1
|
Esmaeili H, Zhang Y, Ravi K, Neff K, Zhu W, Migrino RQ, Park JG, Nikkhah M. Development of an electroconductive Heart-on-a-chip model to investigate cellular and molecular response of human cardiac tissue to gold nanomaterials. Biomaterials 2025; 320:123275. [PMID: 40138961 DOI: 10.1016/j.biomaterials.2025.123275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/16/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
To date, various strategies have been developed to construct biomimetic and functional in vitro cardiac tissue models utilizing human induced pluripotent stem cells (hiPSCs). Among these approaches, microfluidic-based Heart-on-a-chip (HOC) models are promising, as they enable the engineering of miniaturized, physiologically relevant in vitro cardiac tissues with precise control over cellular constituents and tissue architecture. Despite significant advancements, previously reported HOC models often lack the electroconductivity features of the native human myocardium. In this study, we developed a 3D electroconductive HOC (referred to as eHOC) model through the co-culture of isogenic hiPSC-derived cardiomyocytes (hiCMs) and cardiac fibroblasts (hiCFs), embedded within an electroconductive hydrogel scaffold in a microfluidic-based chip system. Functional and gene expression analyses demonstrated that, compared to non-conductive HOC, the eHOC model exhibited enhanced contractile functionality, improved calcium transients, and increased expression of structural and calcium handling genes. The eHOC model was further leveraged to investigate the underlying electroconduction-induced pathway(s) associated with cardiac tissue development through single-cell RNA sequencing (scRNA-seq). Notably, scRNA-seq analyses revealed a significant downregulation of a set of cardiac genes, associated with the fetal stage of heart development, as well as upregulation of sarcomere- and conduction-related genes within the eHOC model. Additionally, upregulation of the cardiac muscle contraction and motor protein pathways were observed in the eHOC model, consistent with enhanced contractile functionality of the engineered cardiac tissues. Comparison of scRNA-seq data from the 3D eHOC model with published datasets of adult human hearts demonstrated a similar expression pattern of fetal- and adult-like cardiac genes. Overall, this study provides a unique eHOC model with improved biomimcry and organotypic features, which could be potentially used for drug testing and discovery, as well as disease modeling applications.
Collapse
Affiliation(s)
- Hamid Esmaeili
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Yining Zhang
- Center for Personalized Diagnostics (CPD), Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Kalpana Ravi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Keagan Neff
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Wuqiang Zhu
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Raymond Q Migrino
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, 85022, USA; University of Arizona College of Medicine, Phoenix, AZ, 85004, USA
| | - Jin G Park
- Center for Personalized Diagnostics (CPD), Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA; Biodesign Virginia G. Piper Center for Personalized Diagnosis, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
2
|
Yang Y, Jeon Y, Dong Z, Yang JKW, Haddadi Moghaddam M, Kim DS, Oh DK, Lee J, Hentschel M, Giessen H, Kang D, Kim G, Tanaka T, Zhao Y, Bürger J, Maier SA, Ren H, Jung W, Choi M, Bae G, Chen H, Jeon S, Kim J, Lee E, Kang H, Park Y, Du Nguyen D, Kim I, Cencillo-Abad P, Chanda D, Jing X, Liu N, Martynenko IV, Liedl T, Kwak Y, Nam JM, Park SM, Odom TW, Lee HE, Kim RM, Nam KT, Kwon H, Jeong HH, Fischer P, Yoon J, Kim SH, Shim S, Lee D, Pérez LA, Qi X, Mihi A, Keum H, Shim M, Kim S, Jang H, Jung YS, Rossner C, König TAF, Fery A, Li Z, Aydin K, Mirkin CA, Seong J, Jeon N, Xu Z, Gu T, Hu J, Kwon H, Jung H, Alijani H, Aharonovich I, Kim J, Rho J. Nanofabrication for Nanophotonics. ACS NANO 2025; 19:12491-12605. [PMID: 40152322 DOI: 10.1021/acsnano.4c10964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nanofabrication, a pivotal technology at the intersection of nanoscale engineering and high-resolution patterning, has substantially advanced over recent decades. This technology enables the creation of nanopatterns on substrates crucial for developing nanophotonic devices and other applications in diverse fields including electronics and biosciences. Here, this mega-review comprehensively explores various facets of nanofabrication focusing on its application in nanophotonics. It delves into high-resolution techniques like focused ion beam and electron beam lithography, methods for 3D complex structure fabrication, scalable manufacturing approaches, and material compatibility considerations. Special attention is given to emerging trends such as the utilization of two-photon lithography for 3D structures and advanced materials like phase change substances and 2D materials with excitonic properties. By highlighting these advancements, the review aims to provide insights into the ongoing evolution of nanofabrication, encouraging further research and application in creating functional nanostructures. This work encapsulates critical developments and future perspectives, offering a detailed narrative on the state-of-the-art in nanofabrication tailored for both new researchers and seasoned experts in the field.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngsun Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joel K W Yang
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Mahsa Haddadi Moghaddam
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mario Hentschel
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Harald Giessen
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Dohyun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Takuo Tanaka
- RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8501, Japan
| | - Yang Zhao
- Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
- Department of Physics, Imperial College London, London SW72AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Wooik Jung
- Department of Creative Convergence Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gwangmin Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Haomin Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dang Du Nguyen
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pablo Cencillo-Abad
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
| | - Debashis Chanda
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
- Department of Physics, University of Central Florida, Florida 32816, United States
- The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xinxin Jing
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Na Liu
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Irina V Martynenko
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
| | - Yuna Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunah Kwon
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiwon Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sangmin Shim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Luis A Pérez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Xiaoyu Qi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Agustin Mihi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Hohyun Keum
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Seok Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Department of Polymers, University of Chemistry and Technology Prague, Prague 6 166 28, Czech Republic
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden 01069, Germany
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Mayland 20742, United States
| | - Koray Aydin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhiyun Xu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tian Gu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juejun Hu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyounghan Kwon
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Quantum Information, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojoong Jung
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hossein Alijani
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
3
|
An L, Liu Y, Liu Y. Organ-on-a-Chip Applications in Microfluidic Platforms. MICROMACHINES 2025; 16:201. [PMID: 40047688 PMCID: PMC11857120 DOI: 10.3390/mi16020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/09/2025]
Abstract
Microfluidic technology plays a crucial role in organ-on-a-chip (OoC) systems by replicating human physiological processes and disease states, significantly advancing biomedical research and drug discovery. This article reviews the design and fabrication processes of microfluidic devices. It also explores how these technologies are integrated into OoC platforms to simulate human physiological environments, highlighting key principles, technological advances, and diverse applications. Through case studies involving the simulation of multiple organs such as the heart, liver, and lungs, the article evaluates the impact of OoC systems' integrated microfluidic technology on drug screening, toxicity assessment, and personalized medicine. In addition, this article considers technical challenges, ethical issues, and future directions, and looks ahead to further optimizing the functionality and biomimetic precision of OoCs through innovation, emphasizing its critical role in promoting personalized medicine and precision treatment strategies.
Collapse
Affiliation(s)
- Ling An
- School of Engineering, Dali University, Dali 671003, China;
| | - Yi Liu
- School of Engineering, Dali University, Dali 671003, China;
| | - Yaling Liu
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
4
|
Liu B, Wang S, Ma H, Deng Y, Du J, Zhao Y, Chen Y. Heart-on-a-chip: a revolutionary organ-on-chip platform for cardiovascular disease modeling. J Transl Med 2025; 23:132. [PMID: 39885522 PMCID: PMC11780825 DOI: 10.1186/s12967-024-05986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025] Open
Abstract
Heart-on-a-chip (HoC) devices have emerged as a powerful tool for studying the human heart's intricate functions and dysfunctions in vitro. Traditional preclinical models, such as 2D cell cultures model and animal model, have limitations in accurately predicting human response to cardiovascular diseases and treatments. The HoC approach addresses these shortcomings by recapitulating the microscale anatomy, physiology, and biomechanics of the heart, thereby providing a more clinically relevant platform for drug testing, disease modeling, and personalized therapy. Recent years have seen significant strides in HoC technology, driven by advancements in biomaterials, bioelectronics, and tissue engineering. Here, we first review the construction and on-chip detection in HoC. Then we introduce the current proceedings of in vitro models for studying cardiovascular diseases (CVD) based on the HoC platform, including ischemia and myocardial infarction, cardiac fibrosis, cardiac scar, myocardial hypertrophy and other CVD models. Finally, we discuss the future directions of HoC and related emerging technologies.
Collapse
Affiliation(s)
- Beiqin Liu
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Shuyue Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Hong Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Jichen Du
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China
- Aerospace School of Clinical Medicine, Peking University, Beijing, China
| | - Yimeng Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Yu Chen
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China.
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
5
|
Wang W, Su W, Han J, Song W, Li X, Xu C, Sun Y, Wang L. Microfluidic platforms for monitoring cardiomyocyte electromechanical activity. MICROSYSTEMS & NANOENGINEERING 2025; 11:4. [PMID: 39788940 PMCID: PMC11718118 DOI: 10.1038/s41378-024-00751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 01/12/2025]
Abstract
Cardiovascular diseases account for ~40% of global deaths annually. This situation has revealed the urgent need for the investigation and development of corresponding drugs for pathogenesis due to the complexity of research methods and detection techniques. An in vitro cardiomyocyte model is commonly used for cardiac drug screening and disease modeling since it can respond to microphysiological environmental variations through mechanoelectric feedback. Microfluidic platforms are capable of accurate fluid control and integration with analysis and detection techniques. Therefore, various microfluidic platforms (i.e., heart-on-a-chip) have been applied for the reconstruction of the physiological environment and detection of signals from cardiomyocytes. They have demonstrated advantages in mimicking the cardiovascular structure and function in vitro and in monitoring electromechanical signals. This review presents a summary of the methods and technologies used to monitor the contractility and electrophysiological signals of cardiomyocytes within microfluidic platforms. Then, applications in common cardiac drug screening and cardiovascular disease modeling are presented, followed by design strategies for enhancing physiology studies. Finally, we discuss prospects in the tissue engineering and sensing techniques of microfluidic platforms.
Collapse
Affiliation(s)
- Wei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Weiguang Su
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Junlei Han
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S3G8, Canada.
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China.
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China.
| |
Collapse
|
6
|
Lee SJ, Jeong W, Atala A. 3D Bioprinting for Engineered Tissue Constructs and Patient-Specific Models: Current Progress and Prospects in Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408032. [PMID: 39420757 PMCID: PMC11875024 DOI: 10.1002/adma.202408032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Advancements in bioprinting technology are driving the creation of complex, functional tissue constructs for use in tissue engineering and regenerative medicine. Various methods, including extrusion, jetting, and light-based bioprinting, have their unique advantages and drawbacks. Over the years, researchers and industry leaders have made significant progress in enhancing bioprinting techniques and materials, resulting in the production of increasingly sophisticated tissue constructs. Despite this progress, challenges still need to be addressed in achieving clinically relevant, human-scale tissue constructs, presenting a hurdle to widespread clinical translation. However, with ongoing interdisciplinary research and collaboration, the field is rapidly evolving and holds promise for personalized medical interventions. Continued development and refinement of bioprinting technologies have the potential to address complex medical needs, enabling the development of functional, transplantable tissues and organs, as well as advanced in vitro tissue models.
Collapse
Affiliation(s)
| | | | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
7
|
Alexandre-Franco MF, Kouider R, Kassir Al-Karany R, Cuerda-Correa EM, Al-Kassir A. Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview. MICROMACHINES 2024; 15:1137. [PMID: 39337797 PMCID: PMC11433824 DOI: 10.3390/mi15091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
This review explores significant advancements in polymer science and fabrication processes that have enhanced the performance and broadened the application scope of microfluidic devices. Microfluidics, essential in biotechnology, medicine, and chemical engineering, relies on precise fluid manipulation in micrometer-sized channels. Recent innovations in polymer materials, such as flexible, biocompatible, and structurally robust polymers, have been pivotal in developing advanced microfluidic systems. Techniques like replica molding, microcontact printing, solvent-assisted molding, injection molding, and 3D printing are examined, highlighting their advantages and recent developments. Additionally, the review discusses the diverse applications of polymer-based microfluidic devices in biomedical diagnostics, drug delivery, organ-on-chip models, environmental monitoring, and industrial processes. This paper also addresses future challenges, including enhancing chemical resistance, achieving multifunctionality, ensuring biocompatibility, and scaling up production. By overcoming these challenges, the potential for widespread adoption and impactful use of polymer-based microfluidic technologies can be realized.
Collapse
Affiliation(s)
- María F Alexandre-Franco
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Rahmani Kouider
- Department of Technology, Ziane Achour University of Djelfa, Djelfa 17000, Algeria
| | | | - Eduardo M Cuerda-Correa
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Awf Al-Kassir
- School of Industrial Engineers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
8
|
Kobeissi H, Gao X, DePalma SJ, Ewoldt JK, Wang MC, Das SL, Jilberto J, Nordsletten D, Baker BM, Chen CS, Lejeune E. MicroBundlePillarTrack: A Python package for automated segmentation, tracking, and analysis of pillar deflection in cardiac microbundles. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001231. [PMID: 39114859 PMCID: PMC11304080 DOI: 10.17912/micropub.biology.001231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Movies of human induced pluripotent stem cell (hiPSC)-derived engineered cardiac tissue (microbundles) contain abundant information about structural and functional maturity. However, extracting these data in a reproducible and high-throughput manner remains a major challenge. Furthermore, it is not straightforward to make direct quantitative comparisons across the multiple in vitro experimental platforms employed to fabricate these tissues. Here, we present "MicroBundlePillarTrack," an open-source optical flow-based package developed in Python to track the deflection of pillars in cardiac microbundles grown on experimental platforms with two different pillar designs ("Type 1" and "Type 2" design). Our software is able to automatically segment the pillars, track their displacements, and output time-dependent metrics for contractility analysis, including beating amplitude and rate, contractile force, and tissue stress. Because this software is fully automated, it will allow for both faster and more reproducible analyses of larger datasets and it will enable more reliable cross-platform comparisons as compared to existing approaches that require manual steps and are tailored to a specific experimental platform. To complement this open-source software, we share a dataset of 1,540 brightfield example movies on which we have tested our software. Through sharing this data and software, our goal is to directly enable quantitative comparisons across labs, and facilitate future collective progress via the biomedical engineering open-source data and software ecosystem.
Collapse
Affiliation(s)
- Hiba Kobeissi
- Department of Mechanical Engineering, Center for Multiscale and Translational Mechanobiology, Boston University, Boston, Massachusetts, United States
| | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
| | - Miranda C. Wang
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Shoshana L. Das
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
- Department of Cardiac Surgery, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
- School of Imaging Sciences and Biomedical Engineering, King’s Health Partners, King's College London, London, England, United Kingdom
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Emma Lejeune
- Department of Mechanical Engineering, Center for Multiscale and Translational Mechanobiology, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
9
|
Young OM, Xu X, Sarker S, Sochol RD. Direct laser writing-enabled 3D printing strategies for microfluidic applications. LAB ON A CHIP 2024; 24:2371-2396. [PMID: 38576361 PMCID: PMC11060139 DOI: 10.1039/d3lc00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/22/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Over the past decade, additive manufacturing-or "three-dimensional (3D) printing"-has attracted increasing attention in the Lab on a Chip community as a pathway to achieve sophisticated system architectures that are difficult or infeasible to fabricate via conventional means. One particularly promising 3D manufacturing technology is "direct laser writing (DLW)", which leverages two-photon (or multi-photon) polymerization (2PP) phenomena to enable high geometric versatility, print speeds, and precision at length scales down to the 100 nm range. Although researchers have demonstrated the potential of using DLW for microfluidic applications ranging from organ on a chip and drug delivery to micro/nanoparticle processing and soft microrobotics, such scenarios present unique challenges for DLW. Specifically, microfluidic systems typically require macro-to-micro fluidic interfaces (e.g., inlet and outlet ports) to facilitate fluidic loading, control, and retrieval operations; however, DLW-based 3D printing relies on a micron-to-submicron-sized 2PP volume element (i.e., "voxel") that is poorly suited for manufacturing these larger-scale fluidic interfaces. In this Tutorial Review, we highlight and discuss the four most prominent strategies that researchers have developed to circumvent this trade-off and realize macro-to-micro interfaces for DLW-enabled microfluidic components and systems. In addition, we consider the possibility that-with the advent of next-generation commercial DLW printers equipped with new dynamic voxel tuning, print field, and laser power capabilities-the overall utility of DLW strategies for Lab on a Chip fields may soon expand dramatically.
Collapse
Affiliation(s)
- Olivia M Young
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
| | - Xin Xu
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
| | - Sunandita Sarker
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
- Maryland Robotics Center, University of Maryland, College Park, MD, 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, MA, 01003, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
- Maryland Robotics Center, University of Maryland, College Park, MD, 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
10
|
Kieda J, Shakeri A, Landau S, Wang EY, Zhao Y, Lai BF, Okhovatian S, Wang Y, Jiang R, Radisic M. Advances in cardiac tissue engineering and heart-on-a-chip. J Biomed Mater Res A 2024; 112:492-511. [PMID: 37909362 PMCID: PMC11213712 DOI: 10.1002/jbm.a.37633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
Recent advances in both cardiac tissue engineering and hearts-on-a-chip are grounded in new biomaterial development as well as the employment of innovative fabrication techniques that enable precise control of the mechanical, electrical, and structural properties of the cardiac tissues being modelled. The elongated structure of cardiomyocytes requires tuning of substrate properties and application of biophysical stimuli to drive its mature phenotype. Landmark advances have already been achieved with induced pluripotent stem cell-derived cardiac patches that advanced to human testing. Heart-on-a-chip platforms are now commonly used by a number of pharmaceutical and biotechnology companies. Here, we provide an overview of cardiac physiology in order to better define the requirements for functional tissue recapitulation. We then discuss the biomaterials most commonly used in both cardiac tissue engineering and heart-on-a-chip, followed by the discussion of recent representative studies in both fields. We outline significant challenges common to both fields, specifically: scalable tissue fabrication and platform standardization, improving cellular fidelity through effective tissue vascularization, achieving adult tissue maturation, and ultimately developing cryopreservation protocols so that the tissues are available off the shelf.
Collapse
Affiliation(s)
- Jennifer Kieda
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Shira Landau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Erika Yan Wang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Benjamin Fook Lai
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Richard Jiang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Kobeissi H, Jilberto J, Karakan MÇ, Gao X, DePalma SJ, Das SL, Quach L, Urquia J, Baker BM, Chen CS, Nordsletten D, Lejeune E. MicroBundleCompute: Automated segmentation, tracking, and analysis of subdomain deformation in cardiac microbundles. PLoS One 2024; 19:e0298863. [PMID: 38530829 PMCID: PMC10965069 DOI: 10.1371/journal.pone.0298863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/01/2024] [Indexed: 03/28/2024] Open
Abstract
Advancing human induced pluripotent stem cell derived cardiomyocyte (hiPSC-CM) technology will lead to significant progress ranging from disease modeling, to drug discovery, to regenerative tissue engineering. Yet, alongside these potential opportunities comes a critical challenge: attaining mature hiPSC-CM tissues. At present, there are multiple techniques to promote maturity of hiPSC-CMs including physical platforms and cell culture protocols. However, when it comes to making quantitative comparisons of functional behavior, there are limited options for reliably and reproducibly computing functional metrics that are suitable for direct cross-system comparison. In addition, the current standard functional metrics obtained from time-lapse images of cardiac microbundle contraction reported in the field (i.e., post forces, average tissue stress) do not take full advantage of the available information present in these data (i.e., full-field tissue displacements and strains). Thus, we present "MicroBundleCompute," a computational framework for automatic quantification of morphology-based mechanical metrics from movies of cardiac microbundles. Briefly, this computational framework offers tools for automatic tissue segmentation, tracking, and analysis of brightfield and phase contrast movies of beating cardiac microbundles. It is straightforward to implement, runs without user intervention, requires minimal input parameter setting selection, and is computationally inexpensive. In this paper, we describe the methods underlying this computational framework, show the results of our extensive validation studies, and demonstrate the utility of exploring heterogeneous tissue deformations and strains as functional metrics. With this manuscript, we disseminate "MicroBundleCompute" as an open-source computational tool with the aim of making automated quantitative analysis of beating cardiac microbundles more accessible to the community.
Collapse
Affiliation(s)
- Hiba Kobeissi
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States of America
| | - Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - M. Çağatay Karakan
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
- Photonics Center, Boston University, Boston, MA, United States of America
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Shoshana L. Das
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Lani Quach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Jonathan Urquia
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, United States of America
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King’s Health Partners, King’s College London, King’s Health Partners, London, United Kingdom
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States of America
| |
Collapse
|
12
|
Karakan MÇ, Ewoldt JK, Segarra AJ, Sundaram S, Wang MC, White AE, Chen CS, Ekinci KL. Geometry and length control of 3D engineered heart tissues using direct laser writing. LAB ON A CHIP 2024; 24:1685-1701. [PMID: 38317604 PMCID: PMC10929702 DOI: 10.1039/d3lc00752a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
Geometry and mechanical characteristics of the environment surrounding the Engineered Heart Tissues (EHT) affect their structure and function. Here, we employed a 3D tissue culture platform fabricated using two-photon direct laser writing with a high degree of accuracy to control parameters that are relevant to EHT maturation. Using this platform, we first explore the effects of geometry based on two distinct shapes: a rectangular seeding well with two attachment sites, and a stadium-like seeding well with six attachment sites that are placed symmetrically along hemicylindrical membranes. The former geometry promotes uniaxial contraction of the tissues; the latter additionally induces diagonal fiber alignment. We systematically increase the length of the seeding wells for both configurations and observe a positive correlation between fiber alignment at the center of the EHTs and tissue length. With increasing length, an undesirable thinning and "necking" also emerge, leading to the failure of longer tissues over time. In the second step, we optimize the stiffness of the seeding wells and modify some of the attachment sites of the platform and the seeding parameters to achieve tissue stability for each length and geometry. Furthermore, we use the platform for electrical pacing and calcium imaging to evaluate the functional dynamics of EHTs as a function of frequency.
Collapse
Affiliation(s)
- M Çağatay Karakan
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA.
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jourdan K Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Addianette J Segarra
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Polytechnic University of Puerto Rico, San Juan 00918, Puerto Rico
| | - Subramanian Sundaram
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Miranda C Wang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alice E White
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA.
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, USA
- Department of Physics, Boston University, Boston, MA 02215, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Kamil L Ekinci
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA.
- Photonics Center, Boston University, Boston, MA 02215, USA
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
13
|
Kurashina Y, Fukada K, Itai S, Akizuki S, Sato R, Masuda A, Tani H, Fujita J, Fukuda K, Tohyama S, Onoe H. Hydrogel-Sheathed hiPSC-Derived Heart Microtissue Enables Anchor-Free Contractile Force Measurement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301831. [PMID: 37849230 PMCID: PMC10724413 DOI: 10.1002/advs.202301831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/25/2023] [Indexed: 10/19/2023]
Abstract
In vitro reconstruction of highly mature engineered heart tissues (EHTs) is attempted for the selection of cardiotoxic drugs suitable for individual patients before administration. Mechanical contractile force generated in the EHTs is known to be a critical indicator for evaluating the EHT response. However, measuring contractile force requires anchoring the EHT in a tailored force-sensing cell culture chamber, causing technical difficulties in the stable evaluation of contractile force in long-term culture. This paper proposes a hydrogel-sheathed human induced pluripotent stem cell (hiPSC)-derived heart microtissue (H3 M) that can provide an anchor-free contractile force measurement platform in commonly used multi-well plates. The contractile force associated with tissue formation and drug response is calculated by motion tracking and finite element analysis on the bending angle of the hydrogel sheath. From the experiment of the drug response, H3 M is an excellent drug screening platform with high sensitivity and early testing capability compared to conventionally anchored EHT. This unique platform would be useful and versatile for regenerative therapy and drug discovery research in EHT.
Collapse
Affiliation(s)
- Yuta Kurashina
- Department of Mechanical EngineeringFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
- Division of Advanced Mechanical Systems EngineeringInstitute of EngineeringTokyo University of Agriculture and Technology2‐24‐16 NakachoKoganei‐shiTokyo184–8588Japan
| | - Keisuke Fukada
- School of Integrated Design EngineeringGraduate School of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| | - Shun Itai
- Department of Mechanical EngineeringFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
- Division of Medical ScienceGraduate school of Biomedical EngineeringTohoku University1‐1 Seiryomachi, Aoba‐kuSendaiMiyagi980–8574Japan
| | - Shuichi Akizuki
- Department of Mechanical and Systems Engineering, School of EngineeringChukyo University101–2 Yagoto Honmachi, Showa‐kuNagoyaAichi466–8666Japan
| | - Ryo Sato
- School of Integrated Design EngineeringGraduate School of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| | - Akari Masuda
- School of Integrated Design EngineeringGraduate School of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| | - Hidenori Tani
- Department of CardiologyKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160–8582Japan
| | - Jun Fujita
- Department of CardiologyKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160–8582Japan
- Department of Pathology & ImmunologyBaylor College of MedicineOne Baylor PlazaHoustonTX77030USA
| | - Keiichi Fukuda
- Department of CardiologyKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160–8582Japan
| | - Shugo Tohyama
- Department of CardiologyKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160–8582Japan
| | - Hiroaki Onoe
- Department of Mechanical EngineeringFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| |
Collapse
|
14
|
Kafili G, Kabir H, Jalali Kandeloos A, Golafshan E, Ghasemi S, Mashayekhan S, Taebnia N. Recent advances in soluble decellularized extracellular matrix for heart tissue engineering and organ modeling. J Biomater Appl 2023; 38:577-604. [PMID: 38006224 PMCID: PMC10676626 DOI: 10.1177/08853282231207216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Despite the advent of tissue engineering (TE) for the remodeling, restoring, and replacing damaged cardiovascular tissues, the progress is hindered by the optimal mechanical and chemical properties required to induce cardiac tissue-specific cellular behaviors including migration, adhesion, proliferation, and differentiation. Cardiac extracellular matrix (ECM) consists of numerous structural and functional molecules and tissue-specific cells, therefore it plays an important role in stimulating cell proliferation and differentiation, guiding cell migration, and activating regulatory signaling pathways. With the improvement and modification of cell removal methods, decellularized ECM (dECM) preserves biochemical complexity, and bio-inductive properties of the native matrix and improves the process of generating functional tissue. In this review, we first provide an overview of the latest advancements in the utilization of dECM in in vitro model systems for disease and tissue modeling, as well as drug screening. Then, we explore the role of dECM-based biomaterials in cardiovascular regenerative medicine (RM), including both invasive and non-invasive methods. In the next step, we elucidate the engineering and material considerations in the preparation of dECM-based biomaterials, namely various decellularization techniques, dECM sources, modulation, characterizations, and fabrication approaches. Finally, we discuss the limitations and future directions in fabrication of dECM-based biomaterials for cardiovascular modeling, RM, and clinical translation.
Collapse
Affiliation(s)
- Golara Kafili
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Hannaneh Kabir
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, USA
| | | | - Elham Golafshan
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Sara Ghasemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Nayere Taebnia
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
15
|
Vidler C, Crozier K, Collins D. Ultra-resolution scalable microprinting. MICROSYSTEMS & NANOENGINEERING 2023; 9:67. [PMID: 37251709 PMCID: PMC10212948 DOI: 10.1038/s41378-023-00537-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 05/31/2023]
Abstract
Projection micro stereolithography (PµSL) is a digital light processing (DLP) based printing technique for producing structured microparts. In this approach there is often a tradeoff between the largest object that can be printed and the minimum feature size, with higher resolution generally reducing the overall extent of the structure. The ability to produce structures with high spatial resolution and large overall volume, however, is immensely important for the creation of hierarchical materials, microfluidic devices and bioinspired constructs. In this work, we report a low-cost system with 1 µm optical resolution, representing the highest resolution system yet developed for the creation of micro-structured parts whose overall dimensions are nevertheless on the order of centimeters. To do so, we examine the limits at which PµSL can be applied at scale as a function of energy dosage, resin composition, cure depth and in-plane feature resolution. In doing so we develop a unique exposure composition approach that allows us to greatly improve the resolution of printed features. This ability to construct high-resolution scalable microstructures has the potential to accelerate advances in emerging areas, including 3D metamaterials, tissue engineering and bioinspired constructs.
Collapse
Affiliation(s)
- Callum Vidler
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC Australia
| | - Kenneth Crozier
- School of Physics, University of Melbourne, Victoria, 3010 Australia
- Department of Electrical and Electronic Engineering, University of Melbourne, Victoria, 3010 Australia
- Australian Research Council (ARC) Centre of Excellence for Transformative Meta-Optical Systems, University of Melbourne, Victoria, 3010 Australia
| | - David Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, 3052 VIC Australia
| |
Collapse
|
16
|
Thaweeskulchai T, Schulte A. Basic Guide to Multilayer Microfluidic Fabrication with Polyimide Tape and Diode Laser. MICROMACHINES 2023; 14:mi14020324. [PMID: 36838024 PMCID: PMC9959566 DOI: 10.3390/mi14020324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 05/13/2023]
Abstract
For normal operations, microfluidic devices typically require an external source of pressure to deliver fluid flow through the microchannel. This requirement limits their use for benchtop research activities in a controlled static environment. To exploit the full potential of the miniaturization and portability of microfluidic platforms, passively driven capillary microfluidic devices have been developed to completely remove the need for an external pressure source. Capillary microfluidics can be designed to perform complex tasks by designing individual components of the device. These components, such as the stop valve and trigger valve, operate through changes in microchannel dimensions and aspect ratios. A direct, maskless fabrication protocol that allows the precise fabrication of microchannels and other microfluidic components is introduced here. A diode laser and polyimide tape on a PMMA substrate are the only components needed to start fabrication. By varying the laser power used and the number of laser repetitions, various depths and widths of the microchannel can be quickly created to meet specific needs. As an example of a functional unit, a trigger valve was fabricated and tested, as proof of the validity of the fabrication protocol.
Collapse
|
17
|
Schmid M, Giessen H. Stress-induced birefringence in 3D direct laser written micro-optics. OPTICS LETTERS 2022; 47:5789-5792. [PMID: 37219104 DOI: 10.1364/ol.476464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 05/24/2023]
Abstract
3D direct laser writing is a widely used technology to create different nano- and micro-optical devices for various purposes. However, one big issue is the shrinking of the structures during polymerization, which results in deviations from the design and in internal stress. While the deviations can be compensated by adapting the design, the internal stress remains and induces birefringence. In this Letter, we successfully demonstrate the quantitative analysis of stress-induced birefringence in 3D direct laser written structures. After presenting the measurement setup based on a rotating polarizer and an elliptical analyzer, we characterize the birefringence of different structures and writing modes. We further investigate different photoresists and the implications for 3D direct laser written optics.
Collapse
|
18
|
Liu Y, Fan Z, Qiao L, Liu B. Advances in microfluidic strategies for single-cell research. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Criscione J, Rezaei Z, Hernandez Cantu CM, Murphy S, Shin SR, Kim DH. Heart-on-a-chip platforms and biosensor integration for disease modeling and phenotypic drug screening. Biosens Bioelectron 2022; 220:114840. [DOI: 10.1016/j.bios.2022.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2022]
|
20
|
Li Z, Hui J, Yang P, Mao H. Microfluidic Organ-on-a-Chip System for Disease Modeling and Drug Development. BIOSENSORS 2022; 12:bios12060370. [PMID: 35735518 PMCID: PMC9220862 DOI: 10.3390/bios12060370] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 05/05/2023]
Abstract
An organ-on-a-chip is a device that combines micro-manufacturing and tissue engineering to replicate the critical physiological environment and functions of the human organs. Therefore, it can be used to predict drug responses and environmental effects on organs. Microfluidic technology can control micro-scale reagents with high precision. Hence, microfluidics have been widely applied in organ-on-chip systems to mimic specific organ or multiple organs in vivo. These models integrated with various sensors show great potential in simulating the human environment. In this review, we mainly introduce the typical structures and recent research achievements of several organ-on-a-chip platforms. We also discuss innovations in models applied to the fields of pharmacokinetics/pharmacodynamics, nano-medicine, continuous dynamic monitoring in disease modeling, and their further applications in other fields.
Collapse
Affiliation(s)
- Zening Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.L.); (J.H.); (P.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Hui
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.L.); (J.H.); (P.Y.)
| | - Panhui Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.L.); (J.H.); (P.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.L.); (J.H.); (P.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-21-62511070-8707
| |
Collapse
|
21
|
Ohya T, Ohtomo H, Kikuchi T, Sasaki D, Kawamura Y, Matsuura K, Shimizu T, Fukuda K, Someya T, Umezu S. Simultaneous measurement of contractile force and field potential of dynamically beating human iPS cell-derived cardiac cell sheet-tissue with flexible electronics. LAB ON A CHIP 2021; 21:3899-3909. [PMID: 34636821 DOI: 10.1039/d1lc00411e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human induced pluripotent stem (iPS) cell-derived cardiomyocytes are used for in vitro pharmacological and pathological studies worldwide. In particular, the functional assessment of cardiac tissues created from iPS cell-derived cardiomyocytes is expected to provide precise prediction of drug effects and thus streamline the process of drug development. However, the current format of electrophysiological and contractile assessment of cardiomyocytes on a rigid substrate is not appropriate for cardiac tissues that beat dynamically. Here, we show a novel simultaneous measurement system for contractile force and extracellular field potential of iPS cell-derived cardiac cell sheet-tissues using 500 nm-thick flexible electronic sheets. It was confirmed that the developed system is applicable for pharmacological studies and assessments of excitation-contraction coupling-related parameters, such as the electro-mechanical window. Our results indicate that flexible electronics with cardiac tissue engineering provide an advanced platform for drug development. This system will contribute to gaining new insight in pharmacological study of human cardiac function.
Collapse
Affiliation(s)
- Takashi Ohya
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
- Thin-Film Device Laboratory & Center for Emergent Matter Science, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Haruki Ohtomo
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Tetsutaro Kikuchi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Daisuke Sasaki
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Yohei Kawamura
- Thin-Film Device Laboratory & Center for Emergent Matter Science, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
- Department of Integrative Bioscience and Biomedical Engineering, TWIns, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory & Center for Emergent Matter Science, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Takao Someya
- Thin-Film Device Laboratory & Center for Emergent Matter Science, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Shinjiro Umezu
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
22
|
Zhao Q, Cole T, Zhang Y, Tang SY. Mechanical Strain-Enabled Reconstitution of Dynamic Environment in Organ-on-a-Chip Platforms: A Review. MICROMACHINES 2021; 12:765. [PMID: 34203533 PMCID: PMC8304354 DOI: 10.3390/mi12070765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Organ-on-a-chip (OOC) uses the microfluidic 3D cell culture principle to reproduce organ- or tissue-level functionality at a small scale instead of replicating the entire human organ. This provides an alternative to animal models for drug development and environmental toxicology screening. In addition to the biomimetic 3D microarchitecture and cell-cell interactions, it has been demonstrated that mechanical stimuli such as shear stress and mechanical strain significantly influence cell behavior and their response to pharmaceuticals. Microfluidics is capable of precisely manipulating the fluid of a microenvironment within a 3D cell culture platform. As a result, many OOC prototypes leverage microfluidic technology to reproduce the mechanically dynamic microenvironment on-chip and achieve enhanced in vitro functional organ models. Unlike shear stress that can be readily generated and precisely controlled using commercial pumping systems, dynamic systems for generating proper levels of mechanical strains are more complicated, and often require miniaturization and specialized designs. As such, this review proposes to summarize innovative microfluidic OOC platforms utilizing mechanical actuators that induce deflection of cultured cells/tissues for replicating the dynamic microenvironment of human organs.
Collapse
Affiliation(s)
- Qianbin Zhao
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Tim Cole
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (T.C.); (Y.Z.)
| | - Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (T.C.); (Y.Z.)
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (T.C.); (Y.Z.)
| |
Collapse
|