1
|
Saini G, Sheoran P, Jangra M, Gahlaut A, Raj V. Advancing Biosensing Frontiers Through Gold Nanoparticle Engineering: Synthesis Strategies and Detection Paradigms. Crit Rev Anal Chem 2025:1-20. [PMID: 40375431 DOI: 10.1080/10408347.2025.2502581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Gold Nanoparticles (GNPs) play a pivotal role in nanobiotechnology because of their distinct physicochemical traits, such as optical properties, compatibility with biological systems, and their ability to be easily functionalized. The top-down and bottom-up approaches are for the synthesis of GNPs. There are various chemical, physical, and green synthesis techniques, such as chemical reduction, seed-mediated growth, physical ablation method, pyrolysis, sputtering, etc. are some methods for the synthesis of GNPs. The use of plants, algae, fungi, and other microorganisms has recently arisen as a new approach for the eco-friendly synthesis with precise control over NP size, shape, and surface properties. The functionalization strategies involving biomolecules, polymers, and ligands enhance their stability and target specificity, facilitating their integration into biosensors. The detection of biomolecules, pathogens, and environmental toxins with high sensitivity and accuracy is facilitated by multiple signals such as localized surface plasmon resonance (LSPR), alterations in color, and electrochemical characteristics. Furthermore, their role in point-of-care diagnostics, drug delivery, and imaging underscores their versatility in biomedical applications. This review provides a comprehensive overview of recent advancements in the synthesis, functionalization, and GNPs-based biosensors. In addition, the review highlights recent advancements, challenges, and future prospects of GNPs in biosensing and nanomedicine, offering an understanding of diagnostics and therapeutic monitoring. The key challenges include stability, reproducibility, and scalability, and the future focuses on green synthesis with enhanced sensitivity and multiplexed biosensing applications.
Collapse
Affiliation(s)
- Geetanjali Saini
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Parneet Sheoran
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Madhu Jangra
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vikas Raj
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
2
|
Teimouri H, Taheri S, Saidabad FE, Nakazato G, Maghsoud Y, Babaei A. New insights into gold nanoparticles in virology: A review of their applications in the prevention, detection, and treatment of viral infections. Biomed Pharmacother 2025; 183:117844. [PMID: 39826358 DOI: 10.1016/j.biopha.2025.117844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Viral infections have led to the deaths of millions worldwide and come with significant economic and social burdens. Emerging viral infections, as witnessed with coronavirus disease 2019 (COVID-19), can profoundly affect all aspects of human life, highlighting the imperative need to develop diagnostic, therapeutic, and effective control strategies in response. Numerous studies highlight the diverse applications of nanoparticles in diagnosing, controlling, preventing, and treating viral infections. Due to favorable and flexible physicochemical properties, small size, immunogenicity, biocompatibility, high surface-to-volume ratio, and the ability to combine with antiviral agents, gold nanoparticles (AuNPs) have shown great potential in the fight against viruses. The physical and chemical properties, the adjustability of characteristics based on the type of application, the ability to cross the blood-brain barrier, the ability to infiltrate cells such as phagocytic and dendritic cells, and compatibility for complexing with various compounds, among other features, transform AuNPs into a suitable tool for combating and addressing pathogenic viral agents through multiple applications. In recent years, AuNPs have been employed in various applications to fight viral infections. However, a comprehensive review article on the applications of AuNPs against viral infections has yet to be available. Given their versatility, AuNPs present an appealing option to address various gaps in combating viral infections. Hence, this review explores the attributes, antiviral properties, contributions to drug delivery, vaccine development, and diagnostic uses of AuNPs.
Collapse
Affiliation(s)
- Hossein Teimouri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shiva Taheri
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Parana State CP6001, Brazil
| | - Yazdan Maghsoud
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
3
|
Araujo Cirne C, Foldvari M. Pulmonary Delivery of Nonviral Nucleic Acid-Based Vaccines With Spotlight on Gold Nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70000. [PMID: 39800783 PMCID: PMC11725562 DOI: 10.1002/wnan.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/15/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Nucleic acid-based vaccines are leading-edge tools in developing next-generation preventative care. Much research has been done to convert vaccine gene therapy from an invasive to a noninvasive administration approach. The lung's large surface area and permeability make the pulmonary route a promising noninvasive delivery option for vaccines, with systemic and local applications. This review summarizes the challenges and the approaches that have been carried out to optimize the delivery of nucleic acids through the pulmonary route for vaccination purposes in recent years, with a spotlight on gold nanoparticles (AuNPs). Nonviral delivery systems have been widely explored, and AuNPs with their unique properties are emerging as promising tools for nucleic acid vaccines due to surface functionalization with mucus-penetrating polymers and targeting moieties that can bypass the barriers in pulmonary delivery and successfully deliver nucleic acids to the cells of interest. However, while promising, several challenges remain including selectively overcoming the lungs' immunological surveillance and adhesive mucus.
Collapse
Affiliation(s)
- Carolina Araujo Cirne
- School of Pharmacy and Waterloo Institute of NanotechnologyUniversity of Waterloo, 200 University Avenue WestWaterlooOntarioCanada
| | - Marianna Foldvari
- School of Pharmacy and Waterloo Institute of NanotechnologyUniversity of Waterloo, 200 University Avenue WestWaterlooOntarioCanada
| |
Collapse
|
4
|
Adamska E, Kowalska A, Wcisło A, Zima K, Grobelna B. Studying the Effect of Reducing Agents on the Properties of Gold Nanoparticles and Their Integration into Hyaluronic Acid Hydrogels. Molecules 2024; 29:5837. [PMID: 39769926 PMCID: PMC11728763 DOI: 10.3390/molecules29245837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Gold nanoparticles (Au NPs) are a promising target for research due to their small size and the resulting plasmonic properties, which depend, among other things, on the chosen reducer. This is important because removing excess substrate from the reaction mixture is problematic. However, Au NPs are an excellent component of various materials, enriching them with their unique features. One example is hydrogels, which provide a good, easily modifiable base for multiple applications such as cosmetics. For this purpose, various compounds, including hyaluronic acid (HA) and its derivatives, are distinguished by their high water-binding capacity and many characteristics resulting from their natural origin in organisms, including biocompatibility, biodegradability, and tissue regeneration. In this work Au NPs were synthesized using a green chemistry method, either by using onion extract as a reductant or chemically reducing them with sodium citrate. A complete characterization of the nanoparticles was carried out using the following methods: Fourier-Transform Infrared Spectroscopy (FT-IR), Electrophoretic (ELS), and Dynamic Light Scattering (DLS) as well as Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM). Their antioxidant activity was also tested using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH). The results showed that the synthesized nanoparticles enrich the hydrogels with antioxidant properties and new surface properties (depending on the reducing agent, they can be more hydrophilic or hydrophobic). Preliminary observations indicated low cytotoxicity of the nanomaterials in both liquid form and as a hydrogel component, as well as their lack of penetration through pig skin. The cosmetic properties of hydrogel masks were also confirmed, such as increasing skin hydration.
Collapse
Affiliation(s)
- Elżbieta Adamska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.K.); (A.W.)
| | - Agata Kowalska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.K.); (A.W.)
| | - Anna Wcisło
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.K.); (A.W.)
| | - Katarzyna Zima
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, Debinki 1, 80-210 Gdansk, Poland;
| | - Beata Grobelna
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.K.); (A.W.)
| |
Collapse
|
5
|
Tiryaki E, Zorlu T. Recent Advances in Metallic Nanostructures-assisted Biosensors for Medical Diagnosis and Therapy. Curr Top Med Chem 2024; 24:930-951. [PMID: 38243934 DOI: 10.2174/0115680266282489240109050225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
The field of nanotechnology has witnessed remarkable progress in recent years, particularly in its application to medical diagnosis and therapy. Metallic nanostructures-assisted biosensors have emerged as a powerful and versatile platform, offering unprecedented opportunities for sensitive, specific, and minimally invasive diagnostic techniques, as well as innovative therapeutic interventions. These biosensors exploit the molecular interactions occurring between biomolecules, such as antibodies, enzymes, aptamers, or nucleic acids, and metallic surfaces to induce observable alterations in multiple physical attributes, encompassing electrical, optical, colorimetric, and electrochemical signals. These interactions yield measurable data concerning the existence and concentration of particular biomolecules. The inherent characteristics of metal nanostructures, such as conductivity, plasmon resonance, and catalytic activity, serve to amplify both sensitivity and specificity in these biosensors. This review provides an in-depth exploration of the latest advancements in metallic nanostructures-assisted biosensors, highlighting their transformative impact on medical science and envisioning their potential in shaping the future of personalized healthcare.
Collapse
Affiliation(s)
- Ecem Tiryaki
- Nanomaterials for Biomedical Applications, Italian Institute of Technology, 16163, Genova, Italy
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Esenler, Istanbul, Turkey
| | - Tolga Zorlu
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
6
|
Kola NS, Patel D, Thakur A. RNA-Based Vaccines and Therapeutics Against Intracellular Pathogens. Methods Mol Biol 2024; 2813:321-370. [PMID: 38888787 DOI: 10.1007/978-1-0716-3890-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
RNA-based vaccines have sparked a paradigm shift in the treatment and prevention of diseases by nucleic acid medicines. There has been a notable surge in the development of nucleic acid therapeutics and vaccines following the global approval of the two messenger RNA-based COVID-19 vaccines. This growth is fueled by the exploration of numerous RNA products in preclinical stages, offering several advantages over conventional methods, i.e., safety, efficacy, scalability, and cost-effectiveness. In this chapter, we provide an overview of various types of RNA and their mechanisms of action for stimulating immune responses and inducing therapeutic effects. Furthermore, this chapter delves into the varying delivery systems, particularly emphasizing the use of nanoparticles to deliver RNA. The choice of delivery system is an intricate process involved in developing nucleic acid medicines that significantly enhances their stability, biocompatibility, and site-specificity. Additionally, this chapter sheds light on the current landscape of clinical trials of RNA therapeutics and vaccines against intracellular pathogens.
Collapse
Affiliation(s)
- Naga Suresh Kola
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dhruv Patel
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
7
|
Lee YH, Medhi H, Liu X, Ha IH, Nam KT, Ploegh H. Selective Targeting of Nanobody-Modified Gold Nanoparticles to Distinct Cell Types. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59258-59268. [PMID: 38091481 DOI: 10.1021/acsami.3c16829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Nanobody-modified gold nanoparticles were used to explore their ability to achieve selective targeting in vitro and in vivo to distinct cell type(s), based on the specificity of the nanobody that was installed. We developed conjugation methods that exploit click chemistry for octahedral ∼50 nm gold nanoparticles and chiral ∼180 nm gold nanoparticles. We determined that each of these particles could be modified with ∼75 and ∼330 nanobodies, respectively. Particle-bound nanobodies retain their antigen binding capacity. After conjugation of the mouse Class II MHC-specific nanobody VHH7 to chiral gold nanoparticles, selective targeting of Class II MHC-positive cell types was observed in vitro by fluorometric assays and by dark-field microscopy. Upon installation of the positron emission tomography (PET) isotopes 89Zr or 64Cu on nanobody-modified gold nanoparticles and retro-orbital injection of the radiolabeled particles, we observed accumulation predominantly in the liver and to a far lesser extent in the spleen, regardless of the size of the gold nanoparticles and the identity of the attached nanobody. We observed a striking difference in the distribution of radioisotope-labeled gold nanoparticles by changing the route of administration to intraperitoneal delivery. Significantly reduced accumulation in the liver and spleen was observed by intraperitoneal injection of nanoparticles. In the case of nanobody-modified gold nanoparticles injected intraperitoneally, prominent and persistent signals from the parathymic lymph nodes were observed in the PET/computed tomography images.
Collapse
Affiliation(s)
- Yoon Ho Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Himadri Medhi
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xin Liu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - In Han Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hidde Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Gulati S, Choudhury A, Mohan G, Katiyar R, Kurikkal M P MA, Kumar S, Varma RS. Metal-organic frameworks (MOFs) as effectual diagnostic and therapeutic tools for cancer. J Mater Chem B 2023. [PMID: 37377082 DOI: 10.1039/d3tb00706e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of multifunctional organometallic compounds that include metal ions combined with assorted organic linkers. Recently, these compounds have received widespread attention in medicine, due to their exceptional qualities, including a wide surface area, high porosity, outstanding biocompatibility, non-toxicity, etc. Such characteristic qualities make MOFs superb candidates for biosensing, molecular imaging, drug delivery, and enhanced cancer therapies. This review illustrates the key attributes of MOFs and their importance in cancer research. The structural and synthetic aspects of MOFs are briefly discussed with primary emphasis on diagnostic and therapeutic features, as well as their performance and significance in modern therapeutic methods and synergistic theranostic strategies including biocompatibility. This review offers cumulative scrutiny of the widespread appeal of MOFs in modern-day oncological research, which may stimulate further explorations.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India.
| | - Akangkha Choudhury
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Gauravya Mohan
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Riya Katiyar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India.
| | | | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565 905 São Carlos - SP, Brazil.
| |
Collapse
|
9
|
Rana A, Pathak S, Lim DK, Kim SK, Srivastava R, Sharma SN, Verma R. Recent Advancements in Plant- and Microbe-Mediated Synthesis of Metal and Metal Oxide Nanomaterials and Their Emerging Antimicrobial Applications. ACS APPLIED NANO MATERIALS 2023; 6:8106-8134. [DOI: 10.1021/acsanm.3c01351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Archana Rana
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Saurabh Pathak
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, South Korea
| | - Sang-Koog Kim
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
| | - Ritu Srivastava
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Shailesh Narain Sharma
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Rajni Verma
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
10
|
Asl FD, Mousazadeh M, Taji S, Bahmani A, Khashayar P, Azimzadeh M, Mostafavi E. Nano drug-delivery systems for management of AIDS: liposomes, dendrimers, gold and silver nanoparticles. Nanomedicine (Lond) 2023; 18:279-302. [PMID: 37125616 PMCID: PMC10242436 DOI: 10.2217/nnm-2022-0248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/08/2023] [Indexed: 05/02/2023] Open
Abstract
AIDS causes increasing mortality every year. With advancements in nanomedicine, different nanomaterials (NMs) have been applied to treat AIDS and overcome its limitations. Among different NMs, nanoparticles (NPs) can act as nanocarriers due to their enhanced solubility, sustained release, targeting abilities and facilitation of drug-dose reductions. This review discusses recent advancements in therapeutics for AIDS/HIV using various NMs, mainly focused on three classifications: polymeric, liposomal and inorganic NMs. Polymeric dendrimers, polyethylenimine-NPs, poly(lactic-co-glycolic acid)-NPs, chitosan and the use of liposomal-based delivery systems and inorganic NPs, including gold and silver NPs, are explored. Recent advances, current challenges and future perspectives on the use of these NMs for better management of HIV/AIDS are also discussed.
Collapse
Affiliation(s)
- Fateme Davarani Asl
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, 88138-33435, Iran
| | - Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Shirinsadat Taji
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
- Institute for Genetics, University of Cologne, Cologne, D-50674, Germany
| | - Abbas Bahmani
- Institute for Nanoscience & Nanotechnology (INST), Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec & Ghent University, Ghent, 9050, Belgium
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, 89195-999, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Ncobeni N, de la Torre BG, Albericio F, Kruger HG, Parboosing R. Active targeting of CD4 +T lymphocytes by PEI-capped, peptide-functionalized gold nanoparticles. NANOTECHNOLOGY 2022; 33:405101. [PMID: 35700711 DOI: 10.1088/1361-6528/ac7885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Active targeting is a promising approach for the treatment of viral infections. In particular, site-specific formulations for the treatment of HIV infection may overcome challenges associated with current ARV regimens. In this study we explored active targeting by synthesizing a gold nanoparticle construct decorated with an anti-CD4 cyclic peptide. The aim was to demonstrate selectivity of the system for the CD4 receptor and to deliver the RNA payload into T-lymphocytes. Colloidal gold nanoparticles functionalized withN-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) were formed by a one-pot synthesis method where thiol modified polyethyleneimine (PEI) was mixed with chloroauric acid. PEI-SPDP AuNPs (gold nanoparticles) were conjugated to an anti-CD4 peptide and loaded with RNA. We measured toxicity and uptake using TZM-bl and HeLa cells. Our findings show that the nanoparticles bind selectively to CD4 + cells. UV-vis characterisation of the nanoparticles revealed a surface plasmon resonance (SPR) peak at 527 nm, corresponding to a 6 nm diameter. HRTEM of the complete nanoparticles visualised circular shaped particles with average diameter of ∼7 nm. The polydispersity index was calculated to be 0.08, indicating monodispersity of complete NPS in solution. Through the pyridine-2-thione assay each nanoparticle was calculated to carry 1.37 × 105SPDP molecules available for peptide binding. Flow cytometry showed that 13.6% of TZM-bl cells, and 0.14% of HeLa cells retained fluorescence after an overnight incubation, an indication of system binding. No internal RNA delivery was demonstrated. Further work is required to improve internalization.
Collapse
Affiliation(s)
- Nomfundo Ncobeni
- Department of Virology-University of KwaZulu-Natal and National Health Laboratory Service, Durban, South Africa
- Catalysis and Peptide Research Labs, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Beatriz G de la Torre
- KwaZulu Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, E-08028 Barcelona, Spain
| | - Hendrik G Kruger
- Catalysis and Peptide Research Labs, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Raveen Parboosing
- Department of Virology-University of KwaZulu-Natal and National Health Laboratory Service, Durban, South Africa
| |
Collapse
|
12
|
Gulati S, Lingam B HN, Baul A, Kumar S, Wadhwa R, Trivedi M, Varma RS, Amar A. Recent progress, synthesis, and applications of chitosan-decorated magnetic nanocomposites in remediation of dye-laden wastewaters. NEW J CHEM 2022. [DOI: 10.1039/d2nj03558h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past several decades, the disposal of dyes from the industrial manufacturing sector has had an inadvertent impact on water ecology as polluted water bodies with these hazardous dyes...
Collapse
|
13
|
Hassanisaadi M, Bonjar GHS, Rahdar A, Pandey S, Hosseinipour A, Abdolshahi R. Environmentally Safe Biosynthesis of Gold Nanoparticles Using Plant Water Extracts. NANOMATERIALS 2021; 11:nano11082033. [PMID: 34443864 PMCID: PMC8400837 DOI: 10.3390/nano11082033] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/18/2022]
Abstract
Due to their simplicity of synthesis, stability, and functionalization, low toxicity, and ease of detection, gold nanoparticles (AuNPs) are a natural choice for biomedical applications. AuNPs’ unique optoelectronic features have subsequently been investigated and used in high-tech applications such as organic photovoltaics, sensory probes, therapeutic agents, the administration of drugs in biological and medical applications, electronic devices, catalysis, etc. Researchers have demonstrated the biosynthesis of AuNPs using plants. The present study evaluates 109 plant species used in the traditional medicine of Middle East countries as new sources of AuNPs in a wide variety of laboratory environments. In this study, dried samples of bark, bulb, flower, fruit, gum, leaf, petiole, rhizome, root, seed, stamen, and above-ground parts were evaluated in water extracts. About 117 plant parts were screened from 109 species in 54 plant families, with 102 extracts demonstrating a bioreduction of Au3+ to Au0, revealing 37 new plant species in this regard. The color change of biosynthesized AuNPs to gray, violet, or red was confirmed by UV-Visible spectroscopy, TEM, FSEM, DLS, and EDAX of six plants. In this study, AuNPs of various sizes were measured from 27 to 107 nm. This study also includes an evaluation of the potency of traditional East Asian medicinal plants used in this biosynthesis of AuNPs. An environmentally safe procedure such as this could act as a foundation for cosmetic industries whose quality assessment systems give a high priority to non-chemically synthesized products. It is crucial that future optimizations are adequately documented to scale up the described process.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
| | - Gholam Hosein Shahidi Bonjar
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Correspondence: (G.H.S.B.); or (S.P.)
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98615-538, Iran;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
- Correspondence: (G.H.S.B.); or (S.P.)
| | - Akbar Hosseinipour
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
| | - Roohollah Abdolshahi
- Department of Agronomy and Plant Breeding, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran;
| |
Collapse
|
14
|
Babaei A, Mousavi SM, Ghasemi M, Pirbonyeh N, Soleimani M, Moattari A. Gold nanoparticles show potential in vitro antiviral and anticancer activity. Life Sci 2021; 284:119652. [PMID: 34051217 DOI: 10.1016/j.lfs.2021.119652] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022]
Abstract
AIMS Gold nanoparticles (AuNPs) have been attracted interests in the various areas of clinical therapeutics. In this study, we investigated the anticancer and antiviral potential activity of AuNPs against influenza A virus and human glioblastoma (GMB) U-87 and U-251 cell lines. MAIN METHODS Gold nanoparticles (AuNPs) were synthesized by citrate reduction method. Then, ultraviolet-visible spectrophotometry (UV-vis spectra) and electron microscopy analysis confirmed the type, size (mean diameter of 17 nm) and distribution of the particles. The AuNPs in vitro antiviral and anticancer effects was evaluated by hemagglutination inhibition (HAI), tissue culture infectious dose 50 (TCID50), real-time PCR, MTT, flow cytometry, and scratch assays. KEY FINDINGS The AuNPs were synthesized in spherical with a mean diameter of 17 ± 2 nm and an absorbance peak at 520 nm. The AuNPs were well tolerable by MDCK cells at concentrations up to 0.5μg/ml and they significantly inhibited the hemagglutination and virus infectivity, particularly when added pre- or during virus infection. Furthermore, anticancer results indicated that AuNPs treatment caused the marked induction of apoptosis and reduced growth and migration capability of U-87 and U-251 cell lines in a time-dependent manner. SIGNIFICANCE The present results suggest that AuNPs provide promising antiviral and anticancer approaches. Further research is needed to fully elucidate the mode of antiviral and anticancer action of AuNPs against influenza virus infection and human glioblastoma cell lines.
Collapse
Affiliation(s)
- Abouzar Babaei
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Mousavi
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzie Ghasemi
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Neda Pirbonyeh
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran; Burn and Wound Healing Research Center, Microbiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Soleimani
- Department of Hematology and Cell Therapy, Tarbiat Modares University, Tehran, Iran; Nano Medicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afagh Moattari
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Kumar S, Mongia A, Gulati S, Singh P, Diwan A, Shukla S. Emerging theranostic gold nanostructures to combat cancer: Novel probes for Combinatorial Immunotherapy and Photothermal Therapy. Cancer Treat Res Commun 2020; 25:100258. [PMID: 33307507 DOI: 10.1016/j.ctarc.2020.100258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 12/21/2022]
Abstract
The application of gold nanoparticles in immunotherapy has emerged as one of the most effective therapeutic strategy for eradicating cancer by releasing antigens, oligonucleotides, adjuvants, immune-stimulating agents into the body. Gold nanoparticles are found to be a superior choice, for generating attack on oncogenic cells, due to their low toxicity, better target specificity, diagnostic capabilities, and enhanced cellular uptake rate. This review focuses on the efficiency of several functionalized gold nanoparticles of diverse shapes and sizes as delivery vehicles to desired target cells through effective immunotherapy, along with a brief discussion about photothermal therapy.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021
| | - Ayush Mongia
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021
| | - Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021
| | - Parinita Singh
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021
| | - Anchita Diwan
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021
| | - Shefali Shukla
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021
| |
Collapse
|