1
|
Chumroenvidhayakul S, Thilavech T, Abeywardena MY, Conlon M, Dallimore J, Adams M, Muhlhausler B, Adisakwattana S. Dragon Fruit Peel ( Hylocereus undatus) Modulates Hepatic Lipid Metabolism and Inflammation in a Rat Model of High-Fat, High-Fructose-Induced Metabolic Dysfunction. Antioxidants (Basel) 2025; 14:319. [PMID: 40227294 PMCID: PMC11939235 DOI: 10.3390/antiox14030319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
Metabolic dysfunction and hepatic abnormalities, such as those associated with high-fat, high-fructose (HFHFr) diets, are major contributors to obesity-related health issues. The growing interest in sustainable dietary interventions has highlighted the potential of plant-based byproducts. Dragon fruit (Hylocereus undatus) peel waste, rich in bioactive compounds such as dietary fibers, phenolics, and betacyanins, represents a promising functional ingredient for managing these disorders. This study investigated the effects of dragon fruit peel powder (DFP) on metabolic dysfunction and hepatic abnormalities induced by a HFHFr diet in rats. Over 12 weeks, the rats were fed a standard AIN-93M diet (control or C), C with 5% (w/w) DFP (C + DFP), a HFHFr diet, or a HFHFr diet with 5% (w/w) DFP (HFHFr + DFP). DFP supplementation significantly reduced HFHFr-induced body weight gain, visceral adiposity, insulin resistance, and dyslipidemia while also lowering systolic blood pressure and systemic oxidative stress markers. In the liver, DFP supplementation attenuated fat accumulation and lipid peroxidation, reduced glycogen storage abnormalities, and modulated the expression of lipid metabolism and inflammatory genes. These findings suggest that DFP may serve as a functional dietary supplement for preventing and managing metabolic disorders and liver abnormalities associated with excessive fat and fructose consumption.
Collapse
Affiliation(s)
- Siriwan Chumroenvidhayakul
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Science, Chulalongkorn University, Bangkok 10330, Thailand;
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Thavaree Thilavech
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Michael Conlon
- CSIRO Health & Biosecurity, Kintore Avenue, Adelaide, SA 5000, Australia
| | - Julie Dallimore
- CSIRO Health & Biosecurity, Kintore Avenue, Adelaide, SA 5000, Australia
| | - Michael Adams
- CSIRO Health & Biosecurity, Kintore Avenue, Adelaide, SA 5000, Australia
| | | | - Sirichai Adisakwattana
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
2
|
Geyikoglu F, Yildiz Deniz G, Arslan M, Yildirim S, Yuce N, Sisman T, Kiliclioglu M, Bolat İ, Colak S, Celik M, Erol HS. Betanin ameliorates lipopolysaccharide-caused testis damage via multiple signal networks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-14. [DOI: 10.1080/09603123.2025.2474701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/27/2025] [Indexed: 05/04/2025]
|
3
|
Liang A, Liu J, Wei Y, Liao Y, Wu F, Ruan J, Li J. m 6A reader IGF2BP1 accelerates apoptosis of high glucose-induced vascular endothelial cells in a m 6A-HMGB1 dependent manner. PeerJ 2023; 11:e14954. [PMID: 37009154 PMCID: PMC10062336 DOI: 10.7717/peerj.14954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/03/2023] [Indexed: 03/29/2023] Open
Abstract
Emerging evidence indicates that N6-methyladenosine (m6A) plays a critical role in vascular biological characteristic. In diabetes mellitus pathophysiology, high glucose (HG)-induced vascular endothelial dysfunction is associated with diabetes vascular complications. Nevertheless, the underlying mechanism of high glucose (HG)-related m6A regulation on vascular endothelial cells is still unclear. Results indicated that m6A reader insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was up-regulated in HG-treated human umbilical vascular endothelium cells (HUVECs) comparing to normal group. Functionally, results indicated that IGF2BP1 knockdown recovered the proliferation of HUVECs inhibited by HG-administration. Besides, IGF2BP1 knockdown reduced the apoptosis induced by HG-administration. Mechanistically, IGF2BP1 interacted with HMGB1 mRNA and stabilized its expression of m6A-modified RNA. Therefore, these findings provided compelling evidence demonstrating that m6A reader IGF2BP1 contributes to the proliferation and apoptosis of vascular endothelial cells in hyperglycaemia, serving as a target for development of diabetic angiopathy therapeutics.
Collapse
Affiliation(s)
- Anru Liang
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Guangxi Medical University and The Second People’s Hospital of Nanning, Nanning, China
| | - Jianyu Liu
- Department of Clinical Laboratory, Guiping People’s Hospital, Guigping, China
| | - Yanlin Wei
- Department of Emergency, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, China
| | - Yuan Liao
- Department of Clinical Laboratory, Guiping People’s Hospital, Guigping, China
| | - Fangxiao Wu
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Guangxi Medical University and The Second People’s Hospital of Nanning, Nanning, China
| | - Jiang Ruan
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Guangxi Medical University and The Second People’s Hospital of Nanning, Nanning, China
| | - Junjun Li
- Research Center of Medical Sciences, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, China
| |
Collapse
|
4
|
Nishikito DF, Borges ACA, Laurindo LF, Otoboni AMMB, Direito R, Goulart RDA, Nicolau CCT, Fiorini AMR, Sinatora RV, Barbalho SM. Anti-Inflammatory, Antioxidant, and Other Health Effects of Dragon Fruit and Potential Delivery Systems for Its Bioactive Compounds. Pharmaceutics 2023; 15:159. [PMID: 36678789 PMCID: PMC9861186 DOI: 10.3390/pharmaceutics15010159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Dragon fruit (Hylocereus genus) has the potential for the prevention of diseases associated with inflammatory and oxidative processes. We aimed to comprehensively review dragon fruit health effects, economic importance, and possible use in delivery systems. Pubmed, Embase, and Google Scholar were searched, and PRISMA (Preferred Reporting Items for a Systematic Review and Meta-Analysis) guidelines were followed. Studies have shown that pitaya can exert several benefits in conditions such as diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and cancer due to the presence of bioactive compounds that may include vitamins, potassium, betacyanin, p-coumaric acid, vanillic acid, and gallic acid. Moreover, pitaya has the potential to be used in food and nutraceutical products as functional ingredients, natural colorants, ecologically correct and active packaging, edible films, preparation of photoprotective products, and additives. Besides the importance of dragon fruit as a source of bioactive compounds, the bioavailability is low. The development of delivery systems such as gold nanoparticles with these compounds can be an alternative to reach target tissues.
Collapse
Affiliation(s)
| | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | | | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | | | | | - Renata Vargas Sinatora
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Sandra M. Barbalho
- School of Food and Technology of Marilia (FATEC), São Paulo 17500-000, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| |
Collapse
|
5
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Aispuro-Hernández E, Vergara-Jiménez MJ, Cárdenas-Torres FI, Martínez-Téllez MA, Ontiveros N. Cactaceae plants as sources of active bioavailable phytochemicals. Food Funct 2022; 13:9720-9733. [PMID: 36106964 DOI: 10.1039/d2fo01863b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arid-land plants from the Cactaceae family are endemic to the Americas and cultivated worldwide. Cactaceous plants and their fruits contain phenolic compounds, betalains, vitamins, carotenoids, minerals, and soluble fiber. Edible cactaceous matrices can be considered functional foods since their consumption may confer health benefits. These plants could be a source of novel bioactive compounds relevant to the area of phytomedicine. However, consumption of high concentrations of active molecules is not necessarily correlated to beneficial physiological effects because phytochemicals must be released from the food matrices under physiological conditions, resist digestion-associated chemical transformations, and remain in their active state in systemic circulation until the target tissues are reached. Notably, although digestion may either increase or decrease the bioactive phytochemicals' activity and stability, non-absorbed compounds may also be relevant for human health. Additionally, food matrices' type and composition and their technological processing operations may influence the compounds' release, stability, and accessibility. Thus, this review provides insights on the feasibility of using Cactaceae plants as sources of functional compounds. It is focused on compounds' bioactivity, bioaccessibility, and overall bioavailability after their metabolic transformation. Also, it addresses the influence of food processing on bioactive compounds. Many Cactaceae species are unexplored, and our understanding of how they confer health benefits is limited. To better understand the physiological relevance, nutraceutical potential, and therapeutic feasibility of cactaceous bioactive phytochemicals, future research should focus on the metabolic stability and safety of these compounds, as well as their assimilation mechanisms (absorption, distribution, and metabolic fate).
Collapse
Affiliation(s)
- Emmanuel Aispuro-Hernández
- Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, 80019, Mexico
| | - Marcela J Vergara-Jiménez
- Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, 80019, Mexico
| | - Feliznando I Cárdenas-Torres
- Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, 80019, Mexico
| | | | - Noé Ontiveros
- División de Ciencias e Ingeniería, Departamento de Ciencias Químico-Biológicas y Agropecuarias, Laboratorio de Análisis Clínicos e Investigación (LACIUS, URS), Universidad de Sonora, Navojoa, Sonora, 85880, Mexico.
| |
Collapse
|
7
|
Abstract
In the last years, the use of natural phytochemical compounds as protective agents in the prevention and treatment of obesity and the related-metabolic syndrome has gained much attention worldwide. Different studies have shown health benefits for many vegetables such Opuntia ficus-indica and Beta vulgaris and their pigments collectively referred as betalains. Betalains exert antioxidative, anti-inflammation, lipid lowering, antidiabetic and anti-obesity effects. This review summarizes findings in the literature and highlights the therapeutic potential of betalains and their natural source as valid alternative for supplementation in obesity-related disorders treatment. Further research is needed to establish the mechanisms through which these natural pigments exert their beneficial effects and to translate the promising findings from animal models to humans.
Collapse
Affiliation(s)
- Pasquale Calvi
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy.,Dipartment of Biomedicine, Neuroscience and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Simona Terzo
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy
| | - Antonella Amato
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy
| |
Collapse
|
8
|
Cheok A, Xu Y, Zhang Z, Caton PW, Rodriguez-Mateos A. Betalain-rich dragon fruit (pitaya) consumption improves vascular function in men and women: a double-blind, randomized controlled crossover trial. Am J Clin Nutr 2022; 115:1418-1431. [PMID: 35265960 DOI: 10.1093/ajcn/nqab410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Betalains are natural red color pigments abundant in red-fleshed dragon fruit (Hylocereus polyrhizus). Recent research has shown that dragon fruit consumption may help improve blood glucose and lipid profile. However, investigations of its cardioprotective properties in human trials, especially in nutritionally achievable amounts, remain nonexistent. OBJECTIVES The aim of this study was to investigate the effects of acute and short-term consumption of dragon fruit on vascular function in a healthy population. METHODS A randomized, double-blind, placebo-controlled, crossover trial was conducted in 19 young, healthy, nonsmoking men and women assigned to consume 24 g whole dragon fruit powder (33 mg betalains) or a nutrient-matched placebo, daily for 14 d. Flow-mediated dilation (FMD), arterial stiffness, and blood pressure (BP) were measured at 0 h, 1 h, 2 h, 3 h, and 4 h and finally at 14 d after daily consumption. RESULTS A total of 18 participants completed the trial. Dragon fruit consumption significantly improved acute FMD at 2 h (+0.8 ± 0.3%, P = 0.01), 3 h (+1.0 ± 0.3%, P = 0.001), and 4 h (+1.3 ± 0.4%, P < 0.001) postconsumption compared with placebo. This effect was sustained up until 14 d (+1.3 ± 0.2%, P < 0.001). Pulse-wave velocity was acutely significantly reduced at 3 h (-0.5 ± 0.2 m/s, P = 0.003), whereas augmentation index (AIx) also improved after 14 d (-7.0 ± 3.3%, P = 0.02) when compared with placebo. No differences were found in either peripheral or central BP across all time points. CONCLUSIONS Acute and short-term consumption of dragon fruit in dietary achievable amounts improved endothelial function and arterial stiffness in healthy individuals. This implies that regular dragon fruit consumption may have a meaningful impact on cardiovascular disease risk likely due to the high betalain content. This trial was registered at ClinicalTrials.gov as NCT03995602.
Collapse
Affiliation(s)
- Alex Cheok
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Science and Medicine, King's College London, London, United Kingdom
| | - Yifan Xu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Science and Medicine, King's College London, London, United Kingdom
| | - Zicheng Zhang
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Science and Medicine, King's College London, London, United Kingdom
| | - Paul W Caton
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Science and Medicine, King's College London, London, United Kingdom.,Department of Diabetes, School of Life Course and Population Sciences, Faculty of Life Science and Medicine, King's College London, London, United Kingdom
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Science and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Martínez-Rodríguez P, Guerrero-Rubio MA, Henarejos-Escudero P, García-Carmona F, Gandía-Herrero F. Health-promoting potential of betalains in vivo and their relevance as functional ingredients: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Nutritional Analysis of Red-Purple and White-Fleshed Pitaya ( Hylocereus) Species. Molecules 2022; 27:molecules27030808. [PMID: 35164073 PMCID: PMC8839306 DOI: 10.3390/molecules27030808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Pitaya is one of the most preferred and produced tropical fruit species recently introduced to the Mediterrranean region in Turkey. Due to its nutritional fruits with high economic value, the popularity of pitaya increases steadily in Turkey as an alternative crop. No detailed nutritional analysis has been undertaken in Turkey so far on fruits of the pitaya species. In this study, we determined and compared some nutritional parameters in fruit flesh of two pitaya (dragon fruit) species (Hylocereus polyrhizus: Siyam and Hylocereus undatus: Vietnam Jaina) grown in the Adana province located in the eastern Mediterranean region in Turkey. The individual sugars, antioxidant activity, total phenolic content, phenolic compounds and volatiles were determined for the first time in Turkey on two pitaya species. The results showed that total phenol content and antioxidant capacity are notably higher in red-fleshed fruits than white-fleshed ones and the predominant phenolic compound in fruits of both species was quercetin. The total sugar content and most of the phenolic compounds in fruits of two pitaya species were similar. A total of 51 volatile compounds were detected by using two Solid Phase Micro Extraction (SPME) fibers, coupled with Gas Chromatography Mass Spectrometry (GC-MS) techniques, and more volatile compounds were presented in the white-fleshed species. Total phenolic content (TPC) of the red-fleshed and white-fleshed pitaya species were 16.66 and 17.11 mg GAE/100 g FW (fresh weight). This study provides a first look at the biochemical comparison of red-fleshed and white-fleshed pitaya species introduced and cultivated in Turkey. The results also showed, for the first time, the biochemical content and the potential health benefit of Hylocereus grown in different agroecological conditions, providing important information for pitaya researchers and application perspective.
Collapse
|
11
|
Maturation Process, Nutritional Profile, Bioactivities and Utilisation in Food Products of Red Pitaya Fruits: A Review. Foods 2021; 10:foods10112862. [PMID: 34829143 PMCID: PMC8618204 DOI: 10.3390/foods10112862] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022] Open
Abstract
Red pitaya (Hylocereus polyrhizus, red pulp with pink peel), also known as dragon fruit, is a well-known species of pitaya fruit. Pitaya seeds and peels have been reported to exhibit higher concentrations of total polyphenols, beta-cyanins and amino acid than pulp, while anthocyanins (i.e., cyanidin 3-glucoside, delphinidin 3-glucoside and pelargonidin 3-glucoside) were only detected in the pulp extracts. Beta-cyanins, phenolics and flavonoids were found to increase gradually during fruit maturation and pigmentation appeared earlier in the pulp than peel. The phytochemicals were extracted and purified by various techniques and broadly used as natural, low-cost, and beneficial healthy compounds in foods, including bakery, wine, dairy, meat and confectionery products. These bioactive components also exhibit regulative influences on the human gut microbiota, glycaemic response, lipid accumulation, inflammation, growth of microbials and mutagenicity, but the mechanisms are yet to be understood. The objective of this study was to systematically summarise the effect of red pitaya’s maturation process on the nutritional profile and techno-functionality in a variety of food products. The findings of this review provide valuable suggestions for the red pitaya fruit processing industry, leading to novel formulations supported by molecular research.
Collapse
|
12
|
Abd-Elhakim YM, Al-Sagheer AA. Opuntia spp. Benefits in Chronic Diseases. OPUNTIA SPP.: CHEMISTRY, BIOACTIVITY AND INDUSTRIAL APPLICATIONS 2021:423-455. [DOI: 10.1007/978-3-030-78444-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
13
|
Giglio RV, Carruba G, Cicero AF, Banach M, Patti AM, Nikolic D, Cocciadiferro L, Zarcone M, Montalto G, Stoian AP, Banerjee Y, Rizvi AA, Toth PP, Rizzo M. Pasta Supplemented with Opuntia ficus-indica Extract Improves Metabolic Parameters and Reduces Atherogenic Small Dense Low-Density Lipoproteins in Patients with Risk Factors for the Metabolic Syndrome: A Four-Week Intervention Study. Metabolites 2020; 10:metabo10110428. [PMID: 33114614 PMCID: PMC7694062 DOI: 10.3390/metabo10110428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022] Open
Abstract
Food supplementation with Opuntia ficus-indica (OFI) has been associated with a significant reduction in total cholesterol, body fat, hyperglycemia and blood pressure. Since OFI may also have antioxidant and anti-atherogenic properties, we hypothesized that its supplementation might reduce atherogenic lipoproteins, including small, dense low-density lipoproteins (sdLDL). Forty-nine patients (13 men and 36 women, mean age: 56 ± 5 years) with one or two criteria for the metabolic syndrome weekly consumed 500 g of pasta supplemented with 3% OFI extract (30% of insoluble polysaccharides with high antioxidant power) for 1 month. The full LDL subclass profile was assessed by gel electrophoresis (Lipoprint, Quantimetrix, Redondo Beach, CA, USA). After 1 month of pasta supplementation, waist circumference (p = 0.0297), plasma glucose (p < 0.0001), triglycerides (p = 0.0137), plasma creatinine (p = 0.0244), urea and aspartate transaminase (p < 0.0001 for each) significantly decreased. A percentage increase in larger, less atherogenic LDL-1 (p = 0.0002), with a concomitant reduction in smaller, denser LDL-2 (p < 0.0001) and LDL-3 (p = 0.0004), were found. LDL-4 and-5 decreased, although not significantly. This is the first intervention study suggesting that pasta enriched with an OFI extract may have beneficial effects on some metabolic parameters and the LDL particle sizes, reducing atherogenic sdLDL. Future studies will help to establish if these findings impact cardiovascular outcomes.
Collapse
Affiliation(s)
- Rosaria Vincenza Giglio
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (A.M.P.); (G.M.); (M.R.)
| | - Giuseppe Carruba
- Division of Research and Internationalization, ARNAS-Civico Di Cristina e Benfratelli, 90127 Palermo, Italy; (G.C.); (L.C.); (M.Z.)
| | - Arrigo F.G. Cicero
- Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, 90-419 Lodz, Poland;
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI) in Lodz, 93-338 Lodz, Poland
| | - Angelo Maria Patti
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (A.M.P.); (G.M.); (M.R.)
| | - Dragana Nikolic
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (A.M.P.); (G.M.); (M.R.)
- Correspondence: ; Tel.: +39-091-655-4703
| | - Letizia Cocciadiferro
- Division of Research and Internationalization, ARNAS-Civico Di Cristina e Benfratelli, 90127 Palermo, Italy; (G.C.); (L.C.); (M.Z.)
| | - Maurizio Zarcone
- Division of Research and Internationalization, ARNAS-Civico Di Cristina e Benfratelli, 90127 Palermo, Italy; (G.C.); (L.C.); (M.Z.)
| | - Giuseppe Montalto
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (A.M.P.); (G.M.); (M.R.)
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Yajnavalka Banerjee
- Department of Biochemistry, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055 Dubai, UAE;
| | - Ali A. Rizvi
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, SC 29203, USA;
- Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peter P. Toth
- CGH Medical Center, Sterling, IL 61081, USA;
- School of Medicine, University of Illinois, Peoria, IL 60612, USA
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Manfredi Rizzo
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (A.M.P.); (G.M.); (M.R.)
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, SC 29203, USA;
| |
Collapse
|