1
|
Vu J, Haug GC, Li Y, Zhao B, Chang CJ, Paton RS, Dong Y. Enantioconvergent Cross-Nucleophile Coupling: Copper-Catalyzed Deborylative Cyanation. Angew Chem Int Ed Engl 2024; 63:e202408745. [PMID: 39264815 DOI: 10.1002/anie.202408745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/23/2024] [Accepted: 09/11/2024] [Indexed: 09/14/2024]
Abstract
Organoboron compounds are widely utilized in organic synthesis for their diverse reactivity, modular preparation, and stability compared to other classes of organometallic reagents. While organoboron species are commonly employed as nucleophiles in cross-coupling reactions, their potential as racemic building blocks in enantioconvergent transformations remains largely untapped. Herein, we demonstrate the direct utilization of alkylboronic pinacol esters in intermolecular enantioconvergent transformations. Specifically, this work describes the development and mechanistic study of an enantioconvergent deborylative cyanation enabled by Cu catalysis. This method imparts a high degree of enantioselectivity and tolerates a wide range of common functional groups and heterocycles. The reaction is proposed to proceed through a radical-relay mechanism. Aniline-assisted homolysis of the carbon-boron bond results in prochiral alkyl radicals that are functionalized by in situ generated Cu(II)(CN)2 species in an enantioselective fashion. The Cu(II)(CN)2 intermediate was characterized by electron paramagnetic resonance (EPR) spectroscopy, and its electronic structure was probed using density functional theory (DFT) calculations. Computational studies were carried out to corroborate the proposed radical-relay mechanism.
Collapse
Affiliation(s)
- Jonathan Vu
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Graham C Haug
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Yongxian Li
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Biyu Zhao
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Christopher J Chang
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Robert S Paton
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Yuyang Dong
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| |
Collapse
|
2
|
Zhang B, Li TT, Mao ZC, Jiang M, Zhang Z, Zhao K, Qu WY, Xiao WJ, Chen JR. Enantioselective Cyanofunctionalization of Aromatic Alkenes via Radical Anions. J Am Chem Soc 2024; 146:1410-1422. [PMID: 38179949 DOI: 10.1021/jacs.3c10439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Alkene radical ions constitute an integral and unique class of reactive intermediates for the synthesis of valuable compounds because they have both unpaired spins and charge. However, relatively few synthetic applications of alkene radical anions have emerged due to a dearth of generally applicable and mild radical anion generation approaches. Precise control over the chemo- and stereoselectivity in alkene radical anion-mediated processes represents another long-standing challenge due to their high reactivity. To overcome these issues, here, we develop a new redox-neutral strategy that seamlessly merges photoredox and copper catalysis to enable the controlled generation of alkene radical anions and their orthogonal enantioselective cyanofunctionalization via distonic-like species. This new strategy enables highly regio-, chemo-, and enantioselective hydrocyanation, deuterocyanation, and cyanocarboxylation of alkenes without stoichiometric reductants or oxidants under visible light irradiation. This protocol provides a new blueprint for the exploration of the transformation potential of alkene radical anions.
Collapse
Affiliation(s)
- Bin Zhang
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Tian-Tian Li
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Zhi-Cheng Mao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Ke Zhao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Yuan Qu
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430082, China
| | - Jia-Rong Chen
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430082, China
| |
Collapse
|
3
|
Zhang G, Pei Y, Wang J, Zhu X, Li Z, Zhao F, Wu J. Copper-Catalyzed Asymmetric Cyanation of Propargylic Radicals via Direct Decarboxylation of Propargylic Carboxylic Acids. Org Lett 2023. [PMID: 37384561 DOI: 10.1021/acs.orglett.3c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Chiral propargylic cyanides are often used as small-molecule feedstocks for the introduction of chiral centers into various valuable products and complex molecules. Here, we have developed a highly atom-economical strategy for the chiral copper complex-catalyzed synthesis of chiral propargylic cyanides. Propargylic radicals can be smoothly obtained by direct decarboxylation of the propargylic carboxylic acids without preactivation. The reactions show excellent selectivity and functional group compatibility. Gram-scale reaction and several conversion reactions from chiral propargylic cyanide have demonstrated the synthetic value of this strategy.
Collapse
Affiliation(s)
- Guang'an Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yonghong Pei
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Junwei Wang
- High and New Technology Research Center, Henan Academy of Sciences, Zhengzhou, Henan 450002, P. R. China
| | - Xinyu Zhu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Zhongxian Li
- High and New Technology Research Center, Henan Academy of Sciences, Zhengzhou, Henan 450002, P. R. China
| | - Fengqian Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Junliang Wu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
4
|
Liu Y, Feng A, Zhu R, Zhang D. New insights into the mechanism of synergetic photoredox/copper(i)-catalyzed carbocyanation of 1,3-dienes: a DFT study. Chem Sci 2023; 14:4580-4588. [PMID: 37152251 PMCID: PMC10155915 DOI: 10.1039/d3sc00002h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
This work presents a DFT-based computational study to understand the mechanism, and regio- and enantioselectivities in the synergetic photoredox/copper(i)-catalyzed carbocyanation of 1,3-dienes with alkyl redox-active esters. The calculated results show an unprecedented copper catalytic mechanism, where the reaction follows a catalytic cycle involving CuI-only catalysis, instead of a Cu(i)/Cu(ii)/Cu(iii)/Cu(i) cycle as proposed in the experimental study. Moreover, it is found that the critical step involves the reaction of the cyanocopper(i) species with an allyl cation rather than the cyanocopper(ii) species reacting with an allyl radical as proposed in the experiment, and that the photocatalyst is regenerated via single electron transfer from the allyl radical to the oxidized photocatalyst. In the newly proposed photoredox/copper(i) catalysis, the reaction consists of four stages: (i) generation of the copper(i) active catalyst, (ii) formation of an allyl radical with oxidative quenching of the photoexcited species, (iii) generation of an allylcopper complex accompanied by the regeneration of the photocatalyst, and (iv) formation of the allyl cyanide product with the regeneration of the copper(i) active catalyst. The cyanation of the allyl cation is calculated to be the regio- and enantioselectivity-determining step. The excellent regio- and stereoselectivities are attributed to the favorable CH-π interaction between the substrate and catalyst as well as the small distortion of the substrate.
Collapse
Affiliation(s)
- Yanhong Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 P. R. China
| | - Aili Feng
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Rongxiu Zhu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| |
Collapse
|
5
|
Li Z, Zhang G, Song Y, Li M, Li Z, Ding W, Wu J. Copper-Catalyzed Enantioselective Decarboxylative Cyanation of Benzylic Acids Promoted by Hypervalent Iodine(III) Reagents. Org Lett 2023; 25:3023-3028. [PMID: 37129410 DOI: 10.1021/acs.orglett.3c00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Copper-catalyzed asymmetric radical cyanation reactions have emerged as a powerful strategy for rapid construction of α-chiral nitriles. However, the directly decarboxylative cyanation reactions of common alkyl carboxylic acids remain largely elusive. Herein, we report a protocol for copper-catalyzed direct and enantioselective decarboxylative cyanation of benzylic acids. The in situ activation of acid substrates by a commercially inexpensive hypervalent iodine(III) reagent promoted the yield of the alkyl radicals under mild reaction conditions without prefunctionalization. The structurally diverse chiral alkyl nitriles were produced in good yields with high enantioselectivities. In addition, the chiral products can be readily converted to other useful chiral compounds via further transformations.
Collapse
Affiliation(s)
- Zhaoxia Li
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Guang'an Zhang
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yue Song
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, P. R. China
| | - Miaomiao Li
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhongxian Li
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, P. R. China
| | - Wei Ding
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Junliang Wu
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
6
|
Liang YJ, Zhu B, Su ZM, Guan W. Ir III/Ni II-Metallaphotoredox-Catalyzed Enantioselective Decarboxylative Arylation of α-Amino Acids: Theoretical Insight of Enantio-Determining Outer-Sphere Reductive Elimination. Inorg Chem 2022; 61:10190-10197. [PMID: 35729805 DOI: 10.1021/acs.inorgchem.2c01387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The IrIII/NiII-metallaphotoredox-catalyzed enantioselective decarboxylative arylation of α-amino acids has been systematically investigated using density functional theory calculations. The combination of oxidative quenching (IrIII-*IrIII-IrIV-IrIII) or reductive quenching (IrIII-*IrIII-IrII-IrIII) cycle with the nickel catalytic cycle (NiII-NiI-NiIII-NiII) is possible. The favorable reaction mechanism consists of three major processes: single-electron transfer, oxidative addition, and stepwise outer-sphere reductive elimination. The rate-determining step is the oxidative addition. Unexpectedly, the enantio-determining C-C bond formation occurs via an ion-pair intermediate involved in the stepwise outer-sphere reductive elimination process, which is unusual in the IrIII/NiII-metallaphotoredox catalysis. Furthermore, computational results reveal that the high enantioselectivity of this reaction is mainly dependent on the steric effect of substituents on substrates. This theoretical study provides useful knowledge for deep insights into the activity and selectivity of visible-light-mediated enantioselective metallaphotoredox dual catalysis at the molecular and atomic levels and benefits the development of asymmetric synthesis.
Collapse
Affiliation(s)
- Yu-Jie Liang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China.,Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin 133002, People's Republic of China
| | - Bo Zhu
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Zhong-Min Su
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China.,Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin 133002, People's Republic of China
| | - Wei Guan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
7
|
Bao LY, Gao RW, Wang S, Li RH, Zhu B, Su ZM, Guan W. Theoretical study of Ni I-Ni III cycle mediated by heterogeneous zinc in C-N cross-coupling reaction. Phys Chem Chem Phys 2022; 24:7617-7623. [PMID: 35293419 DOI: 10.1039/d2cp00105e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoredox/transition-metal dual catalysis could efficiently construct C-N bonds by a cross-coupling reaction. The limitations of low recovery, low utilization rate and high cost have hindered the application and development of low-cost and efficient transition metal catalytic cycles. The integration of heterogeneous metal and transition metal catalysis is an appealing alternative to realize the oxidation state modulation of active species. With the support of density functional theory (DFT) calculation, we have explored the mechanistic details of Ni-catalyzed C-N cross-coupling of aryl bromide and cyclic amine assisted by zinc powder. Zinc successfully regulates the oxidation state of NiII → NiI, thus achieving the NiI-NiIII-NiI catalytic cycle in the absence of light. In comparison, when the Ni(0) complex is employed as the initial catalyst, organic zinc reagents can still be involved in the transmetalation process to accelerate the cross-coupling reaction. We hope that such computational studies can provide theoretical reference for the design and development of low-cost and efficient catalytic systems for C-N cross-couplings.
Collapse
Affiliation(s)
- Lin-Yan Bao
- Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Rong-Wan Gao
- Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Shuang Wang
- Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Run-Han Li
- Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Bo Zhu
- Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Zhong-Min Su
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei Guan
- Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| |
Collapse
|
8
|
Dong YJ, Zhu B, Liang YJ, Guan W, Su ZM. Origin and Regioselectivity of Direct Hydrogen Atom Transfer Mechanism of C(sp 3)-H Arylation by [W 10O 32] 4-/Ni Metallaphotoredox Catalysis. Inorg Chem 2021; 60:18706-18714. [PMID: 34823352 DOI: 10.1021/acs.inorgchem.1c02118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyoxometalates (POMs) have a broad array of applied platforms with well-characterized catalysis including photocatalysis to achieve aliphatic C(sp3)-H bond functionalization. However, the reaction mechanism of POMs in organic transformation remains unknown due to the complexity of POM structures. Here, a challenging [W10O32]4-/Ni metallaphotoredox-catalyzed C(sp3)-H arylation of alkane has been investigated by density functional theory (DFT) calculations. The calculation revealed that the superficial active center located in bridged oxygen of *[W10O32]4- is responsible for the abstraction of a foreign hydrogen atom and the activation of a C(sp3)-H bond. Furthermore, we discussed this activated process using the direct activation model of the C(sp3)-H σ-bond to deepen our mechanistic understanding of POM mediated C-H bond activation via the hydrogen atom transfer (HAT) pathway. Specifically, comparing three common mechanisms for nickel catalysis inducing by Ni0, NiI, and NiII to construct a C-C bond, the nickel catalytic cycle induced by the NiI active catalyst is profitable in kinetics and thermodynamics. Finally, a radical mechanism merging the ([W10O32]4--*[W10O32]4--[HW10O32]4--[W10O32]4-) decatungstate reductive quenching cycle, ([HW10O32]4--[H2W10O32]4--[HW10O32]4-) electron relay, and (NiI-NiII-NiI-NiIII-NiI) nickel catalytic cycle is proposed to be favorable. We hope that this work would provide a better understanding of the unique catalytic activity of decatungstate anions for the direct functionalization of the C(sp3)-H bond.
Collapse
Affiliation(s)
- Yu-Jiao Dong
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Bo Zhu
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yu-Jie Liang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Wei Guan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Zhong-Min Su
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China.,College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
9
|
Liang Y, Dong Y, Sun G, Su Z, Guan W. Theoretical mechanistic study of 4CzIPN/Ni 0-metallaphotoredox catalyzed enantioselective desymmetrization of cyclic meso-anhydrides. Dalton Trans 2021; 50:17675-17687. [PMID: 34806735 DOI: 10.1039/d1dt03353k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Visible-light-induced inexpensive photocatalyst and transition metal dual catalytic cross-coupling has attracted much attention for efficiently constructing various chemical bonds. The 4CzIPN/Ni0-metallaphotoredox catalyzed enantioselective desymmetrization of cyclic meso-anhydrides with benzyl trifluoroborates has been systematically investigated using density functional theory (DFT) calculations. A radical mechanism merging reductive quenching (PC-*PC-PC--PC) and nickel catalytic cycles (Ni0-NiII-NiIII-NiI-Ni0) is favourable. It consists of seven major processes: single-electron reduction of *PC by benzyl trifluoroborates to generate benzyl radical, ligand exchange, oxidative addition, radical addition, reductive elimination, reduction of NiI by PC- complex via single-electron transfer (SET) process to obtain ground-state PC, and the ion exchange to afford the desired product enantio-enriched keto-acids and regenerate Ni0 catalyst. The oxidative addition is not only the enantio-determining step but also the rate-determining step of the catalytic cycle. In addition, we tried to disclose the origin of high enantioselectivity from both the steric and electronic effects and explain the origin of diastereoselectivity based on the proposed mechanism. Meanwhile, the difference of catalytic activity between Ni0 and NiII as the initial catalysts is caused by the different activation energy barriers based on their respective favourable reaction pathways. This study will hopefully benefit the future understanding of such photoredox-mediated dual catalyzed asymmetric synthesis.
Collapse
Affiliation(s)
- Yujie Liang
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin 133002, P. R. China. .,Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Yujiao Dong
- Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Guangyan Sun
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin 133002, P. R. China.
| | - Zhongmin Su
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin 133002, P. R. China. .,Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Wei Guan
- Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| |
Collapse
|
10
|
Parida SK, Mandal T, Das S, Hota SK, De Sarkar S, Murarka S. Single Electron Transfer-Induced Redox Processes Involving N-(Acyloxy)phthalimides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04756] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sanju Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| |
Collapse
|