattice of semiconductor photocatalytic materials exhibiting non-stoichiometric ratios. Consequently, they have garnered significant attention in the field of photocatalysis as an exceptionally effective means for modulating the performance of photocatalysts. This paper provides a comprehensive review on the concept, preparation, and characterization methods of oxygen vacancies, along with their diverse applications in nitrogen fixation, solar water splitting, CO2 photoreduction, pollutant degradation, and biomedicine. Currently, remarkable progress has been made in the synthesis of high-performance oxygen vacancy photocatalysts and the regulation of their catalytic performance. In the future, it will be imperative to develop more advanced in situ characterization techniques, conduct further investigations into the regulation and stabilization of oxygen vacancies in photocatalysts, and comprehensively comprehend the mechanism underlying the influence of oxygen vacancies on photocatalysis. The engineering of oxygen vacancies will assume a pivotal role in the realm of semiconductor photocatalysis.
Collapse
Affiliation(s)
- Faqi Zhan
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Guochang Wen
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Ruixin Li
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Chenchen Feng
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Yisi Liu
- Institute of Advanced Materials, Hubei Normal University, Huangshi, 415000, China
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Min Zhu
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Yuehong Zheng
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Yanchun Zhao
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Peiqing La
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
3
|
Liu R, Yu Z, Zhang R, Xiong J, Qiao Y, Liu X, Lu X. Hollow Nanoreactors for Controlled Photocatalytic Behaviors: Fundamental Theory, Structure-Performance Relationship, and Catalytic Advantages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308142. [PMID: 37984879 DOI: 10.1002/smll.202308142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Hollow nanoreactors (HoNRs) have regarded as an attractive catalytic material for photocatalysis due to their exceptional capabilities in enhancing light harvesting, facilitating charge separation and transfer, and optimizing surface reactions. Developing novel HoNRs offers new options to realize controllable catalytic behavior. However, the catalytic mechanism of photocatalysis occurring in HoNRs has not yet been fully revealed. Against this backdrop, this review elaborates on three aspects: 1) the fundamental theoretical insights of HoNRs-driven photocatalytic kinetics; 2) structure-performance relationship of HoNRs to photocatalysis; 3) catalytic advantages of HoNRs in photocatalytic applications. Specifically, the review focuses on the fundamental theories of HoNRs for photocatalysis and their structural advantages for strengthening light scattering, promoting charge separation and transfer, and facilitating surface reaction kinetics, and the relationship between key structural parameters of HoNRs and their photocatalytic performance is in-depth discussed. Also, future prospects and challenges are proposed. It is anticipated that this review paper will pave the way for forthcoming investigations in the realm of HoNRs for photocatalysis.
Collapse
Affiliation(s)
- Runyu Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P. R. China
| | - Jian Xiong
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P. R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Xinzhong Liu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fujian, 350108, P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P. R. China
| |
Collapse
|
4
|
Lu X, Hu J, Jiang X, Liu A, Lu Z, Xie J, Cao Y. Artificial Surface Electron Network Prompted Energy Band Structure Tuning: Boosting Solar-to-Hydrogen Evolution Performance. Inorg Chem 2024; 63:3467-3476. [PMID: 38306402 DOI: 10.1021/acs.inorgchem.3c04193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The energy gap and conduction band position of catalysts play crucial roles in solar-to-hydrogen (STH) transformation technology. Unfortunately, although an increase in the conduction band position can effectively promote the photoreduction capacity of the photocatalyst, it will inevitably widen the band gap, thus reducing the light-absorption scale. It seems that there is a contradiction between the reduction of band gap and the improvement of conduction band position, which is that "You can't have your cake and eat it too." Herein, an ultrasimple molecular adsorption strategy was engineered by adsorbing hydrazine hydrate on the surface of TiO2. The theoretical and experimental results indicated that the strong electron-donating effect of amino groups in hydrazine hydrate can promote the redistribution of photogenerated electrons and form surface electron networks on the surface of TiO2 photocatalysts, which can bend the conduction band upward and significantly improve its photoreduction ability. Besides, the adsorption of -NH2 can narrow the band gap width of TiO2 and promote the separation efficiency of photogenerated carriers. More interestingly, it can also effectively enhance the adsorption of H2O and H+, thus greatly elevating the STH efficiency. The STH rate of the as-prepared T-N-3 can be increased by ≈530%. This work sheds light on a new approach for resolving the contradiction between photoreduction and light absorption capabilities to effectively enhance photocatalytic performance.
Collapse
Affiliation(s)
- Xiaoyan Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Jindou Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Xinhui Jiang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Anjie Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| |
Collapse
|
5
|
Zhao Y, Shu Y, Linghu X, Liu W, Di M, Zhang C, Shan D, Yi R, Wang B. Modification engineering of TiO 2-based nanoheterojunction photocatalysts. CHEMOSPHERE 2024; 346:140595. [PMID: 37951392 DOI: 10.1016/j.chemosphere.2023.140595] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/27/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Titanium dioxide (TiO2)-based photocatalysts have gained increasing attention for their versatile applications in organic degradation, hydrogen production, air purification, and CO2 reduction. Various TiO2-based heterojunction structures, including type I, type II, Schottky junction, Z-scheme, and S-scheme, have been extensively studied. The current research frontier is centered on the engineering modifications of TiO2-based nanoheterojunction photocatalysts, such as defect engineering, morphological engineering, crystal phase/facet engineering, and multijunction engineering. These modifications enhance carrier transport, separation, and light absorption, thereby improving the photocatalytic performance. Remarkably, this aspect has been less addressed in existing reviews. This review aims to fill this gap by focusing on the engineering modifications of TiO2-based nanoheterojunction photocatalysts. We delve into specific topics like oxygen vacancies, n-p homojunctions, and double defects. The review also systematically discusses the applications of multidimensional heterojunctions and examines carrier transport pathways in heterophase/facet junctions and their interactions with heterojunctions. A comprehensive summary of multijunction systems, including multi-Schottky junctions, semiconductor-based heterojunction-attached Schottky junctions, and multisemiconductor-based heterojunctions, is presented. Lastly, we outline future perspectives in this promising research field. This paper will assist researchers in constructing more efficient TiO2-based nanoheterojunction photocatalysts.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Yue Shu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Xiaoyu Linghu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Wenqi Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Mengyu Di
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Changyuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Dan Shan
- Department of Medical, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
| | - Ran Yi
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Baiqi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin, 300070, China.
| |
Collapse
|
6
|
Liu Y, Ma X, Jin Z. Engineering a NiAl-LDH/CoS x S-Scheme heterojunction for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci 2021; 609:686-697. [PMID: 34836652 DOI: 10.1016/j.jcis.2021.11.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
The use of semiconductors to construct heterojunctions to suppress the rapid recombination of photogenerated charges and holes is considered to be an effective way to improve the efficiency of photocatalytic hydrogen evolution. Herein, cobalt sulfide (CoSx) nanoparticles are cultivated in situ in the folds of three-dimensional flower-like nickel-aluminium layered double hydroxides (NiAl-LDHs) using a facile solvothermal method. The hydrogen production rate of the binary CoSx/NiAl-LDH heterojunction reaches 3678.59 μmol/g/h, which is 83.74 and 22 times the rates of CoSx and NiAl-LDH, respectively. The unique three-dimensional structure of NiAl-LDH facilitates the growth of CoSx and shortens the transfer pathway of photogenerated electrons. More importantly, the built-in electric field formed at the interface and the S-type charge transport mechanism caused by the bending of the energy band enhance not only charge separation but also maintain the strong oxidation ability of the holes. In this study, the newly designed S-scheme heterojunction offers a new strategy for enhancing photocatalytic water splitting.
Collapse
Affiliation(s)
- Yanan Liu
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| | - Xiaohua Ma
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| |
Collapse
|