1
|
Motie FM, Soltani Howyzeh M, Ghanbariasad A. Synergic effects of DL-limonene, R-limonene, and cisplatin on AKT, PI3K, and mTOR gene expression in MDA-MB-231 and 5637 cell lines. Int J Biol Macromol 2024; 280:136216. [PMID: 39362430 DOI: 10.1016/j.ijbiomac.2024.136216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The anticancer and cytotoxic effects of DL-Limonene and R-Limonene are well-documented. However, the role of natural compounds in enhancing the efficacy of platinum-based drugs like Cisplatin (CisPt) remains debated. This study aims to boost Cisplatin's impact on breast (MDA-MB-231) and bladder (5637) cancer cells using DL-Limonene and R-Limonene. Different concentrations of DL-Limonene, R-Limonene, and Cisplatin, combined, were used to treat MDA-MB-231 and 5637 cells in this experimental study. The cell's viability was evaluated using an MTT assay. AnnexinV- PI staining was applied to evaluate the percentage of apoptotic cells. Cytotoxicity results showed that combining DL-Limonene, R-Limonene, and Cisplatin significantly improved outcomes in MDA-MB-231 cells (P < 0.05). Annexin/PI staining revealed apoptosis rates of 74 %, 28 %, 43 %, 81 %, and 91 % for Cisplatin40, R-Limonen1000, DL-Limonen1000, R-Limonen1000/DL-Limonen1000, and the combined treatment, respectively, versus 13 % in the control. The combination also resulted in the greatest reduction of AKT, PI3K, and mTOR gene expression. Our results show that R-Limonene and DL-Limonene enhance Cisplatin's cancer-inhibiting effects in breast and bladder cancer cell lines. These compounds may be promising for combination therapy, potentially allowing for lower doses of chemotherapy and reducing side effects like nephrotoxicity.
Collapse
Affiliation(s)
- Fatemeh Malek Motie
- Department of Genetics, Khuzestan Science and Research Branch, Islamic Azad University, Ahvaz, Iran; Department of Genetics, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Mehdi Soltani Howyzeh
- Department of Genetics and Plant Breeding, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, School of Advanced Technologies, Fasa University of Medical Sciences, Iran.
| |
Collapse
|
2
|
da Silva MD, da Boit Martinello K, Knani S, Lütke SF, Machado LMM, Manera C, Perondi D, Godinho M, Collazzo GC, Silva LFO, Dotto GL. Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H 2, and d-limonene. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 152:17-29. [PMID: 35964399 DOI: 10.1016/j.wasman.2022.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/17/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
A route based on pyrolysis and physical activation with H2O and CO2 was proposed to reuse citrus waste traditionally discarded. The citrus wastes were orange peel (OP), mandarine peel (MP), rangpur lime peel (RLP), and sweet lime peel (SLP). The main aim was to use the solid products of this new route as adsorbents for Cu(II) ions. Copper ions are among the most important water pollutants due to their non-degradability, toxicity, and bioaccumulation, facilitating their inclusion and long persistence in the food chain. Besides the solid products, the liquid and gaseous fractions were evaluated for possible applications. Results showed that the citrus waste composition favored the thermochemical treatment. In addition, the following yields were obtained from the pyrolysis process: approximately 30 % wt. of biochar, 40 % wt. of non-condensable gases, and 30 % wt. of bio-oil. The biochars did not present a high specific surface area. Nevertheless, activated carbons with CO2 and H2O presented specific surface areas of 212.4 m2/g and 399.4 m2/g, respectively, and reached Cu(II) adsorption capacities of 28.2 mg g-1 and 27.8 mg g-1. The adsorption kinetic study revealed that the equilibrium was attained at 60 min and the pseudo-second-order model presented a better fit to the experimental data. The main generated gases were CO2, which could be employed as an activating agent for activated carbon production. d-limonene, used for food and medicinal purposes, was the main constituent of the bio-oil.
Collapse
Affiliation(s)
- Mariele D da Silva
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900 Santa Maria, RS, Brazil
| | | | - Salah Knani
- Northern Border University, College of Science, Arar, PO Box 1631, Saudi Arabia
| | - Sabrina F Lütke
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900 Santa Maria, RS, Brazil
| | - Lauren M M Machado
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900 Santa Maria, RS, Brazil
| | - Christian Manera
- Engineering of Processes and Technologies Post-Graduate Program, University of Caxias do Sul- UCS, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Daniele Perondi
- Engineering of Processes and Technologies Post-Graduate Program, University of Caxias do Sul- UCS, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Marcelo Godinho
- Engineering of Processes and Technologies Post-Graduate Program, University of Caxias do Sul- UCS, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Gabriela C Collazzo
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900 Santa Maria, RS, Brazil
| | - Luis F O Silva
- Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Guilherme L Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
3
|
D-Limonene inhibits the occurrence and progression of LUAD through suppressing lipid droplet accumulation induced by PM 2.5 exposure in vivo and in vitro. Respir Res 2022; 23:338. [PMID: 36496421 PMCID: PMC9741803 DOI: 10.1186/s12931-022-02270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND PM2.5 exposure is associated with lung adenocarcinoma (LUAD), but the mechanism is unclear. The lack of understanding impedes our effort on prevention. This study examined a possible mechanism of lung cancer caused by PM2.5 exposure, and aimed to find a potential intervention for people living in PM2.5 polluted regions. METHODS Electron microscopy and oil-red staining were conducted to examine the lipid droplet accumulation. Masson's trichrome staining, colony forming, scratch assay and transwell experiment were conducted to evaluate the effect of PM2.5 exposure and D-limonene intervention on the occurrence and progression of LUAD. Potential intervention targets were found by RNA-Seq and verified by luciferase reporter assay. MiR-195 KO mice constructed with CRISPR/Cas9 technology were used to investigate the pivotal role of D-limonene-miR-195-SREBP1/FASN axis. Cohort analysis of lung cancer patients, human LUAD tissues staining and human intervention trial were also conducted to validate the results of cell and animal experiments. RESULTS Our results showed that PM2.5 exposure induced accumulation of lipid droplets in LUAD cells which accompanied by increased malignant cellular behaviors. PM2.5 exposure led to cleaved N-SREBP1 translocation into nucleus, which activated the de novo lipogenesis pathway. Same changes were also observed in normal lung epithelial cells and normal lung tissue, and mice developed pulmonary fibrosis after long-term exposure to PM2.5. Furthermore, in a cohort of 11,712 lung cancer patients, significant lipid metabolism disorders were observed in higher PM2.5 polluted areas. In view of that, D-limonene was found to inhibit the changes in lipid metabolism through upregulating the expression of miR-195, which inhibited the expression of lipogenic genes (SREBF1/FASN/ACACA) specifically. And a small human intervention trial showed that serum miR-195 was upregulated after oral intake of D-limonene. CONCLUSION Our findings reveal a new mechanism of pulmonary fibrosis and LUAD that is related to PM2.5 exposure-induced lipid droplet accumulation. We also demonstrate that D-limonene-miR-195-SREBP1/FASN axis is a potential preventive intervention for mediating the progression and development of LUAD induced by PM2.5 exposure. Trial registration Chinese Clinical Trial Registry, ChiCTR2000030200. Registered 25 February 2020, http://www.chictr.org.cn/showproj.aspx?proj=48013.
Collapse
|