1
|
Wu Z, Zhang J, Wu Y, Chen M, Hu H, Gao X, Li C, Li M, Zhang Y, Lin X, Yang Q, Chen L, Chen K, Zheng L, Zhu A. Gelsenicine disrupted the intestinal barrier of Caenorhabditis elegans. Chem Biol Interact 2024; 395:111036. [PMID: 38705443 DOI: 10.1016/j.cbi.2024.111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Gelsemium elegans Benth. (G. elegans) is a traditional medicinal herb that has anti-inflammatory, analgesic, sedative, and detumescence effects. However, it can also cause intestinal side effects such as abdominal pain and diarrhea. The toxicological mechanisms of gelsenicine are still unclear. The objective of this study was to assess enterotoxicity induced by gelsenicine in the nematodes Caenorhabditis elegans (C. elegans). The nematodes were treated with gelsenicine, and subsequently their growth, development, and locomotion behavior were evaluated. The targets of gelsenicine were predicted using PharmMapper. mRNA-seq was performed to verify the predicted targets. Intestinal permeability, ROS generation, and lipofuscin accumulation were measured. Additionally, the fluorescence intensities of GFP-labeled proteins involved in oxidative stress and unfolded protein response in endoplasmic reticulum (UPRER) were quantified. As a result, the treatment of gelsenicine resulted in the inhibition of nematode lifespan, as well as reductions in body length, width, and locomotion behavior. A total of 221 targets were predicted by PharmMapper, and 731 differentially expressed genes were screened out by mRNA-seq. GO and KEGG enrichment analysis revealed involvement in redox process and transmembrane transport. The permeability assay showed leakage of blue dye from the intestinal lumen into the body cavity. Abnormal mRNAs expression of gem-4, hmp-1, fil-2, and pho-1, which regulated intestinal development, absorption and catabolism, transmembrane transport, and apical junctions, was observed. Intestinal lipofuscin and ROS were increased, while sod-2 and isp-1 expressions were decreased. Multiple proteins in SKN-1/DAF-16 pathway were found to bind stably with gelsenicine in a predictive model. There was an up-regulation in the expression of SKN-1:GFP, while the nuclear translocation of DAF-16:GFP exhibited abnormality. The UPRER biomarker HSP-4:GFP was down-regulated. In conclusion, the treatment of gelsenicine resulted in the increase of nematode intestinal permeability. The toxicological mechanisms underlying this effect involved the disruption of intestinal barrier integrity, an imbalance between oxidative and antioxidant processes mediated by the SKN-1/DAF-16 pathway, and abnormal unfolded protein reaction.
Collapse
Affiliation(s)
- Zekai Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Jian Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350108, China
| | - Yajiao Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Mengting Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Hong Hu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350108, China
| | - Xinyue Gao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Chutao Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Maodong Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Youbo Zhang
- State key laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaohuang Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Qiaomei Yang
- Department of Gynecology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, China
| | - Li Chen
- Department of Gynecology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, China
| | - Kunqi Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China.
| | - Lifeng Zheng
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| | - An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China.
| |
Collapse
|
2
|
Maneechote C, Chattipakorn SC, Chattipakorn N. Future perspectives on the roles of mitochondrial dynamics in the heart in obesity and aging. Life Sci 2024; 344:122575. [PMID: 38492920 DOI: 10.1016/j.lfs.2024.122575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Increasing global obesity rates and an aging population are independently linked to cardiac complications. Consequently, it is crucial to comprehensively understand the mechanisms behind these conditions to advance innovative therapies for age-related diseases. Mitochondrial dysfunction, specifically defects in mitochondrial fission/fusion processes, has emerged as a central regulator of cardiac complications in aging and age-related diseases (e.g., obesity). Since excessive fission and impaired fusion of cardiac mitochondria lead to disruptions in mitochondrial dynamics and cellular metabolism in aging and obesity, modulating mitochondrial dynamics with either fission inhibitors or fusion promoters has offered cardioprotection against these pathological conditions in preclinical models. This review explores the molecular mechanisms governing mitochondrial dynamics as well as the disturbances observed in aging and obesity. Additionally, pharmaceutical interventions that specifically target the processes of mitochondrial fission and fusion are presented and discussed. By establishing a connection between mitochondrial dynamism through fission and fusion and the advancement or mitigation of age-related diseases, particularly obesity, this review provides valuable insights into the progression and potential prevention strategies for such conditions.
Collapse
Affiliation(s)
- Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
3
|
Abd El-Hack ME, Abdelnour SA, Kamal M, Khafaga AF, Shakoori AM, Bagadood RM, Naffadi HM, Alyahyawi AY, Khojah H, Alghamdi S, Jaremko M, Świątkiewicz S. Lactoferrin: Antimicrobial impacts, genomic guardian, therapeutic uses and clinical significance for humans and animals. Biomed Pharmacother 2023; 164:114967. [PMID: 37290189 DOI: 10.1016/j.biopha.2023.114967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Lactoferrin (LF) is a protein found in several bodily fluids, such as milk. This protein has a diverse range of functions and is evolutionarily conserved. Lactoferrin is a multifunction protein with distinct biological abilities affecting mammals' immune structures. Reports indicated that the daily uptake of LF from dairy products is unsatisfactory in detecting further health-promoting abilities. Research has shown that it protects against infection, mitigates cellular senescence, and improves nutritional quality. Additionally, LF is being studied as a potential treatment for various diseases and conditions, including gastrointestinal issues and infections. Studies have also demonstrated its effectiveness against various viruses and bacteria. In this article, we'll look closer at the structure of LF and its various biological activities, including its antimicrobial, anti-viral, anti-cancer, anti-osteoporotic, detoxifying, and immunomodulatory properties. More specifically, the protective effect of LF against oxidative DNA damage was also clarified through its ability to abolish DNA damaging issues without interfacing with host genetic material. Fortification with LF protects mitochondria dysfunction syndromes via sustaining redox status and biogenesis and suppressing apoptosis and autophagy singling. Additionally, we'll examine the potential benefits of lactoferrin and provide an overview of recent clinical trials conducted to examine its use in laboratory and living models.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Afnan M Shakoori
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Rehab M Bagadood
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Hind M Naffadi
- Department of medical genetics,college of medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Areej Y Alyahyawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Hanan Khojah
- Pharmacognosy Department, Faculty of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Saleh Alghamdi
- Department of Clinical Pharmacy, Faculty of clinical pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | |
Collapse
|
4
|
Naguib AM, Apparoo Y, Xiong C, Phan CW. Maitake Medicinal Mushroom, Grifola frondosa (Agaricomycetes), and Its Neurotrophic Properties: A Mini-Review. Int J Med Mushrooms 2023; 25:11-22. [PMID: 36749053 DOI: 10.1615/intjmedmushrooms.2022046849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neurodegeneration is one of the most common manifestations in an aging population. The occurrence of oxidative stress and neuroinflammation are the main contributors to the phenomenon. Neurologic conditions such as Alzheimer's disease (AD) and Parkinson's disease (PD) are challenging to treat due to their irreversible manner as well as the lack of effective treatment. Grifola frondosa (Dicks.: Fr.) S.F. Gray, or maitake mushroom, is believed to be a potential choice as a therapeutic agent for neurodegenerative diseases. G. frondosa is known to be a functional food that has a wide variety of medicinal purposes. Thus, this review emphasizes the neuroprotective effects and the chemical composition of G. frondosa. Various studies have described that G. frondosa can protect and proliferate neuronal cells through neurogenesis, antioxidative, anti-inflammatory, and anti-β-amyloid activities. The mechanism of action behind these therapeutic findings in various in vitro and in vivo models has also been intensively studied. In this mini review, we also summarized the chemical composition of G. frondosa to provide a better understanding of the presence of nutritional compounds in G. frondosa.
Collapse
Affiliation(s)
- Adrina Mohamad Naguib
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yasaaswini Apparoo
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, P.R. China
| | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Clinical Investigation Centre, 5th Floor, East Tower, University Malaya Medical Centre, 59100 Lembah Pantai Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Xiong Y, Xu J, Cao W, Zhang J, Feng Z, Cao K, Liu J. Hydroxytyrosol improves strenuous exercise-associated cardiac pathological changes via modulation of mitochondrial homeostasis. Food Funct 2022; 13:8676-8684. [PMID: 35904366 DOI: 10.1039/d2fo00839d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Strenuous exercise is reported to provoke deleterious consequences including cardiac impairments, while the detailed mechanisms and effective interventions remain limited. The current study aims to explore the profitable effects of hydroxytyrosol (HT), one of the most abundant polyphenols derived from olive oil, on strenuous exercise-induced pathological changes in the heart and its underlying mechanisms. Sprague-Dawley male rats at the age of 8-week-old were supplemented with 25 mg kg-1 day-1 of HT 45 min before the beginning of strenuous exercise for a total of 8 weeks. HT treatment obviously improved the heart weight and morphology with lowered serum cardiac hypertrophy markers as well as cardiac oxidative stress. Moreover, the down-regulated mitochondrial biogenesis pathway, impaired mitochondrial complex activity, dysregulated expression of mitochondrial dynamics-related proteins and activated apoptotic pathway induced by Exe were all improved by HT. In vitro, 10 μM HT effectively reduced the reactive oxygen species level, promoted mitochondrial biogenesis, and inhibited apoptosis and cardiomyocyte hypertrophy in an angiotensin II-induced cardiomyocyte hypertrophy model. In addition, knockdown of the peroxisome proliferator-activated receptor gamma coactivator-1 alpha, the key regulator of mitochondrial biogenesis, partially abolished the benefits of HT. Our results demonstrate that the disturbance of mitochondrial homeostasis plays a substantial role in strenuous exercise-induced pathological cardiac hypertrophy, and HT presents as an effective intervention strategy targeting mitochondrial homeostasis for cardiac health.
Collapse
Affiliation(s)
- Yue Xiong
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Wenli Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Jiawei Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Zhihui Feng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong, China
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China. .,School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong, China
| |
Collapse
|
6
|
Chen R, Huang L, Zheng W, Zhang M, Xin Z, Liu L, Chen Z. Lactoferrin ameliorates myocardial fibrosis by inhibiting inflammatory response via the AMPK/NF-κB pathway in aged mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Tian Y, Tian Y, Yuan Z, Zeng Y, Wang S, Fan X, Yang D, Yang M. Iron Metabolism in Aging and Age-Related Diseases. Int J Mol Sci 2022; 23:3612. [PMID: 35408967 PMCID: PMC8998315 DOI: 10.3390/ijms23073612] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Iron is a trace metal element necessary to maintain life and is also involved in a variety of biological processes. Aging refers to the natural life process in which the physiological functions of the various systems, organs, and tissues decline, affected by genetic and environmental factors. Therefore, it is imperative to investigate the relationship between iron metabolism and aging-related diseases, including neurodegenerative diseases. During aging, the accumulation of nonheme iron destroys the stability of the intracellular environment. The destruction of iron homeostasis can induce cell damage by producing hydroxyl free radicals, leading to mitochondrial dysfunction, brain aging, and even organismal aging. In this review, we have briefly summarized the role of the metabolic process of iron in the body, then discussed recent developments of iron metabolism in aging and age-related neurodegenerative diseases, and finally, explored some iron chelators as treatment strategies for those disorders. Understanding the roles of iron metabolism in aging and neurodegenerative diseases will fill the knowledge gap in the field. This review could provide new insights into the research on iron metabolism and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yao Tian
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Yuanliangzi Tian
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Zhixiao Yuan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Yutian Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Shuai Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Rzeszotek S, Trybek G, Tarnowski M, Serwin K, Jaroń A, Schneider G, Kolasa A, Wiszniewska B. Colostrum-Induced Temporary Changes in the Expression of Proteins Regulating the Epithelial Barrier Function in the Intestine. Foods 2022; 11:foods11050685. [PMID: 35267318 PMCID: PMC8909690 DOI: 10.3390/foods11050685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
The intestinal wall and epithelial cells are interconnected by numerous intercellular junctions. Colostrum (Col), in its natural form, is a secretion of the mammary gland of mammals at the end of pregnancy and up to 72 h after birth. Recently, it has been used as a biologically active dietary supplement with a high content of lactoferrin (Lf). Lf, a glycoprotein with a broad spectrum of activity, is becoming more popular in health-promoting supplements. This study aims to investigate whether Col supplementation can affect small and large intestine morphology by modulating the expression of selected proteins involved in tissue integrity. We examined the thickness of the epithelium, and the length of the microvilli, and assessed the expression of CDH1, CDH2, CTNNB, CX43, VCL, OCLN, HP, MYH9, and ACTG2 gene levels using qRT-PCR and at the protein level using IHC. Additionally, to evaluate whether the effect of Col supplementation is temporary or persistent, we performed all analyses on tissues collected from animals receiving Col for 1, 3, or 6 months. We noticed a decrease in CDH1 and CDH2 expression, especially after 3 months of supplementation in the large intestine and in CTNNB in the small intestine as well as increased levels of CX43 and CTNNB1 in the small intestine. The present data indicate that Col can temporarily alter some components of the cell adhesion molecules involved in the formation of the cellular barrier.
Collapse
Affiliation(s)
- Sylwia Rzeszotek
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (A.K.); (B.W.)
- Correspondence: ; Tel.: +48-663-861-490
| | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (G.T.); (A.J.)
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland;
| | - Karol Serwin
- Department of Infectious Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Arkońska 4, 71-455 Szczecin, Poland;
| | - Aleksandra Jaroń
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (G.T.); (A.J.)
| | - Gabriela Schneider
- UofL Health-Brown Cancer Center and Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (A.K.); (B.W.)
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (A.K.); (B.W.)
| |
Collapse
|
9
|
Yang D, Liu HQ, Liu FY, Guo Z, An P, Wang MY, Yang Z, Fan D, Tang QZ. Mitochondria in Pathological Cardiac Hypertrophy Research and Therapy. Front Cardiovasc Med 2022; 8:822969. [PMID: 35118147 PMCID: PMC8804293 DOI: 10.3389/fcvm.2021.822969] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
Cardiac hypertrophy, a stereotypic cardiac response to increased workload, ultimately progresses to severe contractile dysfunction and uncompensated heart failure without appropriate intervention. Sustained cardiac overload inevitably results in high energy consumption, thus breaking the balance between mitochondrial energy supply and cardiac energy demand. In recent years, accumulating evidence has indicated that mitochondrial dysfunction is implicated in pathological cardiac hypertrophy. The significant alterations in mitochondrial energetics and mitochondrial proteome composition, as well as the altered expression of transcripts that have an impact on mitochondrial structure and function, may contribute to the initiation and progression of cardiac hypertrophy. This article presents a summary review of the morphological and functional changes of mitochondria during the hypertrophic response, followed by an overview of the latest research progress on the significant modulatory roles of mitochondria in cardiac hypertrophy. Our article is also to summarize the strategies of mitochondria-targeting as therapeutic targets to treat cardiac hypertrophy.
Collapse
Affiliation(s)
- Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Han-Qing Liu
- Department of Thyroid and Breast, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Peng An
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Ming-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
- *Correspondence: Di Fan
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
- Qi-Zhu Tang
| |
Collapse
|
10
|
Li B, Zhang B, Liu X, Zheng Y, Han K, Liu H, Wu C, Li J, Fan S, Peng W, Zhang F, Liu X. The effect of lactoferrin in aging: role and potential. Food Funct 2021; 13:501-513. [PMID: 34928288 DOI: 10.1039/d1fo02750f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging is frequently accompanied by various types of physiological deterioration, which increases the risk of human pathologies. Global public health efforts to increase human lifespan have increasingly focused on lowering the risk of aging-related diseases, such as diabetes, neurodegenerative diseases, cardiovascular disease, and cancers. Dietary intervention is a promising approach to maintaining human health during aging. Lactoferrin (LF) is known for its physiologically pleiotropic properties. Anti-aging interventions of LF have proven to be safe and effective for various pharmacological activities, such as anti-oxidation, anti-cellular senescence, anti-inflammation, and anti-carcinogenic. Moreover, LF has a pivotal role in modulating the major signaling pathways that influence the longevity of organisms. Thus, LF is expected to be able to attenuate the process of aging and greatly ameliorate its effects.
Collapse
Affiliation(s)
- Bing Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Bo Zhang
- Henan Key Laboratory of Rare Earth Functional Materials, The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Xudong Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Yidan Zheng
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Kuntong Han
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Henan Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Changjing Wu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Jin Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Shuhua Fan
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Weifeng Peng
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Fuli Zhang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Xiaomeng Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| |
Collapse
|
11
|
Ke D, Wang X, Lin Y, Wei S. Lactoferrin promotes the autophagy activity during osteoblast formation via BCL2-Beclin1 signaling. Mol Biol Rep 2021; 49:259-266. [PMID: 34716503 DOI: 10.1007/s11033-021-06866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lactoferrin, as the main component of milk, can maintain osteoblast formation, which is conducive to the prevention and treatment of osteoporosis. Lactoferrin also serves as an autophagy regulator, especially in osteoblasts. This study aimed to explore the significance of autophagy in osteoblast formation regulated by lactoferrin and the internal mechanism. METHODS AND RESULTS In this study, we firstly explored the roles of lactoferrin in the autophagy activity of primary osteoblasts (LC3 transformation rate, autophagosome formation). Subsequently, we further investigated the effects of lactoferrin on the BCL2 expression and BCL2-Beclin1 complex. Ultimately, the significance of BCL2 overexpression and Beclin1 silencing on lactoferrin-regulated osteoblast autophagy and osteogenic parameters (ALP activity and mRNA expression of PCNA, Col1, BGLAP and OPN) was observed by gene processing, respectively. Our results showed that lactoferrin enhanced the autophagy activity of osteoblasts. Importantly, lactoferrin inhibited BCL2 expression and the co-immunoprecipitation of BCL2 and Beclin1 in osteoblasts. Moreover, lactoferrin-promoted autophagy and osteogenic parameters was reversed by BCL2 overexpression or Beclin1 silencing in osteoblasts. CONCLUSIONS In conclusion, lactoferrin can inhibit BCL2 expression in osteoblasts, further enhancing Beclin1-dependent autophagy activation.
Collapse
Affiliation(s)
- Dianshan Ke
- Department of Orthopedics, The People's Hospital of JiangMen, No. 172 Gaodi Li, Pengjiang District, Jiangmen, 529000, Guangdong, China
- Academy of Orthopedics in Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Xinwen Wang
- Department of Orthopedics, The People's Hospital of JiangMen, No. 172 Gaodi Li, Pengjiang District, Jiangmen, 529000, Guangdong, China
| | - Yinquan Lin
- Department of Orthopedics, The People's Hospital of JiangMen, No. 172 Gaodi Li, Pengjiang District, Jiangmen, 529000, Guangdong, China.
| | - Shengwang Wei
- Department of Orthopedics, Liuzhou Workers Hospital, No.47, Zone 4, Hongyan Road, Liunan District, Liuzhou, 545005, Guangxi, China.
| |
Collapse
|
12
|
Ryskalin L, Biagioni F, Busceti CL, Polzella M, Lenzi P, Frati A, Ferrucci M, Fornai F. Lactoferrin Protects against Methamphetamine Toxicity by Modulating Autophagy and Mitochondrial Status. Nutrients 2021; 13:nu13103356. [PMID: 34684361 PMCID: PMC8537867 DOI: 10.3390/nu13103356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Lactoferrin (LF) was used at first as a vehicle to deliver non-soluble active compounds to the body, including the central nervous system (CNS). Nonetheless, it soon became evident that, apart from acting as a vehicle, LF itself owns active effects in the CNS. In the present study, the effects of LF are assessed both in baseline conditions, as well as to counteract methamphetamine (METH)-induced neurodegeneration by assessing cell viability, cell phenotype, mitochondrial status, and specific autophagy steps. In detail, cell integrity in baseline conditions and following METH administration was carried out by using H&E staining, Trypan blue, Fluoro Jade B, and WST-1. Western blot and immuno-fluorescence were used to assess the expression of the neurofilament marker βIII-tubulin. Mitochondria were stained using Mito Tracker Red and Green and were further detailed and quantified by using transmission electron microscopy. Autophagy markers were analyzed through immuno-fluorescence and electron microscopy. LF counteracts METH-induced degeneration. In detail, LF significantly attenuates the amount of cell loss and mitochondrial alterations produced by METH; and mitigates the dissipation of autophagy-related proteins from the autophagy compartment, which is massively induced by METH. These findings indicate a protective role of LF in the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (P.L.); (M.F.)
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
| | - Carla L. Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
| | - Maico Polzella
- Aliveda Laboratories, Viale Karol Wojtyla, 19, 56042 Crespina Lorenzana, Italy;
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (P.L.); (M.F.)
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
- Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135 Rome, Italy
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (P.L.); (M.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (P.L.); (M.F.)
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
- Correspondence:
| |
Collapse
|