1
|
Liu BH, Li ZH, Wang BR, Zhou J, Zhang B, Wang KL, Zhang YH, Mu ZS. Rosmarinic acid in Perilla frutescens L. as a potential adenosine deaminase inhibitor: Preparation, machine learning validation and binding mechanism study. Food Chem 2025; 485:144458. [PMID: 40311572 DOI: 10.1016/j.foodchem.2025.144458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/20/2025] [Accepted: 04/20/2025] [Indexed: 05/03/2025]
Abstract
Gout, a prevalent arthritic disease, can be mitigated by adenosine deaminase (ADA) inhibitors that reduce uric acid production. In this study, the extraction process of rosmarinic acid (RA) from Perilla frutescens L. (P. frutescens) was optimized, and the best yield was 2.22 mg/g. Quantitative structure-activity relationship (QSAR) model was used to predict ADA inhibitors (ADAIs) in potential foods. The random forest model constructed by ChemoPy descriptor was the best (AUC = 0.9648), and five candidate compounds (including RA) were screened. The inhibitory activity of RA on ADA was confirmed in vitro (IC50 = 55.11 μM). Molecular docking showed that ADAIs and ADA were stably bound through hydrogen bonding and hydrophobic interaction. Molecular dynamics (MD) simulation verified the dynamic stability of ADAIs and ADA complexes. This study provides a theoretical basis for RA from P. frutescens extract as a potential compound for the treatment of gout and for the rapid screening of foodborne ADAIs.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhong-Han Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Bao-Rong Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Jie Zhou
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Bing Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Kun-Long Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying-Hua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Zhi-Shen Mu
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011500, PR China.
| |
Collapse
|
2
|
Yan X, Feng B, Song H, Wang L, Wang Y, Sun Y, Cai X, Rong Y, Wang X, Wang Y. Identification and mechanistic study of piceatannol as a natural xanthine oxidase inhibitor. Int J Biol Macromol 2025; 293:139231. [PMID: 39732228 DOI: 10.1016/j.ijbiomac.2024.139231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Natural Xanthine oxidase (XOD) inhibitors represent promising therapeutic agents for hyperuricemia (HUA) treatment due to their potent efficacy and favorable safety profiles. This study involved the construction of a comprehensive database of 315 XOD inhibitors and development of 28 machine learning-based QSAR models. The ChemoPy light gradient boosting machine model exhibited the best performance (AUC = 0.9371 and MCC = 0.7423). This model identified three potential XOD inhibitors from the FooDB database: daphnetin, 7-hydroxycoumarin, and piceatannol. Molecular docking and dynamics simulations revealed favorable interactions, with piceatannol showing a remarkable stability through hydrogen bonding and hydrophobic interactions. ADME predictions suggested that all three compounds possess desirable drug-like properties and safety characteristics. Subsequent in vitro enzyme inhibition assays validated computational predictions, with piceatannol exhibiting the strongest inhibitory activity (IC50 = 8.80 ± 0.05 μM). Multispectroscopic analyses revealed that piceatannol-XOD binding was predominantly mediated by hydrogen bonding and van der Waals forces, which induced conformational changes characterized by decreased α-helical content and increased proportions of β-sheets, β-turns, and random coils. This study presents an efficient strategy for the identification of natural XOD inhibitors, elucidates the molecular mechanism of piceatannol-mediated XOD inhibition, and establishes a foundation for its therapeutic application in HUA treatment.
Collapse
Affiliation(s)
- Xinxu Yan
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, PR China
| | - Baolong Feng
- Center for Education Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Hongjie Song
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Lili Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yehui Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yulin Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Xiaoshuang Cai
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yating Rong
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Xibo Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Yutang Wang
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, PR China.
| |
Collapse
|
3
|
Wang K, Cui H, Liu K, He Q, Fu X, Li W, Han W. Exploring the anti-gout potential of sunflower receptacles alkaloids: A computational and pharmacological analysis. Comput Biol Med 2024; 172:108252. [PMID: 38493604 DOI: 10.1016/j.compbiomed.2024.108252] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Gout, a painful condition marked by elevated uric acid levels often linked to the diet's high purine and alcohol content, finds a potential treatment target in xanthine oxidase (XO), a crucial enzyme for uric acid production. This study explores the therapeutic properties of alkaloids extracted from sunflower (Helianthus annuus L.) receptacles against gout. By leveraging computational chemistry and introducing a novel R-based clustering algorithm, "TriDimensional Hierarchical Fingerprint Clustering with Tanimoto Representative Selection (3DHFC-TRS)," we assessed 231 alkaloid molecules from sunflower receptacles. Our clustering analysis pinpointed six alkaloids with significant gout-targeting potential, particularly emphasizing the fifth cluster's XO inhibition capabilities. Through molecular docking and the BatchDTA prediction model, we identified three top compounds-2-naphthylalanine, medroxalol, and fenspiride-with the highest XO affinity. Further molecular dynamics simulations assessed their enzyme active site interactions and binding free energies, employing MM-PBSA calculations. This investigation not only highlights the discovery of promising compounds within sunflower receptacle alkaloids via LC-MS but also introduces medroxalol as a novel gout treatment candidate, showcasing the synergy of computational techniques and LC-MS in drug discovery.
Collapse
Affiliation(s)
- Kaiyu Wang
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China
| | - Huizi Cui
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China
| | - Qizheng He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China
| | - Wannan Li
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China.
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China.
| |
Collapse
|
4
|
Xu Y, Gong H, Zou Y, Mao X. Antihyperuricemic activity and inhibition mechanism of xanthine oxidase inhibitory peptides derived from whey protein by virtual screening. J Dairy Sci 2024; 107:1877-1886. [PMID: 37923199 DOI: 10.3168/jds.2023-24028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
Xanthine oxidase (XO), a rate-limiting enzyme in uric acid production, is the pivotal therapeutic target for gout and hyperuricemia. In this study, 57 peptides from α-lactalbumin and β-lactoglobulin were obtained via virtual enzymatic hydrolysis, and 10 XO inhibitory peptides were virtually screened using molecular docking. Then toxicity, allergenicity, solubility, and isoelectric point of the obtained 10 novel peptides were evaluated by in silico tools. The XO activity of these synthetic peptides was tested using an in vitro assay by high-performance liquid chromatography. Their inhibitory mechanism was further explored by molecular docking. The results showed that 4 peptides GL, PM, AL, and AM exhibited higher inhibitory activity, and their half maximal inhibitory concentration in vitro was 10.20 ± 0.89, 23.82 ± 0.94, 34.49 ± 0.89, and 40.45 ± 0.92 mM, respectively. The peptides fitted well with XO through hydrogen bond, hydrophobic interaction, and van der Waals forces, and amino acid residues Glu802, Leu873, Arg880, and Pro1076 played an important role in this process. Overall, this study indicated 4 novel peptides GL, PM, AL, and AM from whey protein exhibited XO inhibitory activity, and they might be useful and safe XO inhibitors for hyperuricemia prevention and treatment.
Collapse
Affiliation(s)
- Yaru Xu
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Han Gong
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yang Zou
- Tianjin Haihe Dairy Co. Ltd., Tianjin 300000, China
| | - Xueying Mao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
5
|
Lou Y, Gao Q, Fan M, Waleed AA, Wang L, Li Y, Qian H. Ferulic acid ameliorates hyperuricemia by regulating xanthine oxidase. Int J Biol Macromol 2023; 253:126542. [PMID: 37634782 DOI: 10.1016/j.ijbiomac.2023.126542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Hyperuricemia is characterized by elevated uric acid (UA) level in the body. The xanthine oxidase (XO) inhibitory ability is an important way to evaluate the anti-hyperuricemia effect of natural products. Ferulic acid (FA) is a phenolic acid compound, and it is a free radical scavenger with many physiological functions. The aim of this study was to investigate the structure-activity relationship, potential mechanism and interaction of FA as XO's inhibitor. In the cell experiment, using 1.25 mM adenosine to incubate for 24 h under the optimal conditions (37 °C, pH = 7.2) can increase the UA production by 1.34 folds. PCR analysis showed that FA could reduce the mRNA expression level of XO. FA inhibited XO in a mixed mode (IC50 = 13.25 μM). The fluorescence quenching of XO by FA occurs through a static mechanism, with an inhibition constant of Ki = 9.527 × 10-5 mol L-1 and an apparent coefficient of α = 1.768. The enthalpy and entropy changes were found as -267.79 KJ mol-1 and - 860.85 KJ mol-1, indicating that both hydrogen binding and hydrophobic are involved in the interaction of this polyphenolic natural compound with XO. Thus, FA supplementation may be a potential therapeutic strategy to improve hyperuricemia by reducing UA production.
Collapse
Affiliation(s)
- Ye Lou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Qiang Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Al-Ansi Waleed
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
6
|
Qi X, Chen H, Guan K, Sun Y, Wang R, Li Q, Ma Y. Novel xanthine oxidase inhibitory peptides derived from whey protein: identification, in vitro inhibition mechanism and in vivo activity validation. Bioorg Chem 2022; 128:106097. [PMID: 35985156 DOI: 10.1016/j.bioorg.2022.106097] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
As the development of hyperuricemia (HUA) and gout continues to accelerate worldwide, there is increasing interest in the use of xanthine oxidase (XO) inhibitors as therapeutic agents for the management of HUA and gout. In the present study, XO inhibitory peptides were identified from whey protein isolate (WPI) hydrolysates, and the underlying inhibitory mechanism and in vivo activities was investigated. WPI hydrolysates were isolated and purified, and two peptides (ALPM and LWM) with lower binding energy were screened by molecular docking. The result showed that these two peptides interacted with residues around the active site of XO through hydrogen bond and hydrophobic interaction. The IC50 values of ALPM and LWM were 7.23 ± 0.22 and 5.01 ± 0.31 mM, respectively. According to the Lineweaver-Burk curve, the inhibition types of ALPM and LWM were non-competitive inhibition. Circular dichroism (CD) spectra indicated ALPM and LWM could change the secondary structure of XO. Molecular dynamics simulations revealed that XO-peptide complexes were more stable and compact than XO. Moreover, animal studies have shown that ALPM and LWM have anti-hyperuricemia effects in vivo. This study suggested that ALPM and LWM can be considered as natural XO inhibitors for the treatment of HUA.
Collapse
Affiliation(s)
- Xiaofen Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Haoran Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Kaifang Guan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Yue Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Qiming Li
- New Hope Dairy Co, Ltd, Chengdu 610063, Sichuan, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
7
|
Combination of Machine Learning Algorithms with Concentration-Area Fractal Method for Soil Geochemical Anomaly Detection in Sediment-Hosted Irankuh Pb-Zn Deposit, Central Iran. MINERALS 2022. [DOI: 10.3390/min12060689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Prediction of geochemical concentration values is essential in mineral exploration as it plays a principal role in the economic section. In this paper, four regression machine learning (ML) algorithms, such as K neighbor regressor (KNN), support vector regressor (SVR), gradient boosting regressor (GBR), and random forest regressor (RFR), have been trained to build our proposed hybrid ML (HML) model. Three metric measurements, including the correlation coefficient, mean absolute error (MAE), and means squared error (MSE), have been selected for model prediction performance. The final prediction of Pb and Zn grades is achieved using the HML model as they outperformed other algorithms by inheriting the advantages of individual regression models. Although the introduced regression algorithms can solve problems as single, non-complex, and robust regression models, the hybrid techniques can be used for the ore grade estimation with better performance. The required data are gathered from in situ soil. The objective of the recent study is to use the ML model’s prediction to classify Pb and Zn anomalies by concentration-area fractal modeling in the study area. Based on this fractal model results, there are five geochemical populations for both cases. These elements' main anomalous regions were correlated with mining activities and core drilling data. The results indicate that our method is promising for predicting the ore elemental distribution.
Collapse
|
8
|
Zhou Q, Li X, Wang X, Shi D, Zhang S, Yin Y, Zhang H, Liu B, Song N, Zhang Y. Vanillic Acid as a Promising Xanthine Oxidase Inhibitor: Extraction from Amomum villosum Lour and Biocompatibility Improvement via Extract Nanoemulsion. Foods 2022; 11:foods11070968. [PMID: 35407055 PMCID: PMC8997653 DOI: 10.3390/foods11070968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/05/2023] Open
Abstract
Gout is an oxidative stress-related disease. Food-derived vanillic acid, a promising xanthine oxidase inhibitor, could potentially be used as a safe, supportive, and therapeutic product for gout. The extraction of vanillic acid from a classic Chinese herbal plant Amomum villosum with ethanol was investigated in the study. The optimum conditions were determined as extraction time of 74 min, extraction temperature of 48.36 °C, and a solid-to-liquid ratio of 1:35 g·mL−1 using the Box–Behnken design (BBD) of response surface methodology (RSM). The experimental extraction yield of 9.276 mg·g−1 matched with the theoretical value of 9.272 ± 0.011 mg·g−1 predicted by the model. The vanillic acid in Amomum villosum was determined to be 0.5450 mg·g−1 by high-performance liquid chromatography–diode array detection (HPLC–DAD) under the optimum extraction conditions and exhibited xanthine oxidase (XO) inhibitory activity, with the half-maximal inhibitory concentration (IC50) of 1.762 mg·mL−1. The nanoemulsion of Amomum villosum extract consists of 49.97% distilled water, 35.09% Smix (mixture of tween 80 and 95% ethanol with 2:1 ratio), and 14.94% n-octanol, with a particle size of 110.3 ± 1.9 nm. The nanoemulsion of Amomum villosum extract exhibited markable XO inhibitory activity, with an inhibition rate of 58.71%. The result demonstrated the potential benefit of Amomum villosum as an important dietary source of xanthine oxidase inhibitors for gout.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyan Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohui Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Dongdong Shi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Shengao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuqi Yin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hanlin Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Bohao Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Nannan Song
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yinghua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence:
| |
Collapse
|
9
|
Zhai N, Chen Y, Wang C, Wu F, Luo X, Ju X, Liu H, Liu G. A multiscale screening strategy for the identification of novel xanthine oxidase inhibitors based on the pharmacological features of febuxostat analogues. NEW J CHEM 2022. [DOI: 10.1039/d2nj00115b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two compounds as potential XOI hits were identified by a novel screening strategy based on the pharmacophores of well-known scaffolds.
Collapse
Affiliation(s)
- Na Zhai
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yanming Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Chenchen Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, Henan Province, P. R. China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hui Liu
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P. R. China
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| |
Collapse
|