1
|
Kupferberg JE, Syrgiannis Z, Đorđević L, Bruckner EP, Jaynes TJ, Ha HH, Qi E, Wek KS, Dannenhoffer AJ, Sather NA, Fry HC, Palmer LC, Stupp SI. Biopolymer-supramolecular polymer hybrids for photocatalytic hydrogen production. SOFT MATTER 2024; 20:6275-6288. [PMID: 39072531 DOI: 10.1039/d4sm00373j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Solar generation of H2 is a promising strategy for dense energy storage. Supramolecular polymers composed of chromophore amphiphile monomers containing perylene monoimide (PMI) have been reported as crystalline light-harvesting assemblies for aqueous H2-evolving catalysts. Gelation of these supramolecular polymers with multivalent ions creates hydrogels with high diffusivity but insufficient mechanical stability and catalyst retention for reusability. We report here on using sodium alginate (SA) biopolymer to both induce supramolecular polymerization of PMI and co-immobilize them with catalysts in a robust hydrogel with high diffusivity that can also be 3D-printed. Faster mass transfer was achieved by controlling the material macrostructure by reducing gel diameter and microstructure by reducing biopolymer loading. Optimized gels produce H2 at rates rivaling solution-based PMI and generate H2 for up to 6 days. The PMI assemblies in the SA matrix create a percolation network capable of bulk-electron transfer under illumination. These PMI-SA materials were then 3D-printed on conductive substrates to create 3D hydrogel photoelectrodes with optimized porosity. The design of these versatile hybrid materials was bioinspired by the soft matter environment of natural photosynthetic systems and opens the opportunity to carry out light-to-fuel conversion within soft matter with arbitrary shapes and particular local environments.
Collapse
Affiliation(s)
- Jacob E Kupferberg
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, USA.
| | - Zois Syrgiannis
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Eric P Bruckner
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, USA.
| | - Tyler J Jaynes
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Hakim H Ha
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, USA.
| | - Evan Qi
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, USA.
| | - Kristen S Wek
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, USA.
| | - Adam J Dannenhoffer
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, USA.
| | - Nicholas A Sather
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, USA.
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
| | - Liam C Palmer
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Chicago, Illinois 60611, USA
| | - Samuel I Stupp
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, USA.
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Chicago, Illinois 60611, USA
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
2
|
Putri KNA, Intasanta V, Hoven VP. Current significance and future perspective of 3D-printed bio-based polymers for applications in energy conversion and storage system. Heliyon 2024; 10:e25873. [PMID: 38390075 PMCID: PMC10881347 DOI: 10.1016/j.heliyon.2024.e25873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
The increasing global population has led to a surge in energy demand and the production of environmentally harmful products, highlighting the urgent need for renewable and clean energy sources. In this context, sustainable and eco-friendly energy production strategies have been explored to mitigate the adverse effects of fossil fuel consumption to the environment. Additionally, efficient energy storage devices with a long lifespan are also crucial. Tailoring the components of energy conversion and storage devices can improve overall performance. Three-dimensional (3D) printing provides the flexibility to create and optimize geometrical structure in order to obtain preferable features to elevate energy conversion yield and storage capacitance. It also serves the potential for rapid and cost-efficient manufacturing. Besides that, bio-based polymers with potential mechanical and rheological properties have been exploited as material feedstocks for 3D printing. The use of these polymers promoted carbon neutrality and environmentally benign processes. In this perspective, this review provides an overview of various 3D printing techniques and processing parameters for bio-based polymers applicable for energy-relevant applications. It also explores the advances and current significance on the integration of 3D-printed bio-based polymers in several energy conversion and storage components from the recently published studies. Finally, the future perspective is elaborated for the development of bio-based polymers via 3D printing techniques as powerful tools for clean energy supplies towards the sustainable development goals (SDGs) with respect to environmental protection and green energy conversion.
Collapse
Affiliation(s)
- Khoiria Nur Atika Putri
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Varol Intasanta
- Nanohybrids and Coating Research Group, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Voravee P Hoven
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Materials and Biointerfaces, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Granados-Fernández R, Montiel MA, Arias AN, Fernández-Marchante CM, Lobato J, Rodrigo MA. Improving treatment of VOCs by integration of absorption columns into electrochemical cells using 3-D printing technology. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Xue Y, Kamali M, Zhang X, Askari N, De Preter C, Appels L, Dewil R. Immobilization of photocatalytic materials for (waste)water treatment using 3D printing technology - advances and challenges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120549. [PMID: 36336185 DOI: 10.1016/j.envpol.2022.120549] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Photocatalysis has been considered a promising technology for the elimination of a wide range of pollutants in water. Various types of photocatalysts (i.e., homojunction, heterojunction, dual Z-scheme photocatalyst) have been developed in recent years to address the drawbacks of conventional photocatalysts, such as the large energy band gap and rapid recombination rate of photogenerated electrons and holes. However, there are still challenges in the design of photocatalytic reactors that limit their wider application for real (waste)water treatment, such as difficulties in their recovery and reuse from treated (waste)waters. 3D printing technologies have been introduced very recently for the immobilization of materials in novel photocatalytic reactor designs. The present review aims to summarize and discuss the advances and challenges in the application of various 3D printing technologies (i.e., stereolithography, inkjet printing, and direct ink writing) for the fabrication of stable photocatalytic materials for (waste)water treatment purposes. Furthermore, the limitations in the implementation of these technologies to design future generations of photocatalytic reactors have been critically discussed, and recommendations for future studies have been presented.
Collapse
Affiliation(s)
- Yongtao Xue
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Xi Zhang
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Najmeh Askari
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Clem De Preter
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, United Kingdom.
| |
Collapse
|
5
|
Vidakis N, Petousis M, Mountakis N, Korlos A, Papadakis V, Moutsopoulou A. Trilateral Multi-Functional Polyamide 12 Nanocomposites with Binary Inclusions for Medical Grade Material Extrusion 3D Printing: The Effect of Titanium Nitride in Mechanical Reinforcement and Copper/Cuprous Oxide as Antibacterial Agents. J Funct Biomater 2022; 13:115. [PMID: 35997453 PMCID: PMC9397053 DOI: 10.3390/jfb13030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
In this work, for the first time, polyamide 12 (PA12) nanocomposites with binary inclusions in material extrusion (MEX) 3D printing were developed. The aim was to achieve an enhanced mechanical response with the addition of titanium nitride (TiN) and antibacterial performance with the addition of copper (Cu) or cuprous oxide (Cu2O), towards the development of multi-functional nanocomposite materials, exploiting the 3D printing process benefits. The prepared nanocomposites were fully characterized for their mechanical properties. The thermal properties were also investigated. Morphological characterization was performed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). The antibacterial performance was investigated with an agar-well diffusion screening process. Overall, the introduction of these nanofillers induced antibacterial performance in the PA12 matrix materials, while at the same time, the mechanical performance was significantly increased. The results of the study show high potential for expanding the areas in which 3D printing can be used.
Collapse
Affiliation(s)
- Nectarios Vidakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Markos Petousis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Nikolaos Mountakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Apostolos Korlos
- Department of Industrial Engineering and Management, International Hellenic University, 14th km, Thessaloniki-N. Moudania, Thermi, 57001 Thessaloniki, Greece
| | - Vassilis Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, 71110 Heraklion, Greece
| | - Amalia Moutsopoulou
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| |
Collapse
|
6
|
Vidakis N, Petousis M, Michailidis N, Grammatikos S, David CN, Mountakis N, Argyros A, Boura O. Development and Optimization of Medical-Grade Multi-Functional Polyamide 12-Cuprous Oxide Nanocomposites with Superior Mechanical and Antibacterial Properties for Cost-Effective 3D Printing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:534. [PMID: 35159879 PMCID: PMC8838813 DOI: 10.3390/nano12030534] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023]
Abstract
In the current study, nanocomposites of medical-grade polyamide 12 (PA12) with incorporated copper (I) oxide (cuprous oxide-Cu2O) were prepared and fully characterized for their mechanical, thermal, and antibacterial properties. The investigation was performed on specimens manufactured by fused filament fabrication (FFF) and aimed to produce multi-purpose geometrically complex nanocomposite materials that could be employed in medical, food, and other sectors. Tensile, flexural, impact and Vickers microhardness measurements were conducted on the 3D-printed specimens. The fractographic inspection was conducted utilizing scanning electron microscopy (SEM), to determine the fracture mechanism and qualitatively evaluate the process. Moreover, the thermal properties were determined by thermogravimetric analysis (D/TGA). Finally, their antibacterial performance was assessed through a screening method of well agar diffusion. The results demonstrate that the overall optimum performance was achieved for the nanocomposites with 2.0 wt.% loading, while 0.5 wt.% to 4.0 wt.% loading was concluded to have discrete improvements of either the mechanical, the thermal, or the antibacterial performance.
Collapse
Affiliation(s)
- Nectarios Vidakis
- Mechanical Engineering Department, Hellenic Mediterranean University, 71004 Heraklion, Crete, Greece; (N.V.); (M.P.); (N.M.)
| | - Markos Petousis
- Mechanical Engineering Department, Hellenic Mediterranean University, 71004 Heraklion, Crete, Greece; (N.V.); (M.P.); (N.M.)
| | - Nikolaos Michailidis
- Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece; (N.M.); (A.A.)
- Centre for Research & Development of Advanced Materials (CERDAM), Center for Interdisciplinary Research and Innovation, Balkan Center, 57001 Thessaloniki, Macedonia, Greece
| | - Sotirios Grammatikos
- Group of Sustainable Composites, Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, 2815 Gjøvik, Norway;
| | - Constantine N. David
- Manufacturing Technology & Production Systems Laboratory, School of Engineering, International Hellenic University (Serres Campus), 62124 Serres, Macedonia, Greece;
| | - Nikolaos Mountakis
- Mechanical Engineering Department, Hellenic Mediterranean University, 71004 Heraklion, Crete, Greece; (N.V.); (M.P.); (N.M.)
| | - Apostolos Argyros
- Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece; (N.M.); (A.A.)
- Centre for Research & Development of Advanced Materials (CERDAM), Center for Interdisciplinary Research and Innovation, Balkan Center, 57001 Thessaloniki, Macedonia, Greece
| | - Orsa Boura
- Group of Sustainable Composites, Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, 2815 Gjøvik, Norway;
| |
Collapse
|
7
|
Neelakanta Reddy I, Young Jang W, Manjunath V, Shim J. Fe3O4-Bi2O3 nanostructures for efficient energy generation application-water oxidation under visible light irradiation. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|