1
|
Jeffery AA, Bo T, Askarova G, Mirkin MV. Probing the catalytic heterogeneity of single FeCo and FeCoNi hydroxide nanoneedles by scanning electrochemical microscopy. Chem Commun (Camb) 2025; 61:3556-3559. [PMID: 39912755 DOI: 10.1039/d4cc06469k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Bimetallic and trimetallic alloys are widely used as catalysts for the oxygen evolution reaction (OER) and other electrocatalytic processes. We employed a scanning electrochemical microscope (SECM) and finite-element simulations to investigate the OER at single FeCo and FeCoNi hydroxide nanoneedles and observed different distributions of catalytic activity on bimetallic and trimetallic particles.
Collapse
Affiliation(s)
- A Anto Jeffery
- Department of Chemistry and Biochemistry, Queens College, Flushing, NY 11367, USA.
- The Graduate Center of CUNY, New York, NY 10016, USA
- Environmental Science and Engineering Laboratory, Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Tianyu Bo
- Department of Chemistry and Biochemistry, Queens College, Flushing, NY 11367, USA.
- The Graduate Center of CUNY, New York, NY 10016, USA
| | - Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College, Flushing, NY 11367, USA.
- The Graduate Center of CUNY, New York, NY 10016, USA
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College, Flushing, NY 11367, USA.
- The Graduate Center of CUNY, New York, NY 10016, USA
- Advanced Science Research Center at The Graduate Center, CUNY, New York, NY 10031, USA
| |
Collapse
|
2
|
Nyongombe G, Maaza M, Siaj M, Dhlamini S. Improving the Oxygen Evolution Reaction Performance of Ternary Layered Double Hydroxides by Tuning All Three Cations' Electronic Structures. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:177. [PMID: 39940153 PMCID: PMC11820138 DOI: 10.3390/nano15030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025]
Abstract
The pursuit of efficient and sustainable hydrogen production is essential in the fight against climate change. One important method for achieving this is the electrolysis of water, particularly through the oxygen evolution reaction (OER). Recent studies indicate that trimetallic layered double hydroxides (LDHs) can enhance OER performance compared to bimetallic LDHs. This improvement occurs because the third cation alters the electronic structures of the other two cations, thereby increasing the intermediates' binding energies and enhancing electrical conductivity. This study proposes an approach enabling the modulation of the electronic structures of all three cations involved in the synthesis of the trimetallic LDHs. It suggested intercalating sodium dodecyl sulfate (SDS) into the interlayer of the trimetallic NiFe-La-LDH. A successful intercalation of SDS has been confirmed through the XRD, FT-IR, EDS, and XPS. This has expanded the interlayer distance which was beneficial for the electrical conductivity. Furthermore, SDS generated sulphur, which modulated the electronic structures of all three cations enriching the active sites and improving electrical conductivity and OER performance compared to its counterparts. This approach is beneficial: 1. The interlayer can be further enlarged by using different doping ratios of SDS. 2. Sulphur can enrich the active sites and improve the OER performance.
Collapse
Affiliation(s)
- Gayi Nyongombe
- Department of Physics, School of Science, CSET, University of South Africa, Private Bag X6, Florida, 1710, Science Campus, Christiaan de Wet and Pioneer Avenue, Florida Park, Johannesburg 1710, South Africa
- NanoQam Center, Department of Chemistry, University of Quebec, Montreal, QC H3C3P8, Canada;
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, Pretoria P.O. Box 392, South Africa;
| | - Mohamed Siaj
- NanoQam Center, Department of Chemistry, University of Quebec, Montreal, QC H3C3P8, Canada;
| | - Simon Dhlamini
- Department of Physics, School of Science, CSET, University of South Africa, Private Bag X6, Florida, 1710, Science Campus, Christiaan de Wet and Pioneer Avenue, Florida Park, Johannesburg 1710, South Africa
| |
Collapse
|
3
|
Zhang F, Zhou J, Chen X, Zhao S, Zhao Y, Tang Y, Tian Z, Yang Q, Slavcheva E, Lin Y, Zhang Q. The Recent Progresses of Electrodes and Electrolysers for Seawater Electrolysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:239. [PMID: 38334510 PMCID: PMC10856650 DOI: 10.3390/nano14030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
The utilization of renewable energy for hydrogen production presents a promising pathway towards achieving carbon neutrality in energy consumption. Water electrolysis, utilizing pure water, has proven to be a robust technology for clean hydrogen production. Recently, seawater electrolysis has emerged as an attractive alternative due to the limitations of deep-sea regions imposed by the transmission capacity of long-distance undersea cables. However, seawater electrolysis faces several challenges, including the slow kinetics of the oxygen evolution reaction (OER), the competing chlorine evolution reaction (CER) processes, electrode degradation caused by chloride ions, and the formation of precipitates on the cathode. The electrode and catalyst materials are corroded by the Cl- under long-term operations. Numerous efforts have been made to address these issues arising from impurities in the seawater. This review focuses on recent progress in developing high-performance electrodes and electrolyser designs for efficient seawater electrolysis. Its aim is to provide a systematic and insightful introduction and discussion on seawater electrolysers and electrodes with the hope of promoting the utilization of offshore renewable energy sources through seawater electrolysis.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Far-Shore Wind Power Technology of Zhejiang Province, Hangzhou 311122, China; (F.Z.); (X.C.); (S.Z.)
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- Renewable Energy Engineering Institute, Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Junjie Zhou
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Chen
- Key Laboratory of Far-Shore Wind Power Technology of Zhejiang Province, Hangzhou 311122, China; (F.Z.); (X.C.); (S.Z.)
- Renewable Energy Engineering Institute, Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Shengxiao Zhao
- Key Laboratory of Far-Shore Wind Power Technology of Zhejiang Province, Hangzhou 311122, China; (F.Z.); (X.C.); (S.Z.)
- Renewable Energy Engineering Institute, Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Yayun Zhao
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
| | - Yulong Tang
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
| | - Ziqi Tian
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qihao Yang
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Qianwan Institute of CNITECH, Ningbo 315201, China
| | - Evelina Slavcheva
- Institute of Electrochemistry and Energy Systems of Bulgaria Academic Science (IEES), Akad. G. Bonchev 10, 1113 Sofia, Bulgaria;
| | - Yichao Lin
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuju Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Huang X, Kim KH, Jang H, Luo X, Yu J, Li Z, Ao Z, Wang J, Zhang H, Chen C, O’Hare D. Intrabasal Plane Defect Formation in NiFe Layered Double Hydroxides Enabling Efficient Electrochemical Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53815-53826. [PMID: 37948095 PMCID: PMC10685352 DOI: 10.1021/acsami.3c11651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Defect engineering has proven to be one of the most effective approaches for the design of high-performance electrocatalysts. Current methods to create defects typically follow a top-down strategy, cutting down the pristine materials into fragmented pieces with surface defects yet also heavily destroying the framework of materials that imposes restrictions on the further improvements in catalytic activity. Herein, we describe a bottom-up strategy to prepare free-standing NiFe layered double hydroxide (LDH) nanoplatelets with abundant internal defects by controlling their growth behavior in acidic conditions. Our best-performing nanoplatelets exhibited the lowest overpotential of 241 mV and the lowest Tafel slope of 43 mV/dec for the oxygen evolution reaction (OER) process, superior to the pristine LDHs and other reference cation-defective LDHs obtained by traditional etching methods. Using both material characterization and density functional theory (DFT) simulation has enabled us to develop relationships between the structure and electrochemical properties of these catalysts, suggesting that the enhanced electrocatalytic activity of nanoplatelets mainly results from their defect-abundant structure and stable layered framework with enhanced exposure of the (001) surface.
Collapse
Affiliation(s)
- Xiaopeng Huang
- Department
of Chemistry, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA U.K.
| | - Keon-Han Kim
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA U.K.
| | - Haeseong Jang
- Beamline
Research Division, Pohang Accelerator Laboratory
(PAL), Pohang 37673, Republic of Korea
| | - Xiaonan Luo
- Department
of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, U.K.
| | - Jingfang Yu
- Engineering
Research Center of NanoGeomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of
Materials Science and Chemistry, China University
of Geosciences, Wuhan 430074, China
| | - Zhaoqiang Li
- Laboratory
of Beam Technology and Energy Materials, Advanced Institute of Natural
Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Zhimin Ao
- Institute
of Environmental Health and Pollution Control, School of Environmental
Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Advanced
Interdisciplinary Institute of Environment and Ecology, Beijing Normal
University, Zhuhai 519087, China
| | - Junxin Wang
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA U.K.
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Hao Zhang
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA U.K.
| | - Chunping Chen
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA U.K.
| | - Dermot O’Hare
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA U.K.
| |
Collapse
|
5
|
Teja YN, Sakar M. Comprehensive Insights into the Family of Atomically Thin 2D-Materials for Diverse Photocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303980. [PMID: 37461252 DOI: 10.1002/smll.202303980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Indexed: 11/16/2023]
Abstract
2D materials with their fascinating physiochemical, structural, and electronic properties have attracted researchers and have been used for a variety of applications such as electrocatalysis, photocatalysis, energy storage, magnetoresistance, and sensing. In recent times, 2D materials have gained great momentum in the spectrum of photocatalytic applications such as pollutant degradation, water splitting, CO2 reduction, NH3 production, microbial disinfection, and heavy metal reduction, thanks to their superior properties including visible light responsive band gap, improved charge separation and electron mobility, suppressed charge recombination and high surface reactive sites, and thus enhance the photocatalytic properties rationally as compared to 3D and other low-dimensional materials. In this context, this review spot-lights the family of various 2D materials, their properties and their 2D structure-induced photocatalytic mechanisms while giving an overview on their synthesis methods along with a detailed discussion on their diverse photocatalytic applications. Furthermore, the challenges and the future opportunities are also presented related to the future developments and advancements of 2D materials for the large-scale real-time photocatalytic applications.
Collapse
Affiliation(s)
- Y N Teja
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Mohan Sakar
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| |
Collapse
|
6
|
Chen Z, Fan Q, Huang M, Cölfen H. The Structure, Preparation, Characterization, and Intercalation Mechanism of Layered Hydroxides Intercalated with Guest Anions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300509. [PMID: 37271930 DOI: 10.1002/smll.202300509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/06/2023] [Indexed: 06/06/2023]
Abstract
Since the intercalation of anions into layered hydroxides (LHs) has a great impact not only on their nucleation and growth but also on their structure, composition, and size, the intercalation chemistry of LHs has aroused the strong interest of researchers. However, the progress in the fundamental understanding of LHs intercalated with guest anions have not been paralleled by a concomitant development of the preparation and performance improvement of such materials. Considering the guidance of a timely in-depth review for scientists in this area, a systematic introduction about the development that is made on the above-mentioned issues is highly needed but yet missing so far. Herein, recent advances in understanding the chemical composition and structure of LHs intercalated with guest anions are systematically summarized. Meanwhile, typical and emerging bottom-up synthesis methods of LHs intercalated with anions are reviewed, and the potential impact of external reaction parameters on the intercalation of anions into LHs are discussed . Besides, different analytical characterization techniques employed in the examination of guest anion-intercalated LHs are deliberated upon. Finally, although progress is slow in exploring the intercalation mechanism, as many examples as possible are included in this review and inferred the possible intercalation mechanism.
Collapse
Affiliation(s)
- Zongkun Chen
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Qiqi Fan
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Helmut Cölfen
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| |
Collapse
|
7
|
Recent Advances of Modified Ni (Co, Fe)-Based LDH 2D Materials for Water Splitting. Molecules 2023; 28:molecules28031475. [PMID: 36771139 PMCID: PMC9919971 DOI: 10.3390/molecules28031475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Water splitting technology is an efficient approach to produce hydrogen (H2) as an energy carrier, which can address the problems of environmental deterioration and energy shortage well, as well as establishment of a clean and sustainable hydrogen economy powered by renewable energy sources due to the green reaction of H2 with O2. The efficiency of H2 production by water splitting technology is intimately related with the reactions on the electrode. Nowadays, the efficient electrocatalysts in water splitting reactions are the precious metal-based materials, i.e., Pt/C, RuO2, and IrO2. Ni (Co, Fe)-based layered double hydroxides (LDH) two-dimensional (2D) materials are the typical non-precious metal-based materials in water splitting with their advantages including low cost, excellent electrocatalytic performance, and simple preparation methods. They exhibit great potential for the substitution of precious metal-based materials. This review summarizes the recent progress of Ni (Co, Fe)-based LDH 2D materials for water splitting, and mainly focuses on discussing and analyzing the different strategies for modifying LDH materials towards high electrocatalytic performance. We also discuss recent achievements, including their electronic structure, electrocatalytic performance, catalytic center, preparation process, and catalytic mechanism. Furthermore, the characterization progress in revealing the electronic structure and catalytic mechanism of LDH is highlighted in this review. Finally, we put forward some future perspectives relating to design and explore advanced LDH catalysts in water splitting.
Collapse
|
8
|
Metal-glycerolates and their derivatives as electrode materials: A review on recent developments, challenges, and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Li Y, Xu Y, Li C, Zhu W, Chen W, Zhao Y, Liu R, Wang L. ZIF-67-Derived NiCo-Layered Double Hydroxide@Carbon Nanotube Architectures with Hollow Nanocage Structures as Enhanced Electrocatalysts for Ethanol Oxidation Reaction. Molecules 2023; 28:1173. [PMID: 36770843 PMCID: PMC9920546 DOI: 10.3390/molecules28031173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The rational design of efficient Earth-abundant electrocatalysts for the ethanol oxidation reaction (EOR) is the key to developing direct ethanol fuel cells (DEFCs). Among these, the smart structure is highly demanded for highly efficient and stable non-precious electrocatalysts based on transition metals (such as Ni, Co, and Fe). In this work, high-performance NiCo-layered double hydroxide@carbon nanotube (NiCo-LDH@CNT) architectures with hollow nanocage structures as electrocatalysts for EOR were prepared via sacrificial ZIF-67 templates on CNTs. Comprehensive structural characterizations revealed that the as-synthesized NiCo-LDH@CNTs architecture displayed 3D hollow nanocages of NiCo-LDH and abundant interfacial structure between NiCo-LDH and CNTs, which could not only completely expose active sites by increasing the surface area but also facilitate the electron transfer during the electrocatalytic process, thus, improving EOR activity. Benefiting from the 3D hollow nanocages and interfacial structure fabricated by the sacrificial ZIF-67-templated method, the NiCo-LDH@CNTs-2.5% architecture exhibited enhanced electrocatalytic activity for ethanol oxidation compared to single-component NiCo-LDH, where the peak current density was 11.5 mA·cm-2, and the jf/jb value representing the resistance to catalyst poisoning was 1.72 in an alkaline environment. These results provide a new perspective on the fabrication of non-precious metal electrocatalysts for EOR in DEFCs.
Collapse
Affiliation(s)
- Yixuan Li
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yanqi Xu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education, Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Cunjun Li
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education, Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Wenfeng Zhu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education, Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Wei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruping Liu
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Linjiang Wang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education, Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
10
|
Sahoo DP, Das KK, Mansingh S, Sultana S, Parida K. Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Chen L, Deng R, Guo S, Yu Z, Yao H, Wu Z, Shi K, Li H, Ma S. Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygen evolution reaction. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Zhang C, Xu Z, Yu Y, Long A, Ge X, Song Y, An Y, Gu Y. Ternary NiMoCo alloys and fluffy carbon nanotubes grown on ZIF-67-derived polyhedral carbon frameworks as bifunctional electrocatalyst for efficient and stable overall water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Rational design and facile synthesis of Ni-Co-Fe ternary LDH porous sheets for high-performance aqueous asymmetric supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Recent Breakthrough in Layered Double Hydroxides and Their Applications in Petroleum, Green Energy, and Environmental Remediation. Catalysts 2022. [DOI: 10.3390/catal12070792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The fast development of the world civilization is continuously based on huge energy consumption. The extra-consumption of fossil fuel (petroleum, coal, and gas) in past decades has caused several political and environmental crises. Accordingly, the world, and especially the scientific community, should discover alternative energy sources to safe-guard our future from severe climate changes. Hydrogen is the ideal energy carrier, where nanomaterials, like layered double hydroxides (LDHs), play a great role in hydrogen production from clean/renewable sources. Here, we review the applications of LDHs in petroleum for the first time, as well as the recent breakthrough in the synthesis of 1D-LDHs and their applications in water splitting to H2. By 1D-LDHs, it is possible to overcome the drawbacks of commercial TiO2, such as its wide bandgap energy (3.2 eV) and working only in the UV-region. Now, we can use TiO2-modified structures for infrared (IR)-induced water splitting to hydrogen. Extending the performance of TiO2 into the IR-region, which includes 53% of sunlight by 1D-LDHs, guarantees high hydrogen evolution rates during the day and night and in cloudy conditions. This is a breakthrough for global hydrogen production and environmental remediation.
Collapse
|
15
|
An Advanced Approach for MgZnAl-LDH Catalysts Synthesis Used in Claisen-Schmidt Condensation. Catalysts 2022. [DOI: 10.3390/catal12070759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Using organic-base tetramethylammonium hydroxide (TMAH) is a viable, cheap, and fast option for the synthesis of MgZnAl-LDH-type materials by both co-precipitation and mechano-chemical methods. TMAH presents several advantages, such as the smaller quantity of water required in the washing step compared to the use of inorganic alkalis, the prevention of LDH contamination with alkali cations, and its action as a template molecule in texture tailoring. It also has disadvantages, such as its presence in small quantities in the resulting layered materials. Regardless of the use of organic/inorganic bases and co-precipitation/mechano-chemical methods, zincite stable phase was found in all the synthesized solids. The basicity of catalysts followed the trend: mixed oxides > reconstructed > parent LDH. The memory effect of LDH was supported only by the presence of Mg and Al cations, while Zn remained as a zincite stable phase. The catalytic activities for Claisen–Schmidt condensation of benzaldehyde with cyclohexanone provided values higher than 90% after 2 h, with a total selectivity toward 2,6-dibenzylidenecyclohexanone, while self-condensation of cyclohexanone yielded no more than 7.29% after 5 h. These behaviors depended on catalyst basicity as well as on the planar rigidity of the compound.
Collapse
|
16
|
Ko TE, Hosseini S, Tseng CM, Tsai JE, Wang WH, Li YY. Tetrafunctional electrocatalyst for oxygen reduction, oxygen evolution, hydrogen evolution, and carbon dioxide reduction reactions. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Seijas-Da Silva A, Oestreicher V, Coronado E, Abellán G. Influence of Fe-clustering on the water oxidation performance of two-dimensional layered double hydroxides. Dalton Trans 2022; 51:4675-4684. [PMID: 35212688 PMCID: PMC8939052 DOI: 10.1039/d1dt03737d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among the two-dimensional (2D) materials family, layered double hydroxides (LDHs) represent a key member due to their unparalleled chemical versatility. In particular, Fe-based LDHs are distinguished candidates due to their high efficiency as oxygen evolution reaction (OER) electrocatalysts. Herein, we have selected MgFe-based LDH phases as model systems in order to decipher whether Fe-clustering exerts an effect on the OER performance. For that, we have optimized hydrothermal synthesis by using triethanolamine (TEA) as the chelating agent. The magnetic characterisation allows us to identify the Fe-clustering degree by following both magnetic susceptibility as well as magnetization values at 2 K. Thanks to this, we demonstrated that TEA induces an increment in Fe-clustering. Electrochemical OER measurements show that both samples behave identically by using glassy carbon electrodes. Interestingly, when the samples are tested in the most commonly employed electrode, nickel foam, striking differences arise. The sample exhibiting a lower Fe-clustering behaves as a better electrocatalyst with a reduction of the overpotential values of more than 50 mV to reach 100 mA cm-2, as a consequence of a favoured surface transformation of MgFe-LDHs phases into more reactive oxyhydroxide NiFe-based phases during the electrochemical tests. Hence, this work alerts about the importance of the electrocatalyst-electrode collector interactions which can induce misinterpretations in the OER performance.
Collapse
Affiliation(s)
- Alvaro Seijas-Da Silva
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| | - Víctor Oestreicher
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| | - Gonzalo Abellán
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
18
|
Bi ZX, Guo RT, Hu X, Wang J, Chen X, Pan WG. Research progress on photocatalytic reduction of CO 2 based on LDH materials. NANOSCALE 2022; 14:3367-3386. [PMID: 35187556 DOI: 10.1039/d1nr08235c] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Converting CO2 to renewable fuels or valuable carbon compounds is an effective way to solve the global warming and energy crisis. Compared with other CO2 conversion methods, photocatalytic reduction of CO2 is more energy-saving, environmentally friendly, and has a broader application prospect. Layered double hydroxide (LDH) has attracted widespread attention as a two-dimensional material, composed of metal hydroxide layers, interlayer anions and water molecules. This review briefly introduces the basic theory of photocatalysis and the mechanism of CO2 reduction. The composition and properties of LDH are introduced. The research progress on LDH in the field of photocatalytic reduction of CO2 is elaborated from six aspects: directly as a catalyst, as a precursor for a catalyst, and by modification, intercalation, supporting with other materials and construction of a heterojunction. Finally, the development prospects of LDH are put forward. This review could provide an effective reference for the development of more efficient and reasonable photocatalysts based on LDH.
Collapse
Affiliation(s)
- Zhe-Xu Bi
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| | - Xing Hu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
| | - Juan Wang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
| | - Xin Chen
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| |
Collapse
|
19
|
Xiang K, Meng L, Zhang Y. Two-dimensional FeCo 2O 4 nanosheets with oxygen vacancies enable boosted oxygen evolution. NEW J CHEM 2022. [DOI: 10.1039/d2nj03341k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two dimensional FeCo2O4 nanosheets with abundant oxygen vacancies have been fabricated, which exhibit a superior OER performance compared to pristine FeCo2O4.
Collapse
Affiliation(s)
- Kun Xiang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan, 430205, China
| | - Li Meng
- School of Arts, Ankang University, Ankang, 725000, China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yan Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| |
Collapse
|
20
|
Yong JD, Valdez R, Armenta MÁ, Arjona N, Pina-Luis G, Olivas A. Influence of Co 2+, Cu 2+, Ni 2+, Zn 2+, and Ga 3+ on the iron-based trimetallic layered double hydroxides for water oxidation. RSC Adv 2022; 12:16955-16965. [PMID: 35754915 PMCID: PMC9174971 DOI: 10.1039/d2ra01980a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/21/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, we synthesized five novel iron-based trimetallic layered double hydroxides (LDHs) by the urea-assisted co-precipitation method for the electrocatalytic water oxidation reaction (WOR).
Collapse
Affiliation(s)
- Jesus David Yong
- Centro de Nanociencias y Nanotecnología – UNAM, Km. 107 Carr. Tijuana-Ensenada, C.P. 22860, Ensenada, BC, Mexico
| | - Ricardo Valdez
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química, Blvd. Alberto Limón Padilla S/N, Mesa de Otay, C.P. 22500, Tijuana, BC, Mexico
| | - Miguel Ángel Armenta
- Universidad Estatal de Sonora, Departamento de Ingeniería en Geociencias, Av. Niños Héroes, San Javier, C.P. 84160, Magdalena de Kino, Son, Mexico
| | - Noé Arjona
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro, Sanfandila, C.P. 76703, Pedro Escobedo, Qro, Mexico
| | - Georgina Pina-Luis
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química, Blvd. Alberto Limón Padilla S/N, Mesa de Otay, C.P. 22500, Tijuana, BC, Mexico
| | - Amelia Olivas
- Centro de Nanociencias y Nanotecnología – UNAM, Km. 107 Carr. Tijuana-Ensenada, C.P. 22860, Ensenada, BC, Mexico
| |
Collapse
|
21
|
Chen Q, Yu Y, Li J, Nan H, Luo S, Jia C, Deng P, Zhong S, Tian X. Recent progress in layered double hydroxides based electrocatalyst for hydrogen evolution reaction. ChemElectroChem 2021. [DOI: 10.1002/celc.202101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qingrong Chen
- Hainan University State Key Laboratory of Marine Resource Utilization in South China Sea CHINA
| | - Yanhui Yu
- Hainan University State Key Laboratory Marine Resource Utilization in South China Sea CHINA
| | - Jing Li
- Hainan University State Key Laboratory Marine Resouce Utilization in South China Sea CHINA
| | | | - Shenxu Luo
- Hainan University School of Science CHINA
| | - Chunman Jia
- Hainan University State Key Laboratory Marine Resource Utilization in South China Sea CHINA
| | - Peilin Deng
- Hainan University State Key Laboratory Marine Resource Utilization in Sea China Sea CHINA
| | - Shengkui Zhong
- Hainan Tropical Ocean University College of Marine Science & Technology CHINA
| | - Xinlong Tian
- Hainan University State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, Haikou 570228, China 570228 Haikou CHINA
| |
Collapse
|
22
|
Recent Progress on Transition Metal Based Layered Double Hydroxides Tailored for Oxygen Electrode Reactions. Catalysts 2021. [DOI: 10.3390/catal11111394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), namely, so-called oxygen electrode reactions, are two fundamental half-cell reactions in the energy storage and conversion devices, e.g., zinc–air batteries and fuel cells. However, the oxygen electrode reactions suffer from sluggish kinetics, large overpotential and complicated reaction paths, and thus require efficient and stable electrocatalysts. Transition-metal-based layered double hydroxides (LDHs) and their derivatives have displayed excellent catalytic performance, suggesting a major contribution to accelerate electrochemical reactions. The rational regulation of electronic structure, defects, and coordination environment of active sites via various functionalized strategies, including tuning the chemical composition, structural architecture, and topotactic transformation process of LDHs precursors, has a great influence on the resulting electrocatalytic behavior. In addition, an in-depth understanding of the structural performance and chemical-composition-performance relationships of LDHs-based electrocatalysts can promote further rational design and optimization of high-performance electrocatalysts. Finally, prospects for the design of efficient and stable LDHs-based materials, for mass-production and large-scale application in practice, are discussed.
Collapse
|
23
|
Saifullah B, Arulselvan P, El Zowalaty ME, Tan WS, Fakurazi S, Webster TJ, Baby R, Hussein MZ. A Novel Para-Amino Salicylic Acid Magnesium Layered Hydroxide Nanocomposite Anti-Tuberculosis Drug Delivery System with Enhanced in vitro Therapeutic and Anti-Inflammatory Properties. Int J Nanomedicine 2021; 16:7035-7050. [PMID: 34703226 PMCID: PMC8526802 DOI: 10.2147/ijn.s297040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Mycobacterium tuberculosis infections are associated with severe local inflammatory reactions, which may be life-threatening and lead to tuberculosis pathogenesis and associated complications. Inorganic nanolayers have been vastly exploited for biomedical applications (especially in drug delivery) because of their biocompatible and biodegradable nature with the ability to release a drug in a sustained manner. Herein, we report a new nanodelivery system of inorganic nanolayers based on magnesium layered hydroxides (MgLH) and a successfully intercalated anti-tuberculosis drug para-aminosalicylic acid (PAS). METHODS The designed anti-tuberculosis nanodelivery composite, MgLH-PAS, was prepared by a novel co-precipitation method using MgNO3 as well MgO as starting materials. RESULTS The designed nano-formulation, PAS-MgLH, showed good antimycobacterial and antimicrobial activities with significant synergistic anti-inflammatory effects on the suppression of lipopolysaccharide (LPS) stimulated inflammatory mediators in RAW 264.7 macrophages. The designed nano-formulation was also found to be biocompatible with human normal lung cells (MRC-5) and 3T3 fibroblast cells. Furthermore, the in vitro release of PAS from PAS-MgLH was found to be sustained in human body simulated phosphate buffer saline (PBS) solutions of pH 7.4 and pH 4.8. DISCUSSION The results of the present study are highly encouraging for further in vivo studies. This new nanodelivery system, MgLH, can be exploited in the delivery of other drugs and in numerous other biomedical applications as well.
Collapse
Affiliation(s)
- Bullo Saifullah
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Management Sciences and Technology, The Begum Nusrat Bhutto Women University Sukkur, Sukkur, Sindh, 65170, Pakistan
| | - Palanisamy Arulselvan
- Laboratory for Vaccine and Immunotherapeutics, Institute of Biosciences, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
- Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Namakkal, Tamil Nadu, 637408, India
| | - Mohamed E El Zowalaty
- Laboratory for Vaccine and Immunotherapeutics, Institute of Biosciences, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
- Zoonosis Science Center, Department of Microbiology and Immunology, Uppsala University, Uppsala, Sweden
| | - Woan Sean Tan
- Laboratory for Vaccine and Immunotherapeutics, Institute of Biosciences, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Rabia Baby
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
24
|
Intercalation-induced partial exfoliation of NiFe LDHs with abundant active edge sites for highly enhanced oxygen evolution reaction. J Colloid Interface Sci 2021; 607:1353-1361. [PMID: 34583040 DOI: 10.1016/j.jcis.2021.09.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 12/17/2022]
Abstract
Edge sites and interlayer space of NiFe layered double hydroxides (LDHs) play an important role in water oxidation. However, the combined effect of interlayer expansion and partial exfoliation on the catalytic activity is yet to be investigated. Herein, scalable synthesis of partially exfoliated citrate-intercalated NiFe LDHs with tunable interlayer space have been achieved. The effect of citrate concentration on the phase, morphology, surface elemental composition, electronic states of surface metals, and electrochemical properties are comprehensively studied. The unique structure results in improved intrinsic catalytic activity and abundant active edge sites for oxygen evolution reaction. The optimal NiFe LDHs show an overpotential of 225 mV at 10 mA cm-2, which is much smaller than that (∼305 mV) of the single-layer NiFe LDH nanosheets reported in the literature. The high catalytic activity can be mainly attributed to the combined effect between the enlarged interlayer space and the partial exfoliation/nanosheet thickness. That is, the interlayer space is related to the reaction kinetics/mechanism, while the degree of exfoliation affects the magnitude of the current density at a certain potential.
Collapse
|
25
|
Investigation on microstructural impacts to electrochemical performances of strontium tungstate as efficient bifunctional catalyst for hydrogen and oxygen evolution reactions. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Hu W, Liu Q, Lv T, Zhou F, Zhong Y. Impact of interfacial CoOOH on OER catalytic activities and electrochemical behaviors of bimetallic CoxNi-LDH nanosheet catalysts. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138276] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Optimizing noble metals exploitation in water oxidation catalysis by their incorporation in layered double hydroxides. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Cost-effective and efficient water and urea oxidation catalysis using nickel-iron oxyhydroxide nanosheets synthesized by an ultrafast method. J Colloid Interface Sci 2021; 584:760-769. [DOI: 10.1016/j.jcis.2020.09.108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/12/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
|
29
|
Li M, Hu Y, Li G. A study on the cataluminescence of propylene oxide on FeNi layered double hydroxides/graphene oxide. NEW J CHEM 2021. [DOI: 10.1039/d1nj01411k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, FeNi layered double hydroxides/graphene oxide (FeNi LDH/GO) was prepared, which exhibits excellent selective cataluminescent performance towards propylene oxide.
Collapse
Affiliation(s)
- Ming Li
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Yufei Hu
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Gongke Li
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- China
| |
Collapse
|
30
|
Dai Z, He M, Yu J, Song H, Xiong Y. Freestanding porous carbon membrane deriving from the alginic acid/poly(ionic liquid) complex and its high-performance HER electrocatalysis. NEW J CHEM 2021. [DOI: 10.1039/d1nj00969a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Freestanding nitrogen/sulfur co-doped porous carbon (NSPC) membranes were fabricated facilely by carbonizing poly(ionic liquid) (PIL) and alginic acid complexes, which can be used directly as the electrodes for the electrocatalytic hydrogen evolution reaction and supercapacitors.
Collapse
Affiliation(s)
- Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Mengting He
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Junrui Yu
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Honghong Song
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Yubing Xiong
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| |
Collapse
|
31
|
Zhou D, Li P, Lin X, McKinley A, Kuang Y, Liu W, Lin WF, Sun X, Duan X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem Soc Rev 2021; 50:8790-8817. [PMID: 34160484 DOI: 10.1039/d1cs00186h] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The electrocatalytic oxygen evolution reaction (OER) is a critical half-cell reaction for hydrogen production via water electrolysis. However, the practical OER suffers from sluggish kinetics and thus requires efficient electrocatalysts. Transition metal-based layered double hydroxides (LDHs) represent one of the most active classes of OER catalysts. An in-depth understanding of the activity of LDH based electrocatalysts can promote further rational design and active site regulation of high-performance electrocatalysts. In this review, the fundamental understanding of the structural characteristics of LDHs is demonstrated first, then comparisons and in-depth discussions of recent advances in LDHs as highly active OER catalysts in alkaline media are offered, which include both experimental and computational methods. On top of the active site identification and structural characterization of LDHs on an atomic scale, strategies to promote the OER activity are summarised, including doping, intercalation and defect-making. Furthermore, the concept of superaerophobicity, which has a profound impact on the performance of gas evolution electrodes, is explored to enhance LDHs and their derivatives for a large scale OER. In addition, certain operating standards for OER measurements are proposed to avoid inconsistency in evaluating the OER activity of LDHs. Finally, several key challenges in using LDHs as anode materials for large scale water splitting, such as the issue of stability and the adoption of membrane-electrode-assembly based electrolysers, are emphasized to shed light on future research directions.
Collapse
Affiliation(s)
- Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Pengsong Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiao Lin
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Adam McKinley
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| | - Yun Kuang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Wen-Feng Lin
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|