1
|
Zeng M, Wang Y, Tao X, Fan T, Yin X, Shen C, Wang X. Novel Perspectives in the Management of Colorectal Cancer: Mechanistic Investigations Into the Reversal of Drug Resistance via Active Constituents Derived From Herbal Medicine. Phytother Res 2024; 38:5962-5984. [PMID: 39462152 DOI: 10.1002/ptr.8363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/03/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
The high incidence and mortality rate of colorectal cancer have become a significant global health burden. Chemotherapy has been the traditional treatment for colorectal cancer and has demonstrated promising antitumor effects, leading to significant improvements in patient survival. However, the development of chemoresistance poses a major challenge during chemotherapy in colorectal cancer, significantly impeding treatment efficacy and affecting patient prognosis. Despite the development of a variety of novel anticolorectal cancer chemotherapy agents, their effectiveness and side effects vary, possibly due to the complex mechanisms of resistance in colorectal cancer. Abnormal drug metabolism or protein targets are the most direct causes of resistance. Further studies have revealed that these resistance mechanisms involve biochemical processes such as altered protein expression, autophagy, and epithelial-mesenchymal transitions. Herbal active ingredients offer an alternative treatment option and have shown promise in reversing colorectal cancer drug resistance. This paper aims to summarize the role of various biochemical processes and key protein targets in the occurrence and maintenance of resistance mechanisms in colorectal cancer. Additionally, it elaborates on the mechanisms of action of herbal active ingredients in reversing colorectal cancer drug resistance. The article also discusses the limitations and opportunities in developing novel anticolorectal cancer drugs based on herbal medicine.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelin Tao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Shen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
3
|
Wang Y, He J, Lian S, Zeng Y, He S, Xu J, Luo L, Yang W, Jiang J. Targeting Metabolic-Redox Nexus to Regulate Drug Resistance: From Mechanism to Tumor Therapy. Antioxidants (Basel) 2024; 13:828. [PMID: 39061897 PMCID: PMC11273443 DOI: 10.3390/antiox13070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Drug resistance is currently one of the biggest challenges in cancer treatment. With the deepening understanding of drug resistance, various mechanisms have been revealed, including metabolic reprogramming and alterations of redox balance. Notably, metabolic reprogramming mediates the survival of tumor cells in harsh environments, thereby promoting the development of drug resistance. In addition, the changes during metabolic pattern shift trigger reactive oxygen species (ROS) production, which in turn regulates cellular metabolism, DNA repair, cell death, and drug metabolism in direct or indirect ways to influence the sensitivity of tumors to therapies. Therefore, the intersection of metabolism and ROS profoundly affects tumor drug resistance, and clarifying the entangled mechanisms may be beneficial for developing drugs and treatment methods to thwart drug resistance. In this review, we will summarize the regulatory mechanism of redox and metabolism on tumor drug resistance and highlight recent therapeutic strategies targeting metabolic-redox circuits, including dietary interventions, novel chemosynthetic drugs, drug combination regimens, and novel drug delivery systems.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Jingqiu He
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Shan Lian
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Sheng He
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Jue Xu
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chong-Qing Medical University, Chengdu 610041, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| |
Collapse
|
4
|
Wang S, Zhang Y, Yang X, Wang K, Yang X, Zhang B, Zhang B, Bie Q. Betulinic acid arrests cell cycle at G2/M phase by up-regulating metallothionein 1G inhibiting proliferation of colon cancer cells. Heliyon 2024; 10:e23833. [PMID: 38261922 PMCID: PMC10797151 DOI: 10.1016/j.heliyon.2023.e23833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Betulinic acid (BA) is a pentacyclic triterpene found in many plant species and has a broad-spectrum anti-tumor effect in various cancers, including colon cancer (CRC). However, its anticancer mechanism in CRC is no clear. RNA sequencing and bioinformatics analysis showed BA up-regulated 378 genes and down-regulated 137 genes in HT29 cells, while 2303 up-regulated and 1041 down-regulated genes were found in SW480 cells. KEGG enrichment analysis showed BA significantly stimulated the expression of metallothionein 1 (MT1) family genes in both HT29 and SW480 cells. Metallothionein 1G (MT1G) was the gene with the highest upregulation of MT1 family genes induced by BA dose-dependently. High MT1G expression enhanced the sensitivity of CRC cells to BA, whereas, MT1G knockdown had the opposite effect in vitro and in vivo. GSEA and GSCA showed genes affected by BA treatment were involved in cell cycle and G2/M checkpoint in CRC. Flow cytometry further exhibited BA reduced the percentage of G0/G1 cells and increased the percentage of G2/M cells in a dose-dependent manner, which could be rescued by MT1G knockdown. Moreover, MT1G also counteracted the BA-induced changes in cell cycle-related proteins (CDK2 and CDK4) and p-Rb. In summary, we have revealed a new anti-tumor mechanism that BA altered the cell cycle progression of CRC cells by upregulating MT1G gene, thereby inhibiting the proliferation of CRC cells.
Collapse
Affiliation(s)
- Sen Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuqin Zhang
- Blood Transfusion Department, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xiaxia Yang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Kexin Wang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xiao Yang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Baogui Zhang
- Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, Shandong, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
5
|
Bao X, Li W, Jia R, Meng D, Zhang H, Xia L. Molecular mechanism of ferulic acid and its derivatives in tumor progression. Pharmacol Rep 2023:10.1007/s43440-023-00494-0. [PMID: 37202657 PMCID: PMC10374777 DOI: 10.1007/s43440-023-00494-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Cancer is a significant disease that poses a major threat to human health. The main therapeutic methods for cancer include traditional surgery, radiotherapy, chemotherapy, and new therapeutic methods such as targeted therapy and immunotherapy, which have been developed rapidly in recent years. Recently, the tumor antitumor effects of the active ingredients of natural plants have attracted extensive attention. Ferulic acid (FA), (3-methoxy-4-hydroxyl cinnamic), with the molecular formula is C10H10O4, is a phenolic organic compound found in ferulic, angelica, jujube kernel, and other Chinese medicinal plants but is also, abundant in rice bran, wheat bran, and other food raw materials. FA has anti-inflammatory, analgesic, anti-radiation, and immune-enhancing effects and also shows anticancer activity, as it can inhibit the occurrence and development of various malignant tumors, such as liver cancer, lung cancer, colon cancer, and breast cancer. FA can cause mitochondrial apoptosis by inducing the generation of intracellular reactive oxygen species (ROS). FA can also interfere with the cell cycle of cancer cells, arrest most cancer cells in G0/G1 phase, and exert an antitumor effect by inducing autophagy; inhibiting cell migration, invasion, and angiogenesis; and synergistically improving the efficacy of chemotherapy drugs and reducing adverse reactions. FA acts on a series of intracellular and extracellular targets and is involved in the regulation of tumor cell signaling pathways, including the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT), B-cell lymphoma-2 (Bcl-2), and tumor protein 53 (P53) pathways and other signaling pathways. In addition, FA derivatives and nanoliposomes, as platforms for drug delivery, have an important regulatory effect on tumor resistance. This paper reviews the effects and mechanisms of antitumor therapies to provide new theoretical support and insight for clinical antitumor therapy.
Collapse
Affiliation(s)
- Xingxun Bao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Wei Li
- Department of Obstetrics and Gynecology, Linyi Third People's Hospital, Linyi, People's Republic of China
| | - Ruixue Jia
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Dandan Meng
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, 250031, People's Republic of China.
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
6
|
Tehami W, Nani A, Khan NA, Hichami A. New Insights Into the Anticancer Effects of p-Coumaric Acid: Focus on Colorectal Cancer. Dose Response 2023; 21:15593258221150704. [PMID: 36636631 PMCID: PMC9830577 DOI: 10.1177/15593258221150704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Colorectal cancer is considered the second most deadly cancer in the world. Studies have indicated that diet can prevent the risk of developing colorectal cancer. Recently, there has been an increasing interest in polyphenols due to their plausible effect on cancer prevention and treatment. p-Coumaric acid (p-CouA), a phenolic compound, is a cinnamic acid derivative found in several fruits, vegetables, and herbs. A growing body of evidence suggests that p-CouA may be an effective agent for preventing and managing colorectal cancer. In this current review, we briefly highlight the bioavailability of p-CouA. We also provide an up-to-date overview of molecular mechanisms underlying its anticancer effects, focusing on anti-inflammatory and antioxidant potentials, apoptosis induction, and cell cycle blockade. Finally, we discuss the impact of p-CouA on clonogenicity and multidrug resistance of colorectal cancer cells.
Collapse
Affiliation(s)
- Wafâa Tehami
- Laboratory of Saharan Natural Resources, University of Ahmed Draia, Adrar, Algeria,Wafâa Tehami, University of Ahmed Draia, National Road N 6, Adrar 01000, Algeria.
| | - Abdelhafid Nani
- Laboratory of Saharan Natural Resources, University of Ahmed Draia, Adrar, Algeria
| | - Naim A. Khan
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, Dijon, France
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, Dijon, France
| |
Collapse
|
7
|
Fan S, Guo D, Zhang J, Yang Y, Xue H, Xue T, Bai B. Structure, physicochemical properties, antioxidant, and hypoglycemic activities of water‐soluble polysaccharides from millet bran. J Food Sci 2022; 87:5263-5275. [PMID: 36321649 DOI: 10.1111/1750-3841.16362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/10/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Sanhong Fan
- School of Life Science Shanxi University Taiyuan Shanxi China
- Shanxi Key Laboratory for Research and Development of Regional Plants Taiyuan Shanxi China
| | - Dingyi Guo
- School of Life Science Shanxi University Taiyuan Shanxi China
| | - Jinhua Zhang
- School of Life Science Shanxi University Taiyuan Shanxi China
- Shanxi Key Laboratory for Research and Development of Regional Plants Taiyuan Shanxi China
| | - Yukun Yang
- School of Life Science Shanxi University Taiyuan Shanxi China
- Shanxi Key Laboratory for Research and Development of Regional Plants Taiyuan Shanxi China
| | - Hugui Xue
- School of Life Science Shanxi University Taiyuan Shanxi China
| | - Tengda Xue
- School of Life Science Shanxi University Taiyuan Shanxi China
| | - Baoqing Bai
- School of Life Science Shanxi University Taiyuan Shanxi China
- Shanxi Key Laboratory for Research and Development of Regional Plants Taiyuan Shanxi China
| |
Collapse
|
8
|
Zhang J, Wang W, Guo D, Bai B, Bo T, Fan S. Antidiabetic Effect of Millet Bran Polysaccharides Partially Mediated via Changes in Gut Microbiome. Foods 2022; 11:foods11213406. [PMID: 36360018 PMCID: PMC9654906 DOI: 10.3390/foods11213406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is a type of metabolic disease associated with changes in the intestinal flora. In this study, the regulatory effect of millet bran on intestinal microbiota in a model of type 2 diabetes (T2DM) was investigated in an effort to develop new approaches to prevent and treat diabetes and its complications in patients. The effect of purified millet bran polysaccharide (MBP) with three different intragastric doses (400 mg/kg, 200 mg/kg, and 100 mg/kg) combined with a high-fat diet was determined in a streptozotocin (STZ)-induced model of T2DM. By analyzing the changes in indicators, weight, fasting blood sugar, and other bio-physiological parameters, the changes in gut microbiota were analyzed via high-throughput sequencing to establish the effect of MBP on the intestinal flora. The results showed that MBP alleviated symptoms of high-fat diet-induced T2DM. A high dosage of MBP enhanced the hypoglycemic effects compared with low and medium dosages. During gavage, the fasting blood glucose (FBG) levels of rats in the MBP group were significantly reduced (p < 0.05). The glucose tolerance of rats in the MBP group was significantly improved (p < 0.05). In diabetic mice, MBP significantly increased the activities of CAT, SOD, and GSH-Px. The inflammatory symptoms of liver cells and islet cells in the MBP group were alleviated, and the anti-inflammatory effect was partially correlated with the dose of MBP. After 4 weeks of treatment with MBP, the indices of blood lipid in the MBP group were significantly improved compared with those of the DM group (p < 0.05). Treatment with MBP (400 mg/kg) increases the levels of beneficial bacteria and decreases harmful bacteria in the intestinal tract of rats, thus altering the intestinal microbial community and antidiabetic effect on mice with T2DM by modulating gut microbiota. The findings suggest that MBP is a potential pharmaceutical supplement for preventing and treating diabetes.
Collapse
Affiliation(s)
- Jinhua Zhang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Research and Utilization of Characteristic Plant Resources, Shanxi University, Taiyuan 030006, China
| | - Wenjing Wang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Dingyi Guo
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Baoqing Bai
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Research and Utilization of Characteristic Plant Resources, Shanxi University, Taiyuan 030006, China
| | - Tao Bo
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Research and Utilization of Characteristic Plant Resources, Shanxi University, Taiyuan 030006, China
| | - Sanhong Fan
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Research and Utilization of Characteristic Plant Resources, Shanxi University, Taiyuan 030006, China
- Correspondence:
| |
Collapse
|
9
|
Cui K, Wu H, Fan J, Zhang L, Li H, Guo H, Yang R, Li Z. The Mixture of Ferulic Acid and P-Coumaric Acid Suppresses Colorectal Cancer through lncRNA 495810/PKM2 Mediated Aerobic Glycolysis. Int J Mol Sci 2022; 23:ijms232012106. [PMID: 36292959 PMCID: PMC9603647 DOI: 10.3390/ijms232012106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022] Open
Abstract
Polyphenol-rich foods are gaining popularity due to their potential beneficial effects in the prevention and treatment of cancer. Foxtail millet is one of the important functional foods, riches in a variety of biologically active substance. Our previous study showed that ferulic acid (FA) and p-coumaric acid (p-CA) are the main anticancer components of foxtail millet bran, and the two have a significant synergistic effect. In the present study, the clinical application potential of FA and p-CA (FA + p-CA) were evaluated in vivo and in vitro. The FA and p-CA target gene enrichment analysis discovered that FA + p-CA were associated with aerobic glycolysis. It was further shown that FA + p-CA remodel aerobic glycolysis by inhibiting the glycolysis-associated lncRNA 495810 and the glycolytic rate-limiting enzyme M2 type pyruvate kinase (PKM2). Moreover, PKM2 expression was positively correlated with lncRNA 495810. More interestingly, the exogenous expression of lncRNA 495810 eliminated the inhibitory effects of FA + p-CA on aerobic glycolysis. Collectively, FA + p-CA obstruct the aerobic glycolysis of colorectal cancer cells via the lncRNA 495810/PKM2 axis, which provides a nutrition intervention and treatment candidate for colorectal cancer.
Collapse
Affiliation(s)
- Kaili Cui
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jiangmin Fan
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Lichao Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Hanqing Li
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Huiqin Guo
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Ruipeng Yang
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
- Correspondence: ; Tel.: +86-0351-7010499
| |
Collapse
|
10
|
Piazzesi A, Afsar SY, van Echten‐Deckert G. Sphingolipid metabolism in the development and progression of cancer: one cancer's help is another's hindrance. Mol Oncol 2021; 15:3256-3279. [PMID: 34289244 PMCID: PMC8637577 DOI: 10.1002/1878-0261.13063] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 11/27/2022] Open
Abstract
Cancer development is a multistep process in which cells must overcome a series of obstacles before they can become fully developed tumors. First, cells must develop the ability to proliferate unchecked. Once this is accomplished, they must be able to invade the neighboring tissue, as well as provide themselves with oxygen and nutrients. Finally, they must acquire the ability to detach from the newly formed mass in order to spread to other tissues, all the while evading an immune system that is primed for their destruction. Furthermore, increased levels of inflammation have been shown to be linked to the development of cancer, with sites of chronic inflammation being a common component of tumorigenic microenvironments. In this Review, we give an overview of the impact of sphingolipid metabolism in cancers, from initiation to metastatic dissemination, as well as discussing immune responses and resistance to treatments. We explore how sphingolipids can either help or hinder the progression of cells from a healthy phenotype to a cancerous one.
Collapse
Affiliation(s)
- Antonia Piazzesi
- LIMES Institute for Membrane Biology and Lipid BiochemistryUniversity of BonnGermany
| | - Sumaiya Yasmeen Afsar
- LIMES Institute for Membrane Biology and Lipid BiochemistryUniversity of BonnGermany
| | | |
Collapse
|
11
|
Dietary Polyphenols: Promising Adjuvants for Colorectal Cancer Therapies. Cancers (Basel) 2021; 13:cancers13184499. [PMID: 34572726 PMCID: PMC8465098 DOI: 10.3390/cancers13184499] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer is a leading cause of death worldwide. Despite the development of novel surgical and therapeutic strategies, 50% of patients relapse after treatment. Therapy failure, due to low efficacy, adverse effects and drug resistance, is thus a major concern. The idea of combining standard therapy with non-toxic bioactive natural compounds is a recent topic in cancer research and aims to increase the efficacy of current antitumor therapies while reducing drug toxicity and adverse effects. In recent years, several studies have explored the capacity of polyphenols, dietary bioactive compounds enriched in fruit and vegetables, to act as adjuvants to improve colorectal cancer therapy. In the present review, we discuss these studies, highlighting the mechanisms underlying the adjuvant effect, and bring out the potential of this novel therapeutic approach as well as the critical issues related to clinical application. Abstract Colorectal cancer (CRC) is a major cancer type and a leading cause of death worldwide. Despite advances in therapeutic management, the current medical treatments are not sufficient to control metastatic disease. Treatment-related adverse effects and drug resistance strongly contribute to therapy failure and tumor recurrence. Combination therapy, involving cytotoxic treatments and non-toxic natural compounds, is arousing great interest as a promising more effective and safer alternative. Polyphenols, a heterogeneous group of bioactive dietary compounds mainly found in fruit and vegetables, have received great attention for their capacity to modulate various molecular pathways active in cancer cells and to affect host anticancer response. This review provides a summary of the most recent (i.e., since 2016) preclinical and clinical studies using polyphenols as adjuvants for CRC therapies. These studies highlight the beneficial effects of dietary polyphenols in combination with cytotoxic drugs or irradiation on both therapy outcome and drug resistance. Despite substantial preclinical evidence, data from a few pilot clinical trials are available to date with promising but still inconclusive results. Larger randomized controlled studies and polyphenol formulations with improved bioavailability are needed to translate the research progress into clinical applications and definitively prove the added value of these molecules in CRC management.
Collapse
|
12
|
Li YH, He Q, Chen YZ, Du YF, Guo YX, Xu JY, Qin LQ. p-Coumaric acid ameliorates ionizing radiation-induced intestinal injury through modulation of oxidative stress and pyroptosis. Life Sci 2021; 278:119546. [PMID: 33915129 DOI: 10.1016/j.lfs.2021.119546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
AIMS Intestinal injury is a clinical problem related to radiotherapy or accidental exposure to ionizing radiation. This study aimed to investigate the protective effect of p-coumaric acid (CA) against radiation induced intestinal injury. MAIN METHODS The present study orally administered CA to C57BL/6 male mice at 30 min before total body irradiation and continued for 3 days post irradiation. Then, the mice were sacrificed at day 3.5 or 14 after irradiation, respectively. The blood was collected to analyze the inflammatory cytokines. The antioxidant indexes of jejunum tissues were determined. Hematoxylin and eosin staining and apoptosis analysis was studied to investigate the pathological changes of the jejunum tissues. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were carried out to determine the changes in mRNA and protein levels of jejunum tissues. KEY FINDINGS Compared with the only irradiated group, treatment with CA improved intestinal morphology and apoptosis, increased the villus height and the ratio of villus height to crypt depth. It also reduced the oxidative stress and inflammatory response. The molecular mechanism analysis showed that CA significantly inhibited the pyroptosis genes (Caspase-1, NLRP3 and AIM2) mRNA expression and improved the intestinal barrier genes expression. SIGNIFICANCE The results suggested that CA ameliorates ionizing radiation-induced intestinal injury by inhibition of oxidative stress, inflammatory response and pyroptosis.
Collapse
Affiliation(s)
- Yun-Hong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Qian He
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Yu-Zhong Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Ya-Fang Du
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Ya-Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Li-Qiang Qin
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
13
|
Chemoprevention and therapeutic role of essential oils and phenolic compounds: Modeling tumor microenvironment in glioblastoma. Pharmacol Res 2021; 169:105638. [PMID: 33933637 DOI: 10.1016/j.phrs.2021.105638] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
Glioblastoma (GBM) is the most common primary tumor of the central nervous system. Current treatments available for GBM entails surgical resection followed by temozolomide chemotherapy and/or radiotherapy, which are associated with multidrug resistance and severe side effects. While this treatment could yield good results, in almost all cases, patients suffer from relapse, which leads to reduced survival rates. Thus, therapeutic approaches with improved efficiency and reduced off-target risks are needed to overcome these problems. Regarding this, natural products appear as a safe and attractive strategy as chemotherapeutic agents or adjuvants in the treatment of GBM. Besides the increasing role of natural compounds for chemoprevention of GBM, it has been proposed to prevent carcinogenesis and metastasis of GBM. Numerous investigations showed that natural products are able to inhibit proliferation and angiogenesis, to induce apoptosis, and to target GBM stem cells, which are associated with tumor development and recurrence. This review gives a timely and comprehensive overview of the current literature regarding chemoprevention and therapy of GBM by natural products with a focus on essential oils and phenolic compounds and their molecular mechanisms.
Collapse
|