1
|
Barros J, Abraão A, Gouvinhas I, Granato D, Barros AN. Advances in Leaf Plant Bioactive Compounds: Modulation of Chronic Inflammation Related to Obesity. Int J Mol Sci 2025; 26:3358. [PMID: 40244195 PMCID: PMC11989288 DOI: 10.3390/ijms26073358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Over the years, there has been a tendency for an increase in global obesity. The World Health Organization's (WHO) 2024 report states that in 2019, more than one billion people were obese, and this condition was responsible for five million deaths, being that obesity is more prevalent among adults compared to adolescents and children. Obesity is a chronic disease characterized by alterations in adipose tissue. When excessive food is consumed and energy expenditure is low, adipose tissue undergoes hypertrophy and hyperplasia. This process activates B cells and induces the transition of anti-inflammatory M2-like macrophages into pro-inflammatory M1-like macrophages. B cells, acting as inflammatory mediators, stimulate pro-inflammatory CD8+ T cells, and promote macrophage infiltration into tissues. This condition triggers inflammation, increases oxidative stress, and ultimately leads to cellular death. During inflammation, an increase of pro-inflammatory cytokines occurs along with a decrease of anti-inflammatory cytokines. By contrast, the increase of oxidative stress is related to an increase of reactive oxygen species (ROS), oxidation of biomolecules, and a decrease in antioxidants. This mechanism for obesity can be mitigated through several healthy lifestyle changes, primarily including regular physical activity and healthy eating. These factors help reduce pro-inflammatory mediators and ROS, lowering inflammation and oxidative stress. Therefore, this review article focuses on studying the bioactive compounds present in the edible leaves of Annona cherimola Mill., Ipomoea batata (L.) Poir., Colocasia esculenta (L.) Schott, Eriobotrya japonica, Cymbopogon citratus, Psidium guajava (L.), and Smallanthus sonchifolius to evaluate their effects on the mechanisms involved in obesity.
Collapse
Affiliation(s)
- Jorge Barros
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.G.)
- Department of Agricultural sciences, Higher Polytechnic Institute of Bengo, B. Caboxa, Dande, Bengo 244-2004, Angola
| | - Ana Abraão
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.G.)
| | - Irene Gouvinhas
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.G.)
| | - Daniel Granato
- Bioactivity & Applications Laboratory, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Ana Novo Barros
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.G.)
| |
Collapse
|
2
|
Zeng J, Cheong LYT, Lo CH. Therapeutic targeting of obesity-induced neuroinflammation and neurodegeneration. Front Endocrinol (Lausanne) 2025; 15:1456948. [PMID: 39897964 PMCID: PMC11781992 DOI: 10.3389/fendo.2024.1456948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Obesity is a major modifiable risk factor leading to neuroinflammation and neurodegeneration. Excessive fat storage in obesity promotes the progressive infiltration of immune cells into adipose tissue, resulting in the release of pro-inflammatory factors such as cytokines and adipokines. These inflammatory mediators circulate through the bloodstream, propagating inflammation both in the periphery and in the central nervous system. Gut dysbiosis, which results in a leaky intestinal barrier, exacerbates inflammation and plays a significant role in linking obesity to the pathogenesis of neuroinflammation and neurodegeneration through the gut-brain/gut-brain-liver axis. Inflammatory states within the brain can lead to insulin resistance, mitochondrial dysfunction, autolysosomal dysfunction, and increased oxidative stress. These disruptions impair normal neuronal function and subsequently lead to cognitive decline and motor deficits, similar to the pathologies observed in major neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Understanding the underlying disease mechanisms is crucial for developing therapeutic strategies to address defects in these inflammatory and metabolic pathways. In this review, we summarize and provide insights into different therapeutic strategies, including methods to alter gut dysbiosis, lifestyle changes, dietary supplementation, as well as pharmacological agents derived from natural sources, that target obesity-induced neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Jialiu Zeng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, United States
| | - Lenny Yi Tong Cheong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chih Hung Lo
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, United States
- Department of Biology, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
3
|
Chen F, Wang B, Sun X, Wang Y, Wang R, Li K. Ergothioneine improves cognitive function by ameliorating mitochondrial damage and decreasing neuroinflammation in a D-galactose-induced aging model. Food Funct 2024; 15:11686-11696. [PMID: 39530768 DOI: 10.1039/d4fo02321h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ergothioneine (EGT) is a sulfur-containing amino acid with strong antioxidant activity. In this study, a D-galactose induced mouse aging model was used to investigate the anti-aging effects of EGT. EGT intervention could significantly improve the recognition memory of aging mice. Additionally, it improved the D-galactose induced decrease in the number of neurones, enhanced the levels of cAMP and BDNF in the brain, and increased the density and expression of PSD95 in aging mice. Meanwhile, EGT could attenuate oxidative stress by reducing the content of MDA and enhancing T-SOD activity via the Nrf2/HO-1 pathway. In addition, EGT could alleviate mitochondrial function by regulating the AMPK/SIRT1/PGC-1α pathway, which in turn attenuated D-galactose induced hippocampal neuronal injury and improved the learning and memory abilities in mice. This study provides a potential dietary strategy to improve age-induced memory impairment.
Collapse
Affiliation(s)
- Fangyang Chen
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Botao Wang
- Bloomage Biotechnology Co., Ltd, Jinan 250000, China.
| | - Xin Sun
- Bloomage Biotechnology Co., Ltd, Jinan 250000, China.
| | - Yage Wang
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ruiyan Wang
- Bloomage Biotechnology Co., Ltd, Jinan 250000, China.
| | - Kaikai Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Muhammad I, Cremonini E, Mathieu P, Adamo AM, Oteiza PI. Dietary Anthocyanins Mitigate High-Fat Diet-Induced Hippocampal Inflammation in Mice. J Nutr 2024; 154:2752-2762. [PMID: 39053605 DOI: 10.1016/j.tjnut.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Obesity and consumption of high-fat diets (HFD) are associated with intestinal permeabilization and increased paracellular transport of endotoxins, which can promote neuroinflammation. Inflammation can affect the hypothalamic pituitary adrenal (HPA) axis, which controls responses to stress and downregulates the brain-derived neurotrophic factor (BDNF), which can promote anxiety and depression, conditions frequently found in obesity. We previously showed that consumption of anthocyanins (AC) mitigate HFD-induced insulin resistance, intestinal permeability, and inflammation. OBJECTIVES This study investigated if a dietary supplementation with a cyanidin- and delphinidin-rich extract (CDRE) could counteract HFD/obesity-induced hippocampal inflammation in mice. METHODS C57BL/6J male mice were fed for 14 wk on one of the following diets: 1) a control diet containing 10% total calories from fat (C), 2) a control diet supplemented with 40 mg AC/kg body weight (BW) (CAC), 3) a HFD containing 60% total calories from fat (lard) (HF), or 4) the HFD supplemented with 2, 20, or 40 mg AC/kg BW (HFA2, HFA20, and HFA40, respectively). In plasma and in the hippocampus, parameters of neuroinflammation and the underlying cause (endotoxemia) and consequences (alterations to the HPA and BDNF downregulation) were measured. RESULTS Consumption of the HFD caused endotoxemia. Accordingly, hippocampal Tlr4 mRNA levels were 110% higher in the HF group, which were both prevented by CDRE supplementation. Consumption of the HFD also caused: 1) microgliosis and increased expression of genes involved in neuroinflammation, that is, Iba-1, Nox4, Tnfα, and Il-1β, 2) alterations of HPA axis regulation, that is, with low expression of mineralocorticoid (MR) and glucocorticoid (GR) receptors; and 3) decreased Bdnf expression. Supplementation of HFD-fed mice with CDRE mitigated neuroinflammation, microgliosis, and MR and BDNF decreases. CONCLUSIONS CDRE supplementation mitigates the negative effects associated with HFD consumption and obesity in mouse hippocampus, in part by decreasing inflammation, improving glucocorticoid metabolism, and upregulating BDNF.
Collapse
Affiliation(s)
- Imani Muhammad
- Department of Nutrition, University of California, Davis, CA, United States
| | - Eleonora Cremonini
- Department of Nutrition, University of California, Davis, CA, United States
| | - Patricia Mathieu
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Instituto de Química y Físicoquimica Biológica (IQUiFIB), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana M Adamo
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Instituto de Química y Físicoquimica Biológica (IQUiFIB), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, United States; Environmental Toxicology, University of California, Davis, CA, United States.
| |
Collapse
|
5
|
Qi Y, Zhou Q, Zhang Y, Deng J, Li R, Zhang X. Exploring the active components and potential mechanisms of Alpiniae oxyphyllae Fructus in treating diabetes mellitus with depression by UPLC-Q-Exactive Orbitrap/MS, network pharmacology and molecular docking. Metab Brain Dis 2024; 39:1065-1084. [PMID: 38954241 DOI: 10.1007/s11011-024-01374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The growing incidence of diabetes mellitus (DM) and depression is a global public health issue. Alpiniae oxyphyllae Fructus (AOF) is a kind of medicinal and edible plant which be found with anti-diabetic property, and could improve depression-like symptoms. This study aimed to screen active targets and potential mechanisms of AOF in treating DM with depression. Injection of streptozotocin (STZ) and exposure to chronic unpredictable mild stress (CUMS) for 4 weeks were used to conduct the DM with depression mice model. Behavioral tests, indexes of glucose metabolism, monoamine neurotransmitters, inflammatory cytokine and oxidative stress were measured. Histopathological change of hippocampus tissue was observing by HE and Nissl staining. UPLC-Q-Exactive Orbitrap/MS, network pharmacology and molecular docking were used to explore the chemical components and mechanisms of AOF on the DM with depression. AOF showed a reversed effect on body weight in DM with depression mice. Glucose metabolism and insulin resistance could be improved by treatment of AOF. In addition, AOF could alleviate depression-like behaviors based on the results of behavior tests and monoamine neurotransmitters. AOF also attenuated STZ-CUMS induced neuron injury in hippocampus. Next, a total of 61 chemical components were identified in the UPLC-Q-Exactive Orbitrap/MS analysis of the extract of AOF. Network pharmacology analysis suggested that 12 active components and 227 targets were screened from AOF, and 1802 target genes were screened from DM with depression, finally 126 intersection target genes were obtained. Drug-disease targets network was constructed and implied that the top five components with a higher degree value includes quercetin, nootkatone, baicalein, (-)-epicatechin and nootkatol. Protein-protein interaction (PPI) network showed that MAPK1, FOS, AKT1, IL6 and TP53 may be the core intersection targets. The mechanism of the effect of AOF on DM with depression was analyzed through gene ontology (GO), and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, mainly involved in AGE/RAGE, PI3K/AKT, and MAPK signaling pathways. The results of molecular docking indicated that quercetin, nootkatone, baicalein, (-)-epicatechin and nootkatol all had good binding to the core intersection targets. Overall, our experimental researches have demonstrated that AOF could exert the dual effects of anti-diabetic and anti-depression on DM with depression mice, through multi-targets and multi-pathways.
Collapse
Affiliation(s)
- Yue Qi
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Qilun Zhou
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Yongping Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Jinlan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Ruonan Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
6
|
Komai M, Takeno D, Fujii C, Nakano J, Ohsaki Y, Shirakawa H. Nailfold Capillaroscopy: A Comprehensive Review on Its Usefulness in Both Clinical Diagnosis and Improving Unhealthy Dietary Lifestyles. Nutrients 2024; 16:1914. [PMID: 38931269 PMCID: PMC11206784 DOI: 10.3390/nu16121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Since the 1970s, the utility of nailfold capillaroscopy (NFC) in diagnosing rheumatological disorders such as systemic sclerosis has been well established. Further studies have also shown that NFC can detect non-rheumatic diseases such as diabetes, glaucoma, dermatitis, and Alzheimer disease. In the past decade, nailfold capillary morphological changes have also been reported as symptoms of unhealthy lifestyle habits such as poor diet, smoking, sleep deprivation, and even psychological stress, all of which contribute to slow blood flow. Therefore, studying the relationships between the morphology of nailfold capillaries and lifestyle habits has a high potential to indicate unhealthy states or even pre-disease conditions. Simple, inexpensive, and non-invasive methods such as NFC are important and useful for routine medical examinations. The present study began with a systematic literature search of the PubMed database followed by a summary of studies reporting the assessment of morphological changes detected by NFC, and a comprehensive review of NFC's utility in clinical diagnosis and improving unhealthy dietary lifestyles. It culminates in a summary of dietary and lifestyle health promotion strategy, assessed based on NFC and other related measurements that indicate healthy microvascular blood flow and endothelial function.
Collapse
Affiliation(s)
- Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.O.); (H.S.)
| | - Dan Takeno
- At Co., Ltd., Osaka 541-0042, Japan; (D.T.); (C.F.); (J.N.)
| | - Chiharu Fujii
- At Co., Ltd., Osaka 541-0042, Japan; (D.T.); (C.F.); (J.N.)
| | - Joe Nakano
- At Co., Ltd., Osaka 541-0042, Japan; (D.T.); (C.F.); (J.N.)
| | - Yusuke Ohsaki
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.O.); (H.S.)
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.O.); (H.S.)
| |
Collapse
|
7
|
Mostofinejad Z, Cremonini E, Kang J, Oteiza PI. Effects of (-)-epicatechin on hepatic triglyceride metabolism. Food Funct 2024; 15:326-337. [PMID: 38086683 DOI: 10.1039/d3fo03666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
(-)-Epicatechin (EC) consumption is associated with an improvement of hyperlipemia and other metabolic changes linked to obesity and western-style diets. This work investigated the effects of EC on triglyceride (TG) metabolism both in vivo, where mice were supplemented with EC (2 and 20 mg EC per kg body weight), and in vitro, when human HepG2 hepatocytes were incubated in the presence of EC and the main EC metabolites found in human plasma. Increased hepatic TG levels were only observed after 24 weeks supplementation with EC (20 mg per kg body weight), with a preserved liver structure and absence of inflammation or oxidative stress. EC caused increased expression of diacylglycerol acyltransferases (DGAT2), key enzymes in TG synthesis, and the upregulation of PPARα, which promotes free fatty acid (FFA) oxidation. On the other hand, incubation of HepG2 cells in the presence of high concentrations of EC (1-10 μM) did not affect TG deposition nor DGAT2 expression. In summary, in mouse liver, EC upregulated mechanisms that can neutralize the potential toxicity of FFA, i.e. TG synthesis and FFA β-oxidation. Results in mouse liver and HepG2 cells stress the safety of EC in terms of TG metabolism and development of hepatopathies in doses within the limits given by a rational time and dose for human consumption.
Collapse
Affiliation(s)
- Zahra Mostofinejad
- Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Eleonora Cremonini
- Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Jiye Kang
- Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Patricia I Oteiza
- Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616, USA.
- Department of Environmental Toxicology, University of California, Davis, USA
| |
Collapse
|
8
|
Doroszkiewicz J, Mroczko J, Rutkowski P, Mroczko B. Molecular Aspects of a Diet as a New Pathway in the Prevention and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:10751. [PMID: 37445928 PMCID: PMC10341644 DOI: 10.3390/ijms241310751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease is the most common cause of dementia in the world. Lack of an established pathology makes it difficult to develop suitable approaches and treatment for the disease. Besides known hallmarks, including amyloid β peptides cumulating in plaques and hyperphosphorylated tau forming NFTs, inflammation also plays an important role, with known connections to the diet. In AD, adhering to reasonable nutrition according to age-related principles is recommended. The diet should be high in neuroprotective foods, such as polyunsaturated fatty acids, antioxidants, and B vitamins. In addition, foods capable of rising BDNF should be considered because of the known profitable results of this molecule in AD. Adhering to beneficial diets might result in improvements in memory, cognition, and biomarkers and might even reduce the risk of developing AD. In this review, we discuss the effects of various diets, foods, and nutrients on brain health and possible connections to Alzheimer's disease.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-089 Bialystok, Poland; (J.M.); (B.M.)
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-089 Bialystok, Poland; (J.M.); (B.M.)
| | | | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-089 Bialystok, Poland; (J.M.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-089 Bialystok, Poland
| |
Collapse
|
9
|
Mechanistic insights into dietary (poly)phenols and vascular dysfunction-related diseases using multi-omics and integrative approaches: Machine learning as a next challenge in nutrition research. Mol Aspects Med 2023; 89:101101. [PMID: 35728999 DOI: 10.1016/j.mam.2022.101101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023]
Abstract
Dietary (poly)phenols have been extensively studied for their vasculoprotective effects and consequently their role in preventing or delaying onsets of cardiovascular and metabolic diseases. Even though early studies have ascribed the vasculoprotective properties of (poly)phenols primarily on their putative free radical scavenging properties, recent data indicate that in biological systems, (poly)phenols act primarily through genomic and epigenomic mechanisms. The molecular mechanisms underlying their health properties are still not well identified, mainly due to the use of physiologically non-relevant conditions (native molecules or extracts at high concentrations, rather than circulating metabolites), but also due to the use of targeted genomic approaches aiming to evaluate the effect only on few specific genes, thus preventing to decipher detailed molecular mechanisms involved. The use of state-of-the-art untargeted analytical methods represents a significant breakthrough in nutrigenomics, as these methods enable detailed insights into the effects at each specific omics level. Moreover, the implementation of multi-omics approaches allows integration of different levels of regulation of cellular functions, to obtain a comprehensive picture of the molecular mechanisms of action of (poly)phenols. In combination with bioinformatics and the methods of machine learning, multi-omics has potential to make a huge contribution to the nutrition science. The aim of this review is to provide an overview of the use of the omics, multi-omics, and integrative approaches in studying the vasculoprotective properties of dietary (poly)phenols and address the potentials for use of the machine learning in nutrigenomics.
Collapse
|
10
|
Luo Y, Lu J, Wang Z, Wang L, Wu G, Guo Y, Dong Z. Small ubiquitin-related modifier (SUMO)ylation of SIRT1 mediates (-)-epicatechin inhibited- differentiation of cardiac fibroblasts into myofibroblasts. PHARMACEUTICAL BIOLOGY 2022; 60:1762-1770. [PMID: 36086802 PMCID: PMC9467557 DOI: 10.1080/13880209.2022.2101672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT (-)-Epicatechin (EPI) is a crucial substance involved in the protective effects of flavanol-rich foods. Previous studies have indicated EPI has a cardioprotective effect, but the molecular mechanisms in inhibition of cardiac fibrosis are unclear. OBJECTIVE We evaluated the effect of EPI in preventing cardiac fibrosis and the underlying molecular mechanism related to the SIRT1-SUMO1/AKT/GSK3β pathway. MATERIALS AND METHODS Cardiac fibrosis mice model was established with transaortic constriction (TAC). Male C57BL/6 mice were randomly separated into 4 groups. Mice received 1 mg/kg/day of EPI or vehicle orally for 4 weeks. The acutely isolated cardiac fibroblasts were induced to myofibroblasts with 1 µM angiotensin II (Ang II). The cardiac function was measured with the ultrasonic instrument. Histological analysis of mice's hearts was determined with H&E or Masson method. The protein level of fibrosis markers, SUMOylation of SIRT1, and AKT/GSK3β pathway were quantified by immunofluorescence and western blot. RESULTS EPI treatment (1 mg/kg/day) could reverse the TAC-induced decline in LVEF (TAC, 61.28% ± 1.33% vs. TAC + EPI, 74.00% ± 1.64%), LVFS (TAC, 28.16% ± 0.89% vs. TAC + EPI, 37.18% ± 1.29%). Meantime, we found that 10 µM EPI blocks Ang II-induced transformation of cardiac fibroblasts into myofibroblasts. The underlying mechanism of EPI-inhibited myofibroblasts transformation involves activation of SUMOylation of SIRT1 through SP1. Furthermore, SUMOylation of SIRT1 inhibited Ang II-induced fibrogenic effect via the AKT/GSK3β pathway. CONCLUSION EPI plays a protective effect on cardiac fibrosis by regulating the SUMO1-dependent modulation of SIRT1, which provides a theoretical basis for use in clinical therapies.
Collapse
Affiliation(s)
- Yingchun Luo
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing Lu
- Department of Pharmacy, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zeng Wang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lu Wang
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guodong Wu
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuanyuan Guo
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zengxiang Dong
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Kang J, Wang Z, Cremonini E, Le Gall G, Pontifex MG, Muller M, Vauzour D, Oteiza PI. (-)-Epicatechin mitigates anxiety-related behavior in a mouse model of high fat diet-induced obesity. J Nutr Biochem 2022; 110:109158. [PMID: 36150679 DOI: 10.1016/j.jnutbio.2022.109158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 08/09/2022] [Indexed: 01/13/2023]
Abstract
Mounting evidence demonstrates that consumption of high fat diet (HFD) and subsequent development of obesity leads to alterations in cognition and mood. While obesity can affect brain function, consumption of select dietary bioactives may help prevent obesity-related cognitive decline. This study investigated the capacity of the dietary flavonoid (-)-epicatechin (EC) to mitigate HFD-induced obesity-associated alterations in memory and mood. Healthy 8-week old male C57BL/6J mice were maintained on either a control diet (10 kCal% from fat) or a HFD (45 kCal% from fat) and were supplemented with EC at 2 or 20 mg/kg body weight (B.W.) for a 24 week period. Between week 20 and 22, anxiety-related behavior, recognition memory, and spatial memory were measured. Underlying mechanisms were assessed by measuring the expression of selected genes in the hippocampus and by 16S rRNA sequencing and metabolomic analysis of the gut microbiota. 24 weeks of HFD feeding resulted in obesity, which was not affected by EC supplementation. HFD-associated increase in anxiety-related behavior was mitigated by EC in a dose-response manner and was accompanied by increased hippocampal brain-derived neurotrophic factor (BDNF), as well as partial or full restoration of glucocorticoid receptor, mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) expression. Higher EC dosage (20 mg/kg B.W.) also restored aberrant Lactobacillus and Enterobacter abundance altered by HFD and/or the associated obesity. Together, these results demonstrate how EC mitigates anxiety-related behaviors, revealing a connection between BDNF- and glucocorticoids-mediated signaling. Our findings link changes in the hippocampus and the gut microbiota in a context of HFD-induced obesity and anxiety.
Collapse
Affiliation(s)
- Jiye Kang
- Department of Nutrition and Department of Environmental Toxicology, University of California, Davis, USA
| | - Ziwei Wang
- Department of Nutrition and Department of Environmental Toxicology, University of California, Davis, USA
| | - Eleonora Cremonini
- Department of Nutrition and Department of Environmental Toxicology, University of California, Davis, USA
| | - Gwenaelle Le Gall
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich NR4 7TJ, United Kingdom
| | - Matthew G Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich NR4 7TJ, United Kingdom
| | - Michael Muller
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich NR4 7TJ, United Kingdom
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich NR4 7TJ, United Kingdom
| | - Patricia I Oteiza
- Department of Nutrition and Department of Environmental Toxicology, University of California, Davis, USA.
| |
Collapse
|
12
|
From Cocoa to Chocolate: Effect of Processing on Flavanols and Methylxanthines and Their Mechanisms of Action. Int J Mol Sci 2022; 23:ijms232214365. [PMID: 36430843 PMCID: PMC9698929 DOI: 10.3390/ijms232214365] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Despite the health benefits associated with the ingestion of the bioactive compounds in cocoa, the high concentrations of polyphenols and methylxanthines in the raw cocoa beans negatively influence the taste, confer the astringency and bitterness, and affect the stability and digestibility of the cocoa products. It is, therefore, necessary to process cocoa beans to develop the characteristic color, taste, and flavor, and reduce the astringency and bitterness, which are desirable in cocoa products. Processing, however, affects the composition and quantities of the bioactive compounds, resulting in the modification of the health-promoting properties of cocoa beans and chocolate. In this advanced review, we sought to better understand the effect of cocoa's transformational process into chocolate on polyphenols and methylxanthine and the mechanism of action of the original flavanols and methylxanthines. More data on the cocoa processing effect on cocoa bioactives are still needed for better understanding the effect of each processing step on the final polyphenolic and methylxanthine composition of chocolate and other cocoa products. Regarding the mechanisms of action, theobromine acts through the modulation of the fatty acid metabolism, mitochondrial function, and energy metabolism pathways, while flavanols mainly act though the protein kinases and antioxidant pathways. Both flavanols and theobromine seem to be involved in the nitric oxide and neurotrophin regulation.
Collapse
|
13
|
Chen Y, Peng F, Xing Z, Chen J, Peng C, Li D. Beneficial effects of natural flavonoids on neuroinflammation. Front Immunol 2022; 13:1006434. [PMID: 36353622 PMCID: PMC9638012 DOI: 10.3389/fimmu.2022.1006434] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
Neuroinflammation is the fundamental immune response against multiple factors in the central nervous system and is characterized by the production of inflammatory mediators, activated microglia and astrocytes, and the recruitment of innate and adaptive immune cells to inflammatory sites, that contributes to the pathological process of related brain diseases, such as Alzheimer’s disease, Parkinson’s disease, depression, and stroke. Flavonoids, as a species of important natural compounds, have been widely revealed to alleviate neuroinflammation by inhibiting the production of pro-inflammatory mediators, elevating the secretion of anti-inflammatory factors, and modulating the polarization of microglia and astrocyte, mainly via suppressing the activation of NLRP3 inflammasome, as well as NF-κB, MAPK, and JAK/STAT pathways, promoting Nrf2, AMPK, BDNF/CREB, Wnt/β-Catenin, PI3k/Akt signals and SIRT1-mediated HMGB1 deacetylation. This review will provide the latest and comprehensive knowledge on the therapeutic benefits and mechanisms of natural flavonoids in neuroinflammation, and the natural flavonoids might be developed into food supplements or lead compounds for neuroinflammation-associated brain disorders.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Dan Li,
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Dan Li,
| |
Collapse
|
14
|
Kang J, Oteiza PI, Milenkovic D. (-)-Epicatechin exerts positive effects on anxiety in high fat diet-induced obese mice through multi-genomic modifications in the hippocampus. Food Funct 2022; 13:10623-10641. [PMID: 36168829 DOI: 10.1039/d2fo01897g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity is associated with increased occurrence of cognitive and mood disorders. While consumption of high-fat diets (HFD) and associated obesity could have a detrimental impact on the brain, dietary bioactives may mitigate these harmful effects. We previously observed that (-)-epicatechin (EC) can mitigate HFD-induced anxiety-associated behaviors in mice. The aim of our study is to investigate the molecular mechanisms of EC actions in the hippocampus which underlies its anti-anxiety effects in HFD-fed mice using a multi-genomic approach. Healthy eight-week old male C57BL/6J mice were fed for 24 weeks either: (A) a control diet containing 10% total calories from fat; (B) a HFD containing 45% total calories from fat; or (C) the HFD supplemented with 20 mg EC per kg body weight. Hippocampi were isolated for genomic analysis using Affymetrix arrays, followed by in-depth bioinformatic analyses. Genomic analysis demonstrated that EC induced significant changes in mouse hippocampal global gene expression. We observed changes in the expression of 1001 protein-coding genes, 241 miRNAs, and 167 long non-coding RNAs. Opposite gene expression profiles were observed when the gene expression profile obtained upon EC supplementation was compared to the profile obtained after consumption of the HFD. Functionality analysis revealed that the differentially expressed genes regulate processes involved in neurofunction, inflammation, endothelial function, cell-cell adhesion, and cell signaling. In summary, the capacity of EC to mitigate anxiety-related behaviors in HFD-induced obese mice can be in part explained by its capacity to exert complex genomic modifications in the hippocampus, counteracting changes driven by consumption of the HFD and/or associated obesity.
Collapse
Affiliation(s)
- Jiye Kang
- Department of Nutrition, University of California, Davis, One Shields Avenue, 95616 Davis, California, USA. .,Department of Environmental Toxicology, University of California, Davis, One Shields Avenue, 95616 Davis, California, USA
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, One Shields Avenue, 95616 Davis, California, USA. .,Department of Environmental Toxicology, University of California, Davis, One Shields Avenue, 95616 Davis, California, USA
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, One Shields Avenue, 95616 Davis, California, USA.
| |
Collapse
|
15
|
Iglesias DE, Cremonini E, Hester SN, Wood SM, Bartlett M, Fraga CG, Oteiza PI. Cyanidin and delphinidin restore colon physiology in high fat diet-fed mice: Involvement of TLR-4 and redox-regulated signaling. Free Radic Biol Med 2022; 188:71-82. [PMID: 35691508 DOI: 10.1016/j.freeradbiomed.2022.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Consumption of high fat diets (HFD) mimics a modern or "Western style" diet pattern and can impair intestinal barrier integrity, leading to endotoxemia and associated unhealthy conditions. This study investigated if supplementation with an anthocyanin (cyanidin and delphinidin glucosides)-rich extract (CDRE) could revert or mitigate HFD-induced alterations of colonic physiology in part through the regulation of Toll-Like Receptor 4 (TLR-4)- and redox-regulated signaling. C57BL/6J male mice were fed for 4 weeks with a control or an HFD. Then, mice were divided in four groups fed either control or HFD, or these diets supplemented with CDRE for the subsequent 4 weeks. After 8 weeks on the HFD we observed in the colon: i) disruption of tight junction structure and function; ii) increased TLR-4 expression; iii) increased NADPH oxidase NOX1 expression, and iv) activation of redox-sensitive and TLR-4-triggered pathways, i.e. NF-κB, ERK1/2, JNK1/2, PI3K/Akt. All these events were prevented or reverted by CDRE supplementation. Supporting the relevance of CDRE-mediated downregulation of TLR-4 on its colon beneficial effect; in vitro (Caco-2 cell monolayers), cyanidin, delphinidin and their metabolites protocatechuic and gallic acid, mitigated lipopolysaccharide (LPS)-induced monolayer permeabilization by restoring tight junction structure and dynamics and preventing lipid/protein oxidation. The CDRE also mitigated HFD-mediated alterations in parameters of goblet cell differentiation and function, including the downregulation of markers of goblet cell differentiation (Klf4), and intestinal mucosa healing (Tff3). Results show that a short-term supplementation with cyanidin and delphinidin, protect from HFD-induced alterations in colon physiology in part through the modulation of TLR-4- and redox-regulated signaling.
Collapse
Affiliation(s)
- Dario E Iglesias
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Eleonora Cremonini
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | | | - Steven M Wood
- Pharmanex Research, NSE Products, Inc., Provo, UT, USA
| | - Mark Bartlett
- Pharmanex Research, NSE Products, Inc., Provo, UT, USA
| | - Cesar G Fraga
- Department of Nutrition, University of California, Davis, CA, USA; Physical Chemistry, School of Pharmacy and Biochemistry, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular-Dr. Alberto Boveris (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
16
|
Ma X, Li M, Lu G, Wang R, Wei Y, Guo Y, Yu Y, Jiang C. Anti-inflammation of epicatechin mediated by TMEM35A and TMPO in bovine mammary epithelial cell line cells and mouse mammary gland. J Dairy Sci 2021; 104:12925-12938. [PMID: 34593235 DOI: 10.3168/jds.2021-20571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022]
Abstract
Epicatechin (EC) has significant antiinflammation, antioxidation, and anticancer activities. It also provides a new alternative treatment for mastitis, which can result in great economic losses in the dairy industry if left untreated. The purpose of this study was to investigate the anti-inflammatory effects of EC on mastitis and the underlying mechanism using in vivo and in vitro systems. The use of ELISA and immunohistochemistry assays showed that EC treatment at 1.5, 7.5, 15, and 30 mg/mL decreased protein expression of inflammatory mediators, including cyclooxygenase-2 and inducible nitric oxide synthase; inflammatory cytokines, which were composed of IL-1β, TNF-α, and IL-6 in lipopolysaccharide (LPS)-stimulated bovine mammary epithelial cell line (MAC-T); and mouse mammary gland, together with reduced filtration of T lymphocytes in the mouse mammary gland. Furthermore, EC treatment reduced LPS-induced phosphorylation levels of p65 and inhibitor of NF-κB, and blocked nuclear translocation of p65 as revealed by western blot and immunofluorescence test in MAC-T cells and the mouse mammary gland. Epicatechin also attenuated LPS-induced phosphorylation levels of mitogen-activated protein kinase members (i.e., p38, c-Jun N-terminal kinase 1/2 and extracellular regulated protein kinases 1/2). Using RNA-seq and tandem mass tag analyses, upregulation of TMEM35A and TMPO proteins was disclosed in MAC-T cells cotreated with LPS and EC. Although clustered regularly interspaced short palindromic repeats/Cas9-based knockdown of TMEM35A and TMPO attenuated abundance of phosphorylated (p)-p65, p-p38, TNF-α, and iNOS, overexpression of TMEM35A reversed EC-mediated effects in TMPO knockdown cells. Moreover, interaction between TMEM35A and TMPO was detected using the co-immunoprecipitation method. In conclusion, our data demonstrated that EC inhibited LPS-induced inflammatory response in MAC-T cells and the mouse mammary gland. Importantly, TMEM35A mediated the transmembrane transport of EC, and the interaction between TMEM35A and TMPO inhibited MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Xiao Ma
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Manman Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Guicong Lu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Ruihong Wang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yunmin Wei
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yanfeng Guo
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yongxiong Yu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Caode Jiang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Więckowska-Gacek A, Mietelska-Porowska A, Wydrych M, Wojda U. Western diet as a trigger of Alzheimer's disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev 2021; 70:101397. [PMID: 34214643 DOI: 10.1016/j.arr.2021.101397] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
An excess of saturated fatty acids and simple sugars in the diet is a known environmental risk factor of Alzheimer's disease (AD) but the holistic view of the interacting processes through which such diet may contribute to AD pathogenesis is missing. We addressed this need through extensive analysis of published studies investigating the effects of western diet (WD) on AD development in humans and laboratory animals. We reviewed WD-induced systemic alterations comprising metabolic changes, induction of obesity and adipose tissue inflammation, gut microbiota dysbiosis and acceleration of systemic low-grade inflammation. Next we provide an overview of the evidence demonstrating that WD-associated systemic alterations drive impairment of the blood-brain barrier (BBB) and development of neuroinflammation paralleled by accumulation of toxic amyloid. Later these changes are followed by dysfunction of synaptic transmission, neurodegeneration and finally memory and cognitive impairment. We conclude that WD can trigger AD by acceleration of inflammaging, and that BBB impairment induced by metabolic and systemic inflammation play the central role in this process. Moreover, the concurrence of neuroinflammation and Aβ dyshomeostasis, which by reciprocal interactions drive the vicious cycle of neurodegeneration, contradicts Aβ as the primary trigger of AD. Given that in 2019 the World Health Organization recommended focusing on modifiable risk factors in AD prevention, this overview of the sequential, complex pathomechanisms initiated by WD, which can lead from peripheral disturbances to neurodegeneration, can support future prevention strategies.
Collapse
|
18
|
Kim JH, Seo HJ, Pang QQ, Kwon YR, Kim JH, Cho EJ. Protective effects of krill oil on high fat diet-induced cognitive impairment by regulation of oxidative stress. Free Radic Res 2021; 55:799-809. [PMID: 34181501 DOI: 10.1080/10715762.2021.1944623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Consumption of high fat diet (HFD) increases risk of cognitive impairment and memory deficit by elevation of oxidative stress in the brain. In this study, we investigated the protective effects of krill oil (KO) against HFD-induced cognitive impairment in mice. The mice were fed with HFD for 10 weeks, and then KO was orally administered at doses of 100, 200, or 500 mg/kg/d for 4 weeks. To evaluate the cognitive abilities, we carried out the behavior tests, such as T-maze, novel object recognition test, and Morris water maze test. The HFD-induced cognitive impairment mice showed impairments in both spatial memory and novel object cognitive abilities. However, administration of KO at doses of 100, 200, or 500 mg/kg/d improved spatial memory ability and novel object cognition by increase of the exploration of new route and novel object. In addition, KO-administered group improved learning and memory abilities, showing shorter latency to reach hidden platform compared with control group. Furthermore, levels of reactive oxygen species (ROS), lipid peroxidation, and nitric oxide (NO) were significantly elevated by consumption of HFD, indicating that consumption of HFD induces oxidative stress in the brain. However, administration of KO attenuated oxidative stress by decrease of the ROS levels, lipid peroxidation, and NO. This study suggests that KO improves HFD-induced cognitive impairment by attenuation of oxidative stress in the brain. Therefore, KO may play as a promising agent in treatment and prevention of HFD-induced cognitive impairment.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea.,Department of Food Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyo Jeong Seo
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Qi Qi Pang
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Yu Ri Kwon
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
19
|
Batir-Marin D, Boev M, Cioanca O, Mircea C, Burlec AF, Beppe GJ, Spac A, Corciova A, Hritcu L, Hancianu M. Neuroprotective and Antioxidant Enhancing Properties of Selective Equisetum Extracts. Molecules 2021; 26:molecules26092565. [PMID: 33924900 PMCID: PMC8124630 DOI: 10.3390/molecules26092565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/31/2023] Open
Abstract
The sterile stems belonging to the Equisetum species are often used in traditional medicine of various nations, including Romanians. They are highly efficient in treating urinary tract infections, cardiovascular diseases, respiratory tract infections, and medical skin conditions due to their content of polyphenolic derivatives that have been isolated. In this regard, this study aimed to provide the chemical composition of the extracts obtained from the Equisetum species (E. pratense, E. sylvaticum, E. telmateia) and to investigate the biological action in vitro and in vivo. For the chemical characterization of the analyzed Equisetum species extracts, studies were performed by using ultra-high-performance liquid chromatography (UHPLC-DAD). In vitro evaluation of the antioxidant activity of the plant extracts obtained from these species of Equisetum genus was determined. The neuroprotective activity of these three ethanolic extracts from the Equisetum species using zebrafish tests was determined in vivo. All obtained results were statistically significant. The results indicate that E. sylvaticum extract has a significant antioxidant activity; whereas, E. pratense extract had anxiolytic and antidepressant effects significantly higher than the other two extracts used. All these determinations indicate promising results for the antioxidant in vitro tests and neuroprotective activity of in vivo tests, particularly mediated by their active principles.
Collapse
Affiliation(s)
- Denisa Batir-Marin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania; (D.B.-M.); (M.B.)
| | - Monica Boev
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania; (D.B.-M.); (M.B.)
| | - Oana Cioanca
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (C.M.); (A.F.B.); (A.S.); (A.C.); (M.H.)
- Correspondence: ; Tel.: +40-232-301-815
| | - Cornelia Mircea
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (C.M.); (A.F.B.); (A.S.); (A.C.); (M.H.)
| | - Ana Flavia Burlec
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (C.M.); (A.F.B.); (A.S.); (A.C.); (M.H.)
| | - Galba Jean Beppe
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon;
| | - Adrian Spac
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (C.M.); (A.F.B.); (A.S.); (A.C.); (M.H.)
| | - Andreia Corciova
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (C.M.); (A.F.B.); (A.S.); (A.C.); (M.H.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania;
| | - Monica Hancianu
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (C.M.); (A.F.B.); (A.S.); (A.C.); (M.H.)
| |
Collapse
|
20
|
Bernatova I, Liskova S. Mechanisms Modified by (-)-Epicatechin and Taxifolin Relevant for the Treatment of Hypertension and Viral Infection: Knowledge from Preclinical Studies. Antioxidants (Basel) 2021; 10:467. [PMID: 33809620 PMCID: PMC8002320 DOI: 10.3390/antiox10030467] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Various studies have shown that certain flavonoids, flavonoid-containing plant extracts, and foods can improve human health. Experimental studies showed that flavonoids have the capacity to alter physiological processes as well as cellular and molecular mechanisms associated with their antioxidant properties. An important function of flavonoids was determined in the cardiovascular system, namely their capacity to lower blood pressure and to improve endothelial function. (-)-Epicatechin and taxifolin are two flavonoids with notable antihypertensive effects and multiple beneficial actions in the cardiovascular system, but they also possess antiviral effects, which may be of particular importance in the ongoing pandemic situation. Thus, this review is focused on the current knowledge of (-)-epicatechin as well as (+)-taxifolin and/or (-)-taxifolin-modified biological action and underlining molecular mechanisms determined in preclinical studies, which are relevant not only to the treatment of hypertension per se but may provide additional antiviral benefits that could be relevant to the treatment of hypertensive subjects with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Iveta Bernatova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
| | - Silvia Liskova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
21
|
Cremonini E, Iglesias DE, Kang J, Lombardo GE, Mostofinejad Z, Wang Z, Zhu W, Oteiza PI. (-)-Epicatechin and the comorbidities of obesity. Arch Biochem Biophys 2020; 690:108505. [PMID: 32679195 DOI: 10.1016/j.abb.2020.108505] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023]
Abstract
Obesity has major adverse consequences on human health contributing to the development of, among others, insulin resistance and type 2 diabetes, cardiovascular disease, non-alcoholic fatty liver disease, altered behavior and cognition, and cancer. Changes in dietary habits and lifestyle could contribute to mitigate the development and/or progression of these pathologies. This review will discuss current evidence on the beneficial actions of the flavan-3-ol (-)-epicatechin (EC) on obesity-associated comorbidities. These benefits can be in part explained through EC's capacity to mitigate several common events underlying the development of these pathologies, including: i) high circulating levels of glucose, lipids and endotoxins; ii) chronic systemic inflammation; iii) tissue endoplasmic reticulum and oxidative stress; iv) insulin resistance; v) mitochondria dysfunction and vi) dysbiosis. The currently known underlying mechanisms and cellular targets of EC's beneficial effects are discussed. While, there is limited evidence from human studies supplementing with pure EC, other studies involving cocoa supplementation in humans, pure EC in rodents and in vitro studies, support a potential beneficial action of EC on obesity-associated comorbidities. This evidence also stresses the need of further research in the field, which would contribute to the development of human dietary strategies to mitigate the adverse consequences of obesity.
Collapse
Affiliation(s)
- Eleonora Cremonini
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Dario E Iglesias
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Jiye Kang
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Giovanni E Lombardo
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zahra Mostofinejad
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Ziwei Wang
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Wei Zhu
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Patricia I Oteiza
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|