1
|
Kamal A, Hong S, Ju H. Carbon Quantum Dots: Synthesis, Characteristics, and Quenching as Biocompatible Fluorescent Probes. BIOSENSORS 2025; 15:99. [PMID: 39997001 PMCID: PMC11852651 DOI: 10.3390/bios15020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025]
Abstract
Carbon quantum dots (CQDs), a new class of carbon-based nanomaterials, have emerged as nano-scaled probes with photoluminescence that have an eco-friendly and bio-compatible nature. Their cost-efficient synthesis and high photoluminescence quantum yields make them indispensable due to their application in opto-electronic devices, including biosensors, bioimaging, environmental monitoring, and light sources. This review provides intrinsic properties of CQDs such as their excitation-dependent emission, biocompatibility, and quenching properties. Diverse strategies for their easy synthesis are divided into bottom-up and top-down approaches and detailed herein. In particular, we highlight their luminescence properties, including quenching mechanisms that could even be utilized for the precise and rapid detection of biomolecules. We also discuss methodologies for the mitigation of fluorescence quenching, which is pivotal for the application of CQDs in biosensors and bioimaging.
Collapse
Affiliation(s)
- Arif Kamal
- Department of Physics, Gachon University, Seongnam-si 13120, Republic of Korea;
- Gachon Bionano Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Seongin Hong
- Department of Physics, Gachon University, Seongnam-si 13120, Republic of Korea;
- Gachon Bionano Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea
- Department of Semiconductor Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam-si 13120, Republic of Korea;
- Gachon Bionano Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
2
|
Hu D, Huang R, Fang Y. Recent Advances in Tetra-Coordinate Boron-Based Photoactive Molecules for Luminescent Sensing, Imaging, and Anticounterfeiting. PRECISION CHEMISTRY 2025; 3:10-26. [PMID: 39886375 PMCID: PMC11775856 DOI: 10.1021/prechem.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 02/01/2025]
Abstract
Tetra-coordinate boron-based fluorescent materials hold considerable promise across chemistry, biology and materials science due to their unique and precisely tunable optoelectronic properties. The incorporation of the heteroatom boron (B) enables these materials to exhibit high luminescence quantum yields, adjustable absorption and emission wavelengths, and exceptional photostability. This review examines the molecular design and applications of tetra-coordinate boron-based photoactive molecules, highlighting their roles in fluorescence sensing, anticounterfeiting, and imaging. We outline how structural features impact their properties and discuss strategies for enhancing their performance, including ligand modification and the extension of conjugation length, among others. Additionally, future research focus in this field is also addressed including strategies for diversifying molecular structures and enhancing molecular stability, which is believed to pave the way for innovative solutions to the challenges in areas such as sensing, imaging and information security.
Collapse
Affiliation(s)
- Dingfang Hu
- Key Laboratory of Applied Surface and
Colloid Chemistry of Ministry of Education, School of Chemistry and
Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Rongrong Huang
- Key Laboratory of Applied Surface and
Colloid Chemistry of Ministry of Education, School of Chemistry and
Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and
Colloid Chemistry of Ministry of Education, School of Chemistry and
Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| |
Collapse
|
3
|
Zhang J, Zhang Z, Su M, Xu X, Gao R, Yu B, Yan X. Cyclometalated N-Difluoromethylbenzimidazolylidene Platinum(II) Complexes with Built-in Secondary Coordination Spheres: Photophysical Properties and Bioimaging. Inorg Chem 2024. [PMID: 39546802 DOI: 10.1021/acs.inorgchem.4c03713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Bidentate Pt(II) complexes with cyclometalated N-heteroarene or N-heterocyclic carbene (NHC) ligands have been extensively studied as phosphorescent emitters over the past two decades. Herein, we introduce a difluoromethyl group (CF2H) into the wingtip of NHCs, where CF2H acts as a lipophilic hydrogen bond (HB) donor. Their cyclometalated Pt(II) complexes show excellent PLQYs (up to 93%) and phosphorescence lifetimes mainly due to the rigid structure with hydrogen bonding between the CF2H group and the adjacent O atom at the β-diketonate ligand. Bioimaging studies demonstrate high cellular uptake efficiency and deep tumor penetration capability of complex 7 in HeLa cells and multicellular tumor spheroids, highlighting their potential as bioimaging probes.
Collapse
Affiliation(s)
- Jingli Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Mengrui Su
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingyu Xu
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, Shanxi, China
| | - Rongyao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Bingran Yu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
4
|
Polishchuk V, Kulinich A, Shandura M. Tetraanionic Oligo-Dioxaborines: Strongly Absorbing Near-Infrared Dyes. Chemistry 2024; 30:e202401097. [PMID: 38624080 DOI: 10.1002/chem.202401097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Polymethine dyes of tetraanionic nature comprising 1,3,2-dioxaborine rings in the polymethine chain and end-groups of different electron-accepting abilities have been synthesized. They can be considered as oligomeric polymethines, where a linear conjugated π-system passes through three 1,3,2-dioxaborine units and a number of tri- and dimethine π-bridges between two end-groups. The obtained dyes exhibit near-infrared absorption and fluorescence, with molar absorption coefficients reaching as high as 564000 M-1 cm-1 in DMF, rendering them among the strongest absorbers known. The novel compounds are bright NIR fluorophores, with fluorescence quantum yields up to 0.13 in DMF. A comparative analysis of the electronic structure of the obtained dyes with respective dianionic and trianionic oligomers was conducted through quantum chemical calculations.
Collapse
Affiliation(s)
- Vladyslav Polishchuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, 02094, Kyiv, Ukraine
| | - Andrii Kulinich
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, 02094, Kyiv, Ukraine
| | - Mykola Shandura
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, 02094, Kyiv, Ukraine
| |
Collapse
|
5
|
He X, Liu S, Hu X, Huang X, Zhang H, Mao X. Precious metal clusters as fundamental agents in bioimaging usability. Front Chem 2023; 11:1296036. [PMID: 38025077 PMCID: PMC10665568 DOI: 10.3389/fchem.2023.1296036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Fluorescent nanomaterials (NMs) are widely used in imaging techniques in biomedical research. Especially in bioimaging systems, with the rapid development of imaging nanotechnology, precious metal clusters such as Au, Ag, and Cu NMs have emerged with different functional agents for biomedical applications. Compared with traditional fluorescent molecules, precious metal clusters have the advantages of high optical stability, easy regulation of shape and size, and multifunctionalization. In addition, NMs possess strong photoluminescent properties with good photostability, high release rate, and sub-nanometer size. They could be treated as fundamental agents in bioimaging usability. This review summarizes the recent advances in bioimaging utilization, it conveys that metal clusters refer to Au, Ag, and Cu fluorescent clusters and could provide a generalized overview of their full applications. It includes optical property measurement, precious metal clusters in bioimaging systems, and a rare earth element-doped heterogeneous structure illustrated in biomedical imaging with specific examples, that provide new and innovative ideas for fluorescent NMs in the field of bioimaging usability.
Collapse
Affiliation(s)
- Xiaoxiao He
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China
| | - Shaojun Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xi Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiongyi Huang
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China
| | - Hehua Zhang
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Xiao R, Zheng F, Kang K, Xiao L, Bi A, Chen Y, Zhou Q, Feng X, Chen Z, Yin H, Wang W, Chen Z, Cheng X, Zeng W. Precise visualization and ROS-dependent photodynamic therapy of colorectal cancer with a novel mitochondrial viscosity photosensitive fluorescent probe. Biomater Res 2023; 27:112. [PMID: 37941059 PMCID: PMC10634017 DOI: 10.1186/s40824-023-00450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prominent global cancer with high mortality rates among human beings. Efficient diagnosis and treatment have always been a challenge for CRC management. Fluorescence guided cancer therapy, which combines diagnosis with therapy into one platform, has brought a new chance for achieving precise cancer theranostics. Among this, photosensitizers, applied in photodynamic therapy (PDT), given the integration of real-time imaging capacity and efficacious treatment feasibility, show great potential to serve as remarkable tools. Although much effort has been put into constructing photosensitizers for locating and destroying CRC cells, it is still in high need to develop novel photosensitizers to attain specific detection and fulfil effective therapy. METHODS Probe HTI was rational synthesized for the diagnosis and treatment of CRC. Spectrometric determination was carried out first, followed by the 1O2 generation ability test. Then, HTI was displayed in distinguishing CRC cells from normal cells Further, the PDT effect of the photosensitizer was studied in vitro. Additionally, HTI was used in CRC BALB/c nude mice model to validate its viscosity labelling and tumor suppression characteristics. RESULTS We successfully fabricated a mitochondrial targeting probe, HTI, together with remarkable viscosity sensitivity, ultralow background interference, and excellent 1O2 generation capacity. HTI was favorably applied to the viscosity detection, displaying a 11-fold fluorescent intensity enhancement in solvents from 1.57 cp to 2043 cp. Then, it was demonstrated that HTI could distinguish CRC cells from normal cells upon the difference in mitochondrial viscosity. Moreover, HTI was qualified for producing 1O2 with high efficiency in cells, supported by the sparkling signals of DCFH after incubation with HTI under light irradiation. More importantly, the viscosity labelling and tumor suppression performance in CRC CDX model was determined, enriching the multifunctional validation of HTI in vivo. CONCLUSIONS In this study, HTI was demonstrated to show a sensitive response to mitochondrial viscosity and possess a high 1O2 generation capacity. Both in vitro cell imaging and in vivo tumor treatment trials proved that HTI was effectively served as a robust scaffold for tumor labeling and CRC cells clearance. This breakthrough discovery held immense potential for advancing the early diagnosis and management of CRC through PDT. By leveraging HTI's properties, medical professionals could benefit from improved diagnostic accuracy and targeted treatment in CRC management, ultimately leading to enhanced patient outcomes.
Collapse
Affiliation(s)
- Runsha Xiao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410013, Changsha, People's Republic of China
| | - Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China
| | - Kuo Kang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410013, Changsha, People's Republic of China
| | - Lei Xiao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Department of Colorectal Surgery, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People's Republic of China
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China
| | - Yiting Chen
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Qi Zhou
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Xueping Feng
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Zhikang Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410013, Changsha, People's Republic of China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, 200003, People's Republic of China
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, 410013, People's Republic of China
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China.
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410013, Changsha, People's Republic of China.
| | - Xiaomiao Cheng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China.
- Department of Nephrology, Xiangya Changde Hospital, Changde, 415000, People's Republic of China.
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China.
| |
Collapse
|
7
|
Recent advances in carboxymethyl chitosan-based materials for biomedical applications. Carbohydr Polym 2023; 305:120555. [PMID: 36737218 DOI: 10.1016/j.carbpol.2023.120555] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Chitosan (CS) and its derivatives have been applied extensively in the biomedical field owing to advantageous characteristics including biodegradability, biocompatibility, antibacterial activity and adhesive properties. The low solubility of CS at physiological pH limits its use in systems requiring higher dissolving ability and a suitable drug release rate. Besides, CS can result in fast drug release because of its high swelling degree and rapid water absorption in aqueous media. As a water-soluble derivative of CS, carboxymethyl chitosan (CMC) has certain improved properties, rendering it a more suitable candidate for wound healing, drug delivery and tissue engineering applications. This review will focus on the antibacterial, anticancer and antitumor, antioxidant and antifungal bioactivities of CMC and the most recently described applications of CMC in wound healing, drug delivery, tissue engineering, bioimaging and cosmetics.
Collapse
|
8
|
Tigreros A, Bedoya-Malagón C, Valencia A, Núñez-Portela M, Portilla J. Photophysical and anion sensing properties of a triphenylamine-dioxaborinine trimeric compound. RSC Adv 2023; 13:1757-1764. [PMID: 36712638 PMCID: PMC9828043 DOI: 10.1039/d2ra07498b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Herein, we report the synthesis and photophysical characterization of the novel tris(4-(2,2-difluoro-6-methyl-2H-1λ3,3,2λ4-dioxaborinin-4-yl)phenyl)amine trimeric probe (A2) via the reaction between triphenylamine (1), acetic anhydride, and BF3·OEt2 implying the twelve new bond formation in a one-pot manner. This highly fluorescent compound in solution (φ up to 0.91 at 572 nm) and solid state (φ = 0.24 at 571 nm) showed a better solvatofluorochromism than its analog monomeric A1 due to symmetry-broken charge transfer, which is consistent with high solvent dipolarity (SdP) response in Catalán's multiparametric regression. Notably, A2 had a high sensibility and selectivity for CN- or F- in solution (LODCN-/F- = 0.18/0.70 μM), and CN- can be discriminated from F- by the reaction of A2 with 3.0 equiv. of CN-. In addition, A2 was impregnated on filter paper to prepare test strips that were applied to naked-eye qualitative sensing of CN- or F-. Finally, the octupolar system in A2 allows for better action of two-photon excitation cross-section values when compared with that of the dipolar structure in A1. These findings provide further information for the design of new efficient two-photon absorption dyes.
Collapse
Affiliation(s)
- Alexis Tigreros
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los AndesCarrera 1 No. 18A-10Bogotá 111711Colombia
| | - Camilo Bedoya-Malagón
- Quantum Optics Laboratory, Department of Physics, Universidad de Los AndesCarrera 1 No. 18A-10BogotáColombia
| | - Alejandra Valencia
- Quantum Optics Laboratory, Department of Physics, Universidad de Los AndesCarrera 1 No. 18A-10BogotáColombia
| | - Mayerlin Núñez-Portela
- Quantum Optics Laboratory, Department of Physics, Universidad de Los AndesCarrera 1 No. 18A-10BogotáColombia
| | - Jaime Portilla
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los AndesCarrera 1 No. 18A-10Bogotá 111711Colombia
| |
Collapse
|
9
|
Green synthesis of BOSCHIBAs: Photo- and water stability, cytotoxicity assays, and theoretical calculations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Shen Z, Gao Y, Li M, Zhang Y, Xu K, Gong S, Wang Z, Wang S. Development and application of a novel β-diketone difluoroboron-derivatized fluorescent probe for sensitively detecting H 2S. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121609. [PMID: 35839692 DOI: 10.1016/j.saa.2022.121609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen sulfide{Wang, 2018 #4}{Wang, 2018 #4}{Zhong, 2020 #9} (H2S) is a poisonous and harmful gas molecule. Certain concentrations of H2S{Liu, 2021 #8} can irritate the eyes, respiratory system, and central nervous system of human beings. Therefore, it was an urgent need for highly selective, anti-interference, and sensitive detection technology for hydrogen sulfide. Herein, a novel "turn-on" fluorescent probe 1-(2-(6,6-dimethylbicyclo[3.1.1]heptyl-2-ene-2-yl))-9-(4-(dimethylaminophenyl))non-1,6,8-triene-3,5-dione boron difluoride complex (MCBF) was designed and synthesized for detecting H2S sensitively. MCBF displayed a remarkable fluorescence enhancement response to H2S with a large Stokes shift of 220 nm. The sensitive detection of MCBF towards H2S owned good selectivity, fast response time (6 min), excellent photostability, and low detection limit (0.44 μM). The sensing mechanism of MCBF towards H2S was well confirmed by HRMS analysis, 1H NMR titration, and density functional theory (DFT) calculations. What's more, probe MCBF was successfully applied to detect the contained H2S in red wine, which showed the potential practicability of MCBF in real samples analysis.
Collapse
Affiliation(s)
- Zheyu Shen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mingxin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuai Gong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
11
|
Yuan S, Liu C, Chen L, Wen L, Liu Y. In‐situ Synthesis of CsPbBr
3
Nanocrystals/Polyvinyl Pyrrolidone Ethanol Sol and High Resolution Fingerprint Identification. ChemistrySelect 2022. [DOI: 10.1002/slct.202201880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuanglong Yuan
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Chuanqi Liu
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Long Chen
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Liangjie Wen
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Yanan Liu
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 People's Republic of China
| |
Collapse
|
12
|
Mirochnik AG, Puzyrkov ZN, Fedorenko EV, Svistunova IV. Synthesis and Spectroscopy of Substituted Benzoylacetonates of Boron Difluoride. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s003602362209008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
A New Deep‐Red to Near‐infrared Emission and Polarity Sensitive Fluorescent Probe Based on β‐Diketone‐boron Difluoride and Coumarin Derivative. ChemistrySelect 2022. [DOI: 10.1002/slct.202202272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Sun Y, Sun P, Li Z, Qu L, Guo W. Natural flavylium-inspired far-red to NIR-II dyes and their applications as fluorescent probes for biomedical sensing. Chem Soc Rev 2022; 51:7170-7205. [PMID: 35866752 DOI: 10.1039/d2cs00179a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorescent probes that emit in the far-red (600-700 nm), first near-infrared (NIR-I, 700-900 nm), and second NIR (NIR-II, 900-1700 nm) regions possess unique advantages, including low photodamage and deep penetration into biological samples. Notably, NIR-II optical imaging can achieve tissue penetration as deep as 5-20 mm, which is critical for biomedical sensing and clinical applications. Much research has focused on developing far-red to NIR-II dyes to meet the needs of modern biomedicine. Flavylium compounds are natural colorants found in many flowers and fruits. Flavylium-inspired dyes are ideal platforms for constructing fluorescent probes because of their far-red to NIR emissions, high quantum yields, high molar extinction coefficients, and good water solubilities. The synthetic and structural diversities of flavylium dyes also enable NIR-II probe development, which markedly advance the field of NIR-II in vivo imaging. In the last decade, there have been huge developments in flavylium-inspired dyes and their applications as far-red to NIR fluorescent probes for biomedical applications. In this review, we highlight the optical properties of representative flavylium dyes, design strategies, sensing mechanisms, and applications as fluorescent probes for detecting and visualizing important biomedical species and events. This review will prompt further research not only on flavylium dyes, but also into all far-red to NIR fluorophores and fluorescent probes. Moreover, this interest will hopefully spillover into applications related to complex biological systems and clinical treatments, ranging in focus from the sub-organelle to whole-animal levels.
Collapse
Affiliation(s)
- Yuanqiang Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Pengjuan Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhaohui Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
15
|
Yu W, Wang L, Zhang N, Yan J, Zheng K. Wavelength-tunable fluorophores based on quinoline fused α-cyanovinyl derivatives: Synthesis, photophysics properties and imaging. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Hou Y, Shi R, Yuan H, Zhang M. Highly emissive perylene diimide-based bowtie-shaped metallacycles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Khan IM, Niazi S, Yue L, Zhang Y, Pasha I, Iqbal Khan MK, Akhtar W, Mohsin A, Chughati MFJ, Wang Z. Research update of emergent gold nanoclusters: A reinforced approach towards evolution, synthesis mechanism and application. Talanta 2022; 241:123228. [DOI: 10.1016/j.talanta.2022.123228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
|
18
|
Polishchuk V, Kulinich A, Suikov S, Rusanov E, Shandura M. ‘Hybrid’ mero-anionic polymethines with a 1,3,2-dioxaborine core. NEW J CHEM 2022. [DOI: 10.1039/d1nj05104k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterization of new mero-anionic polymethines of the D–π–A–π–A′ type are described.
Collapse
Affiliation(s)
- Vladyslav Polishchuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska St., 02094 Kyiv, Ukraine
| | - Andrii Kulinich
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska St., 02094 Kyiv, Ukraine
| | - Sergey Suikov
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska St., 02094 Kyiv, Ukraine
| | - Eduard Rusanov
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska St., 02094 Kyiv, Ukraine
| | - Mykola Shandura
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska St., 02094 Kyiv, Ukraine
| |
Collapse
|
19
|
2-(4-(Dimethylamino)phenyl)-3,3-difluoro-4,6-diphenyl-3,4-dihydro-1,2,4,5,3-tetrazaborinin-2-ium-3-ide. MOLBANK 2021. [DOI: 10.3390/m1312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reaction of 1-(4-(dimethylamino)phenyl)-3,5-diphenylformazane with boron trifluoride diethyl etherate (5 equiv) in the presence of triethylamine (3 equiv) in toluene medium gave “boratetrazine”—2-(4-(dimethylamino)phenyl)-3,3-difluoro-4,6-diphenyl-3,4-dihydro -1,2,4,5,3-tetrazaborinin-2-ium-3-ide in a 58% yield.
Collapse
|
20
|
Zheng K, Chen H, Xiao Y, Liu X, Yan J, Zhang N. A Novel Strategy to Design and Construct AIE-active Mechanofluorochromic Materials via Regulation of Molecular Structure. Chemistry 2021; 27:14964-14970. [PMID: 34427954 DOI: 10.1002/chem.202102578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 12/14/2022]
Abstract
In this work, we first designed and synthesized tetraphenylene-fused aryl-imidazole derivatives TM-1-4 via regulation of molecular structure, which were consisted of 1H-imidazo[4,5-f][1,10]phenanthroline, 1H-phenanthro[9,10-d]imidazole, 4,5-diphenyl-1H-imidazole, 3,3'-(1H-imidazole-4,5-diyl)dipyridine moieties and AIE-active tetraphenylethene units, respectively. The results illustrated that TM-1-4 exhibited clear AIE characteristics. Meanwhile, TM-2 and TM-3 show excellent solid emission properties (ΦTM-2 =13.73 % and ΦTM-3 =36.21 %), whereas TM-1 and TM-4 exhibit the opposite properties (ΦTM-1 =1.48 % and ΦTM-4 =4.83 %). The multiple rotors (pyridine and benzene ring) causes twisted conformations of the molecule that prevents π-π stacking and enhances solid emission(ΦTM-2<ΦTM-3, ΦTM-1<ΦTM-4). Significantly, TM-2 and TM-3 also exhibited reversible mechanochromic behavior (Emission red shifts: ΔλTM-2 =43 nm and ΔλTM-3 =41 nm) with color changes between blue and green emissions. The powder X-ray diffraction (PXRD) suggested the disordered state of ground sample could be readily returned to an ordered crystalline. Therefore, the mechanochromisms of TM-2 and TM-3 are ascribable to the phase transformation between crystal and amorphous structure. The single crystal X-ray analysis of TM-2 reveals a twisted conformation for TPE moiety and the absence of π-π intermolecular stacking. These excellent optical properties of TM-2 and TM-3 make them potentially applications in mechanochromic materials and imaging agents.
Collapse
Affiliation(s)
- Kaibo Zheng
- College of Materials and Chemical Engineering Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Hui Chen
- College of Materials and Chemical Engineering Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Yufeng Xiao
- College of Materials and Chemical Engineering Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Xiang Liu
- College of Materials and Chemical Engineering Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Jiaying Yan
- College of Materials and Chemical Engineering Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Nuonuo Zhang
- College of Materials and Chemical Engineering Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, China Three Gorges University, Yichang, 443002, P. R. China
| |
Collapse
|
21
|
Bou S, Klymchenko AS, Collot M. Fluorescent labeling of biocompatible block copolymers: synthetic strategies and applications in bioimaging. MATERIALS ADVANCES 2021; 2:3213-3233. [PMID: 34124681 PMCID: PMC8142673 DOI: 10.1039/d1ma00110h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/04/2021] [Indexed: 05/27/2023]
Abstract
Among biocompatible materials, block copolymers (BCPs) possess several advantages due to the control of their chemistry and the possibility of combining various blocks with defined properties. Consequently, BCPs drew considerable attention as biocompatible materials in the fields of drug delivery, medicine and bioimaging. Fluorescent labeling of BCPs quickly appeared to be a method of choice to image and track these materials in order to better understand the nature of their interactions with biological media. However, incorporating fluorescent markers (FM) into BCPs can appear tricky; we thus intend to help chemists in this endeavor by reviewing recent advances made in the last 10 years. With the choice of the FM being of prior importance, we first reviewed their photophysical properties and functionalities for optimal labeling and imaging. In the second part the different chemical approaches that have been used in the literature to fluorescently label BCPs have been reviewed. We also report and discuss relevant applications of fluorescent BCPs in bioimaging.
Collapse
Affiliation(s)
- Sophie Bou
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg 74 route du Rhin 67401 Illkirch-Graffenstaden France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg 74 route du Rhin 67401 Illkirch-Graffenstaden France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg 74 route du Rhin 67401 Illkirch-Graffenstaden France
| |
Collapse
|