1
|
Rajendran P, Murugaperumal P, Nallathambi S, Perdih F, Ayyanar S, Chellappan S. Performance of 4,5-diphenyl-1H-imidazole derived highly selective 'Turn-Off' fluorescent chemosensor for iron(III) ions detection and biological applications. LUMINESCENCE 2024; 39:e4694. [PMID: 38414310 DOI: 10.1002/bio.4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/10/2023] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Two fluorescent chemosensors, denoted as chemosensor 1 and chemosensor 2, were synthesized and subjected to comprehensive characterization using various techniques. The characterization techniques employed were Fourier-transform infrared (FTIR), proton (1 H)- and carbon-13 (13 C)-nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization (ESI) mass spectrometry, and single crystal X-ray diffraction analysis. Chemosensor 1 is composed of a 1H-imidazole core with specific substituents, including a 4-(2-(4,5-c-2-yl)naphthalene-3-yloxy)butoxy)naphthalene-1-yl moiety. However, chemosensor 2 features a 1H-imidazole core with distinct substituents, such as 4-methyl-2-(4,5-diphenyl-1H-imidazole-2-yl)phenoxy)butoxy)-5-methylphenyl. Chemosensor 1 crystallizes in the monoclinic space group C2/c. Both chemosensors 1 and 2 exhibit a discernible fluorescence quenching response selectively toward iron(III) ion (Fe3+ ) at 435 and 390 nm, respectively, in dimethylformamide (DMF) solutions, distinguishing them from other tested cations. This fluorescence quenching is attributed to the established mechanism of chelation quenched fluorescence (CHQF). The binding constants for the formation of the 1 + Fe3+ and 2 + Fe3+ complexes were determined using the modified Benesi-Hildebrand equation, yielding values of approximately 2.2 × 103 and 1.3 × 104 M-1 , respectively. The calculated average fluorescence lifetimes for 1 and 1 + Fe3+ were 2.51 and 1.17 ns, respectively, while for 2 and 2 + Fe3+ , the lifetimes were 1.13 and 0.63 ns, respectively. Additionally, the applicability of chemosensors 1 and 2 in detecting Fe3+ in live cells was demonstrated, with negligible observed cell toxicity.
Collapse
Affiliation(s)
- Praveena Rajendran
- Department of Industrial Chemistry, Alagappa University, Karaikudi, India
| | | | - Sengottuvelan Nallathambi
- Department of Chemistry, Directorate of Distance Education (DDE), Alagappa University, Karaikudi, India
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Siva Ayyanar
- Department of Inorganic Chemistry, Madurai Kamaraj University, Madurai, India
| | - Selvaraju Chellappan
- National Center for Ultrafast Process, University of Madras, Tarmani Campus, Chennai, India
| |
Collapse
|
2
|
Malik A, Tahir MN, Ali A, Ashfaq M, Ibrahim M, Kuznetsov AE, Assiri MA, Sameeh MY. Preparation, Crystal Structure, Supramolecular Assembly, and DFT Studies of Two Organic Salts Bearing Pyridine and Pyrimidine. ACS OMEGA 2023; 8:25034-25047. [PMID: 37483210 PMCID: PMC10357529 DOI: 10.1021/acsomega.3c01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
The effective preparation of two new pyrimidine- and pyridine-based organic crystalline salts with substituted acidic moieties (i.e., (Z)-4-(naphthalen-2-ylamino)-4-oxobut-2-enoic acid (DCNO) and 2-hydroxy-3,5-dinitrobenzoic acid (PCNP)) using methanol as a solvent has been reported. These molecular salts have ionic interactions that are responsible for their structural stabilization in their solid-state assemblies. The crystal structures of DCNO and PCNP were determined by the single-crystal X-ray diffraction (SCXRD) technique. The SCXRD study inferred that cations and anions are strongly packed due to N-H···O, N-H···N, and C-H···O noncovalent interactions in DCNO, whereas in PCNP, N-H···N noncovalent interactions are absent. The noncovalent interactions in both organic crystalline salts were comprehensively investigated by Hirshfeld surface analysis. Further, a detailed density functional theory (DFT) study of both compounds was performed. The optimized structures of both compounds supported the existence of the H-bonding and weak dispersion interactions in the synthesized organic crystalline salt structures. Both compounds were shown to have large and noticeably different HOMO/LUMO energy gaps. The atomic charge analysis results supported the SCXRD and HSA results, showing the formation of intermolecular noncovalent interactions in both organic crystalline salts. The results of the natural bond orbital (NBO) analysis confirmed the existence of (relatively weak) noncovalent interactions between the cation and anion moieties of their organic crystalline salts. The global reactivity parameters (GRPs) analysis showed that both organic crystalline salts' compounds should be quite thermodynamically stable and that DCNO should be less reactive than PCNP. For both compounds, the molecular electrostatic potential (MEP) analysis results support the existence of intermolecular electrostatic interactions in their organic crystalline salts.
Collapse
Affiliation(s)
| | | | - Akbar Ali
- Department
of Chemistry, Government College University
Faisalabad, 38000 Faisalabad, Pakistan
| | - Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Ibrahim
- Department
of Applied Chemistry, Government College
University Faisalabad, 38000 Faisalabad, Pakistan
| | - Aleksey E. Kuznetsov
- Departamento
de Química, Campus Santiago Vitacura, Universidad Tecnica Federico Santa María, Av. Santa María 6400, Vitacura 7660251, Chile
| | - Mohammed A. Assiri
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, Abha 61413, Saudi Arabia
| | - Manal Y. Sameeh
- Department
of Chemistry, Al Lieth University College, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| |
Collapse
|
3
|
Tahir MN, Ali A, Khalid M, Ashfaq M, Naveed M, Murtaza S, Shafiq I, Asghar MA, Orfali R, Perveen S. Efficient Synthesis of Imine-Carboxylic Acid Functionalized Compounds: Single Crystal, Hirshfeld Surface and Quantum Chemical Exploration. Molecules 2023; 28:molecules28072967. [PMID: 37049730 PMCID: PMC10096040 DOI: 10.3390/molecules28072967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Two aminobenzoic acid based crystalline imines (HMBA and DHBA) were synthesized through a condensation reaction of 4-aminobenzoic acid and substituted benzaldehydes. Single-crystal X-ray diffraction was employed for the determination of structures of prepared Schiff bases. The stability of super molecular structures of both molecules was achieved by intramolecular H-bonding accompanied by strong, as well as comparatively weak, intermolecular attractive forces. The comparative analysis of the non-covalent forces in HMBA and DHBA was performed by Hirshfeld surface analysis and an interaction energy study between the molecular pairs. Along with the synthesis, quantum chemical calculations were also accomplished at M06/6-311G (d, p) functional of density functional theory (DFT). The frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP), natural bond orbitals (NBOs), global reactivity parameters (GRPs) and natural population (NPA) analyses were also carried out. The findings of FMOs found that Egap for HMBA was examined to be smaller (3.477 eV) than that of DHBA (3.7933 eV), which indicated a greater charge transference rate in HMBA. Further, the NBO analysis showed the efficient intramolecular charge transfer (ICT), as studied by Hirshfeld surface analysis.
Collapse
Affiliation(s)
| | - Akbar Ali
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Correspondence: (A.A.); (M.K.); (R.O.)
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Correspondence: (A.A.); (M.K.); (R.O.)
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Mubashir Naveed
- Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Shahzad Murtaza
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Iqra Shafiq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Adnan Asghar
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (A.A.); (M.K.); (R.O.)
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| |
Collapse
|
4
|
Kurbanova M, Ashfaq M, Tahir MN, Maharramov A, Dege N, Koroglu A. SYNTHESIS, CRYSTAL STRUCTURE, SUPRAMOLECULAR ASSEMBLY EXPLORATION BY HIRSHFELD SURFACE ANALYSIS AND COMPUTATIONAL STUDY OF 6-BROMO-2-OXO- 2H-CHROMENE-3-CARBONITRILE (BOCC). J STRUCT CHEM+ 2023. [DOI: 10.1134/s0022476623020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
5
|
Spectroscopic characterization of a mononuclear oxovanadium (IV) Schiff base complex. Oxidation catalysis applications and Antibacterial activities. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
6
|
Boughougal A, Kadri R, Kadri M, Tommasino JB, Pilet G, Messai A, Luneau D. Novel copper (II) and zinc (II) complexes with enrofloxacin and oxolinic acid: synthesis, characterization, Hirshfeld surface and DFT/CAM-B3LYPD3BJ studies: NBO, QTAIM and RDG analysis. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Ali A, Din ZU, Ibrahim M, Ashfaq M, Muhammad S, Gull D, Tahir MN, Rodrigues-Filho E, Al-Sehemi AG, Suleman M. Acid catalyzed one-pot approach towards the synthesis of curcuminoid systems: unsymmetrical diarylidene cycloalkanones, exploration of their single crystals, optical and nonlinear optical properties. RSC Adv 2023; 13:4476-4494. [PMID: 36760294 PMCID: PMC9892888 DOI: 10.1039/d2ra07681k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
In the present study crystalline unsymmetrical diarylidene ketone derivatives BNTP and BDBC have been prepared by two sequential acid catalyzed aldol condensation reactions in a one pot manner. The crystal structures of both compounds were confirmed by single crystal X-ray diffraction analysis which revealed the presence of H-bonding interactions of type C-H⋯O, along with weak C-H⋯π and weak π⋯π stacking interactions that are involved in the crystal stabilization of both organic compounds. Hirshfeld surface analysis is carried out for the broad investigation of the intermolecular interactions in both compounds. The quantum chemical investigation was performed on the optimized molecular geometries of BNTP and BDBC to calculate optical and nonlinear optical (NLO) properties. The density functional theory (DFT) study showed that the third-order NLO polarizabilities of compounds BNTP and BDBC are found to be 226.45 × 10-36 esu and 238.72 × 10-36 esu, respectively, which indicates noticeable good NLO response properties. Additionally, the BNTP and BDBC molecules also showed the HOMO-LUMO orbital gaps of 5.96 eV and 6.06 eV, respectively. Furthermore, the computation of UV-visible spectra of the titled compounds indicated a limited and/or no absorption above the 400 nm region, directing a good transparency and NLO property trade-off for both synthesized compounds that may play a significant contribution in the future for optoelectronic technologies.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry, Government College University Faisalabad, 38000-FaisalabadPakistan
| | - Zia Ud Din
- LaBioMMi, Departamento de Química, Universidade Federal de São CarlosCP 676, São CarlosSP 13.565-905Brazil
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University Faisalabad Pakistan
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha Sargodha Pakistan
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid UniversityP.O. Box 9004Abha 61413Saudi Arabia
| | - Dania Gull
- Department of Chemistry, Government College University Faisalabad, 38000-FaisalabadPakistan
| | | | - Edson Rodrigues-Filho
- LaBioMMi, Departamento de Química, Universidade Federal de São CarlosCP 676, São CarlosSP 13.565-905Brazil
| | - Abdullah G. Al-Sehemi
- Department of Chemistry, College of Science, King Khalid UniversityP.O. Box 9004Abha 61413Saudi Arabia
| | - Muhammad Suleman
- Department of Chemistry, Riphah International University Faisalabad CampusPakistan
| |
Collapse
|
8
|
Khodykina ES, Steglenko DV, Vetrova EV, Pugachev AD, Galkina MS, Borodkina IG, Lesin AV, Demidov OP, Metelitsa AV, Kolodina AA. Intramolecular Cyclization of the
ortho
‐Substituted
N
‐arylquinone Imines under Basic and Thermal Conditions. ChemistrySelect 2023. [DOI: 10.1002/slct.202204317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Evgenia S. Khodykina
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| | - Dmitry V. Steglenko
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| | - Elena V. Vetrova
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| | - Artem D. Pugachev
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| | - Maria S. Galkina
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| | - Inna G. Borodkina
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| | - Alexander V. Lesin
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| | - Oleg P. Demidov
- Department of Chemistry of the Institutes of Mathematics and Natural Sciences North Caucasus Federal University 1a Pushkina St. Stavropol 355009 Russian Federation
| | - Anatoly V. Metelitsa
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| | - Alexandra A. Kolodina
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| |
Collapse
|
9
|
Pugachev AD, Ozhogin IV, Kozlenko AS, Tkachev VV, Shilov GV, Makarova NI, Rostovtseva IA, Borodkin GS, El-Sewify IM, Aldoshin SM, Metelitsa AV, Lukyanov BS. Comprehensive study of substituent effects on structure and photochromic properties of 1,3-benzoxazine-4-one spiropyrans. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Synthesis, characterization, and x-ray crystallography of unexpected chloro-substitution on 1-(4-chlorophenyl)-3-phenylthiourea platinum(II) complex with tertiary phosphine ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
A new approach to pyrimidine-type heterocycles based on Petrenko–Kritschenko synthesis. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Ali A, Ashfaq M, Din ZU, Ibrahim M, Khalid M, Assiri MA, Riaz A, Tahir MN, Rodrigues-Filho E, Imran M, Kuznetsov A. Synthesis, Structural, and Intriguing Electronic Properties of Symmetrical Bis-Aryl-α,β-Unsaturated Ketone Derivatives. ACS OMEGA 2022; 7:39294-39309. [PMID: 36340158 PMCID: PMC9631725 DOI: 10.1021/acsomega.2c05441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Three symmetrical bis-aryl-α,β-unsaturated ketone derivatives, 2,6-di((E)-benzylidene)-cyclohexan-1-one (DBC), 2,6-bis((E)-4-chlorobenzylidene)cyclohexan-1-one (BCC), and (1E,1'E,4E,4'E)-5,5'-(1,4-phenylene)bis(2-methyl-1-phenylpenta-1,4-dien-3-one) (PBMP), have been prepared using the aldol condensation approach toward ketones having two enolizable sites. The structures of DBC, BCC, and PBMP have been resolved via spectrometric methods. Moreover, the crystal structure of PBMP is determined by the single-crystal X-ray diffraction (SC-XRD) technique, which revealed that the PBMP molecular assembly is stabilized by the intermolecular C-H···O bonding and C-O···π and weak T-shaped offset π···π stacking interactions. The Hirshfeld surface analysis (HSA) of the PBMP crystal structure was performed as well, and the results were compared with the results of DBC and BCC. The density functional theory (DFT) study results revealed that the longer conjugated molecule of PBMP has smaller but still quite significant HOMO-LUMO gaps compared to the smaller molecules of BCC and DBC. The natural population analysis (NPA) and natural bonding orbital (NBO) analysis were performed. Accordingly, the hydrogen bonding and dipole-dipole interactions stabilize the crystal structures of these compounds. Additionally, the NBO analysis showed numerous high-energy stabilizing interactions for the PBMP compound due to the presence of numerous delocalized and relatively easily polarizable π-electrons, thus implying its significant thermodynamic stability. According to the global reactivity parameter (GRP) analysis, the compounds BCC and DBC are relatively stable in redox processes and have high thermodynamic stability and relatively lower reactivity in general. The molecular electrostatic potential (MEP) analysis results imply potential formation of the intermolecular hydrogen bonding and dispersion interactions, which stabilizes the crystal structures of these compounds.
Collapse
Affiliation(s)
- Akbar Ali
- Department
of Chemistry, Government College University, Faisalabad38040, Pakistan
| | - Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha40100, Pakistan
| | - Zia Ud Din
- LaBioMMi,
Departamento de Química, Universidade
Federal de São Carlos, CP 676, 13.565-905São Carlos, SP, Brazil
| | - Muhammad Ibrahim
- Department
of Applied Chemistry, Government College
University, Faisalabad38040, Pakistan
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan64200, Pakistan
| | - Mohammed A. Assiri
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha61514, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha61413, Saudi Arabia
| | - Arish Riaz
- Department
of Applied Chemistry, Government College
University, Faisalabad38040, Pakistan
| | | | - Edson Rodrigues-Filho
- LaBioMMi,
Departamento de Química, Universidade
Federal de São Carlos, CP 676, 13.565-905São Carlos, SP, Brazil
| | - Muhammad Imran
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha61514, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha61413, Saudi Arabia
| | - Aleksey Kuznetsov
- Departamento
de Química, Campus Santiago Vitacura, Universidad Técnica Federico Santa María, Av. Santa María 6400, Vitacura7660251, Chile
| |
Collapse
|
13
|
Zhang J, Feng LC, Li SZ, Dong WK. Studies on two phenoxo-bridged homopolynuclear Cu(II) bis(salamo) type complexes based on theoretical calculations and fluorescence properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Exploration of supramolecular and theoretical aspects of two new Cu(II) complexes: On the importance of lone pair···π(chelate ring) and π···π(chelate ring) interactions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Solórzano ER, Pastore P, Dolmella A, Cazorla S, Cassará MLA, Sankaran SV, Thamotharan S, Gil DM. Importance of R-CH3⋯O tetrel bonding and vinyl⋯aryl stacking interactions in stabilizing the crystal packing of 2’,4’-dihydroxy-3’-methoxychalcone: Exploration of antileishmanial activity and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Madni M, Ahmed MN, Abbasi G, Hameed S, Ibrahim MAA, Tahir MN, Ashfaq M, Gil DM, Gomila RM, Frontera A. Synthesis and X‐ray Characterization of 4,5‐Dihydropyrazolyl‐Thiazoles Bearing a Coumarin Moiety: On the Importance of Antiparallel π‐Stacking. ChemistrySelect 2022. [DOI: 10.1002/slct.202202287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Murtaza Madni
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry The University of Azad Jammu and Kashmir Muzaffarabad 13100 Pakistan
| | - Ghazala Abbasi
- Department of Chemistry The University of Azad Jammu and Kashmir Muzaffarabad 13100 Pakistan
| | - Shahid Hameed
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory Chemistry Department Faculty of Science Minia University Minia 61519 Egypt
| | | | - Muhammad Ashfaq
- Department of Physics University of Sargodha Sargodha Pakistan
| | - Diego M. Gil
- INBIOFAL (CONICET – UNT) Instituto de Química Orgánica. Facultad de Bioquímica Química y Farmacia. Universidad Nacional de Tucumán. Ayacucho 471. T4000INI. San Miguel de Tucumán Argentina Member of the research Career of CONICET
| | - Rosa M. Gomila
- Departament de Química Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) SPAIN
| | - Antonio Frontera
- Departament de Química Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) SPAIN
| |
Collapse
|
17
|
Synthetic approach to achieve halo imine units: Solid-state assembly, DFT based electronic and non linear optical behavior. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Dinagaran S, Gajendiran J, Raj SG, Gnanam S. Growth, physico-chemical properties, opto-electrical characteristics, thermo-mechanical and DFT studies of 4-aminoantipyrine single crystals. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Momeni BZ, Karimi S, Janczak J. Penta-coordinated Cr(II) and Cu(II) complexes appended with 4′-(4-quinolyl)-2,2′:6′,2″-terpyridine: crystal structure, Hirshfeld Surface analysis, luminescence and thermal properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Khan BA, Ashfaq M, Muhammad S, Munawar KS, Tahir MN, Al-Sehemi AG, Alarfaji SS. Exploring Highly Functionalized Tetrahydropyridine as a Dual Inhibitor of Monoamine Oxidase A and B: Synthesis, Structural Analysis, Single Crystal XRD, Supramolecular Assembly Exploration by Hirshfeld Surface Analysis, and Computational Studies. ACS OMEGA 2022; 7:29452-29464. [PMID: 36033707 PMCID: PMC9404513 DOI: 10.1021/acsomega.2c03909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Ethyl 4-(4-fluorophenylamino)-2,6-bis(4-(trifluoromethyl)phenyl)-1-(4-fluoro-phenyl)-1,2,5,6-tetrahydropyridine-3-carboxylate (FTEAA) has been synthesized efficiently in an iodine-catalyzed five-component reaction of 4-fluoroaniline, 4-trifluoromethyl benzaldehyde, and ethyl acetoacetate in methanol at 55 °C for 12 h. Various spectro-analytical techniques such as 1H and 13C NMR and Fourier-transform infrared spectroscopy have validated the structure of FTEAA. Further confirmation of the structure of FTEAA has been established on the basis of single-crystal X-ray diffraction analysis. The supramolecular assembly of FTEAA in terms of strong and comparatively weak noncovalent interactions is fully investigated by Hirshfeld surface analysis, the interaction energy between pairs of molecules, and energy frameworks. The void analysis is conducted to explore the strength and stability of the crystal structure. Furthermore, molecular docking analysis was computationally performed to see the potential intermolecular interactions between the selected proteins and FTEAA. The binding interaction energies are found to be -8.8 and -9.6 kcal/mol for the proteins MAO-B (PDB ID: 2V5Z) and MAO-A (PDB ID: 2Z5X), respectively. These reasonably good binding energies (more negative values) indicate the efficient associations between the FTEAA and target proteins. The proteins and FTEAA were also analyzed for intermolecular interactions. FTEAA and proteins interact in a variety of ways, like conventional hydrogen bonds, carbon-hydrogen bonds, alkyl, π-alkyl, and halide interactions.
Collapse
Affiliation(s)
- Bilal Ahmad Khan
- Department
of Chemistry, University of Azad Jammu and
Kashmir, Muzaffarabad 13100, Azad Jammu and Kashmir, Pakistan
| | - Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha, Punjab 40100, Pakistan
| | - Shabbir Muhammad
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Khurram Shahzad Munawar
- Institute
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
- Department
of Chemistry, University of Mianwali, Mianwali 42200, Pakistan
| | | | - Abdullah G. Al-Sehemi
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Saleh S. Alarfaji
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
21
|
Ashfaq M, Nawaz Tahir M, Munawar KS, Behjatmanesh-Ardakani R, Kargar H. Single crystal exploration, supramolecular behaviour, Hirshfeld surface analysis, linear and non-linear theoretical optical properties of Schiff bases derived from Benzene sulfonamides. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Ali A, Khalid M, Ashfaq M, Malik AN, Tahir MN, Assiri MA, Imran M, AlcântaraMorais SF, Braga AAC. Preparation, QTAIM and Single‐Crystal Exploration of the Pyrimethamine‐Based Co‐Crystal Salts with Substituted Benzoic Acids. ChemistrySelect 2022. [DOI: 10.1002/slct.202200349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Akbar Ali
- Department of Chemistry Government College University Faisalabad Pakistan
| | - Muhammad Khalid
- Department of Chemistry Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Ashfaq
- Department of Physics University of Sargodha Sargodha 40100 Pakistan
| | | | | | - Mohammed A. Assiri
- Research Center for Advanced Materials Science (RCAMS) King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
- Department of Chemistry Faculty of Science King Khalid University, P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS) King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
- Department of Chemistry Faculty of Science King Khalid University, P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Sara Figueirêdo AlcântaraMorais
- Departamento de Química Fundamental Instituto de Química Universidade de São Paulo Av. Prof. LineuPrestes 748 São Paulo 05508-000 Brazil
| | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental Instituto de Química Universidade de São Paulo Av. Prof. LineuPrestes 748 São Paulo 05508-000 Brazil
| |
Collapse
|
23
|
Malik AN, Kuznetsov A, Ali A, Ashfaq M, Tahir MN, Siddique A. Imine-based Zwitterion: Synthesis, single-crystal characterization, and computational investigation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Ashfaq M, Khalid M, Tahir MN, Ali A, Arshad MN, Asiri AM. Synthesis of Crystalline Fluoro-Functionalized Imines, Single Crystal Investigation, Hirshfeld Surface Analysis, and Theoretical Exploration. ACS OMEGA 2022; 7:9867-9878. [PMID: 35356686 PMCID: PMC8943585 DOI: 10.1021/acsomega.2c00288] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
This investigation is focused on the synthesis of two halo-functionalized crystalline Schiff base (imine) compounds: (E)-2-methoxy-6-(((3-(trifluoromethyl)phenyl)imino)methyl)phenol (MFIP) and (E)-1-(((2-fluorophenyl)imino)methyl)naphthalen-2-ol (FPIN) by the condensation reaction of substituted benzaldehydes and substituted aniline. The crystal structures of MFIP and FPIN were determined unambiguously by single-crystal X-ray diffraction (SC-XRD) studies. Intermolecular interactions and the role of fluorine atoms in the stabilization of the crystal packing are explored for both compounds using Hirshfeld surface analysis. Accompanied with experimental studies, quantum chemical calculations were also performed for comprehensive structure elucidation at the M06/6-311G(d,p) level of theory. A comparison of experimental and density functional theory results for geometrical parameters exhibited excellent agreement. Interestingly, Frontier molecular orbitals and natural bond orbital (NBO) findings revealed that intramolecular charge transfer and hyper-conjugation interactions had played a significant role to stabilize the molecules. Both compounds exhibited a relatively larger value of hardness with a smaller global softness, which, as proposed by the SC-XRD and NBO study, shows a higher stability. Nonlinear optical (NLO) findings showed that FPIN manifested a larger value of linear polarizability (<a> = 293.06 a.u.) and second-order hyperpolarizability (<γ> = 3.31 × 105 a.u.) than MFIP (<a> = 252.42 and <γ> = 2.08 × 105 a.u.) due to an extended conjugation. The above-mentioned findings of the entitled compounds may play a crucial role in NLO applications.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | | | - Akbar Ali
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Nadeem Arshad
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589 P.O. Box 80203, Saudi
Arabia
- Center
of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589 P.O. Box 80203, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589 P.O. Box 80203, Saudi
Arabia
- Center
of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589 P.O. Box 80203, Saudi Arabia
| |
Collapse
|
25
|
Supramolecular Arrangement Built from Zinc and Cadmium Complexes with 4′-(4-Substituted)-2,2′:6′,2″-Terpyridine: Crystallographic Investigation, Luminescence and Thermal Properties. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02299-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Aminkhani A, Sharifi S. Solvent-Free Synthesis of Pyrrolo [2,1-α] Isoquinolines via One-Pot Four-
Component Reaction. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210805103552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
An efficient four-component reaction to synthesize pyrrolo [2,1-a] isoquinolines from
malononitrile, aromatic aldehydes, isoquinoline, and cyclohexyl isocyanide under solvent-free
conditions is described. In a convenient, simple, and efficient one-pot procedure, the domino
Knoevenagel-nucleophilic cycloaddition reaction affords excellent yields of products in less
than 1 h.
Collapse
Affiliation(s)
- Ali Aminkhani
- Department of Chemistry, Khoy Branch, Islamic Azad University, Khoy, Iran
| | - Sina Sharifi
- Department of Ophthalmology, Massachusetts
Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, MA, USA
| |
Collapse
|
27
|
Thakurta S, Maiti M, Rosair GM, Tsaturyan AA. SYNTHESIS, CRYSTAL STRUCTURE, AND DFT STUDIES OF A NEW PHENOXO-BRIDGED DINUCLEAR ZINC(II) SCHIFF BASE COMPLEX WITH TWO DIFFERENT GEOMETRIES. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Hasanova SS, Mamedova LN, Ashfaq M, Munawar KS, Movsumov EM, Khalid M, Tahir MN, Imran M. Synthesis, crystal structure, Hirshfeld surface analysis and theoretical investigation of polynuclear coordination polymers of cobalt and manganese complexes with nitrobenzene and pyrazine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Singha D, Sarkar S, Pal N, Jana AD. Protonation induced self-complementarity of rod-like Cu(NTA)(bpeH) units and their layered supramolecular self-assembly entrapping heptamer like water clusters. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
30
|
Abdou MM, Abu-Rayyan A, Bedir AG, Abdel-Fattah S, Omar AMA, Ahmed AA, El-Desoky ESI, Ghaith EA. 3-(Bromoacetyl)coumarins: unraveling their synthesis, chemistry, and applications. RSC Adv 2021; 11:38391-38433. [PMID: 35493203 PMCID: PMC9044231 DOI: 10.1039/d1ra05574g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
This review emphasizes recent developments in synthetic routes of 3-(bromoacetyl)coumarin derivatives. Also, chemical reactions of 3-(bromoacetyl)coumarins as versatile building blocks in the preparation of critical polyfunctionalized heterocyclic systems and other industrially significant scaffolds are described. Recent advances of 3-(bromoacetyl)coumarins as attractive starting points towards a wide scale of five and six-membered heterocyclic systems such as thiophenes, imidazoles, pyrazoles, thiazoles, triazoles, pyrans, pyridines, thiadiazins as well as fused heterocyclic systems have been reported. Additionally, this review covers a wide range of analytical chemistry, fluorescent sensors, and biological applications of these moieties, covering the literature till May 2021.
Collapse
Affiliation(s)
- Moaz M Abdou
- Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Ahmed Abu-Rayyan
- Faculty of Science, Applied Science Private University P. O. BOX 166 Amman 11931 Jordan
| | - Ahmed G Bedir
- Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - S Abdel-Fattah
- Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - A M A Omar
- Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Abdullah A Ahmed
- Department of Chemistry, Faculty of Science, Al-Azhar University Cairo 11884 Egypt
| | - El-Sayed I El-Desoky
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| | - Eslam A Ghaith
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| |
Collapse
|
31
|
Ashfaq M, Tahir MN, Muhammad S, Munawar KS, Ali A, Bogdanov G, Alarfaji SS. Single-Crystal Investigation, Hirshfeld Surface Analysis, and DFT Study of Third-Order NLO Properties of Unsymmetrical Acyl Thiourea Derivatives. ACS OMEGA 2021; 6:31211-31225. [PMID: 34841164 PMCID: PMC8613867 DOI: 10.1021/acsomega.1c04884] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/02/2021] [Indexed: 05/27/2023]
Abstract
In the current research work, unsymmetrical acyl thiourea derivatives, 4-((3-benzoylthioureido)methyl)cyclohexane-1-carboxylic acid (BTCC) and methyl 2-(3-benzoylthioureido)benzoate (MBTB), have been synthesized efficiently. The structures of these crystalline thioureas were unambiguously confirmed by single-crystal diffractional analysis. The crystallographic investigation showed that the molecular configuration of both compounds is stabilized by intramolecular N-H···O bonding. The crystal packing of BTCC is stabilized by strong N-H···O bonding and comparatively weak O-H···S, C-H···O, C-H···π, and C-O···π interactions, whereas strong N-H···O bonding and comparatively weak C-H···O, C-H···S, and C-H···π interactions are responsible for the crystal packing of MBTB. The noncovalent interactions that are responsible for the crystal packing are explored by the Hirshfeld surface analysis for both compounds. The void analysis is performed to find the quantitative strength of crystal packing in both compounds. Additionally, state-of-the-art applied quantum chemical techniques are used to further explore the structure-property relationship in the above-entitled molecules. The optimization of molecular geometries showed a reasonably good correlation with their respective experimental structures. Third-order nonlinear optical (NLO) polarizability calculations were performed to see the advanced functional application of entitled compounds as efficient NLO materials. The average static γ amplitudes are found to be 27.30 × 10-36 and 102.91 × 10-36 esu for the compounds BTCC and MBTB, respectively. The γ amplitude of MBTB is calculated to be 3.77 times larger, which is probably due to better charge-transfer characteristics in MBTB. The quantum chemical analysis in the form of 3-D plots was also performed for their frontier molecular orbitals and molecular electrostatic potentials for understanding charge-transfer characteristics. We believe that the current investigation will not only report the new BTCC and MBTB compounds but also evoke the interest of the materials science community in their potential use in NLO applications.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | | | - Shabbir Muhammad
- Department
of Physics, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | | - Akbar Ali
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Georgii Bogdanov
- Department
of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Saleh S. Alarfaji
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
32
|
Ali A, Kuznetsov A, Ashfaq M, Tahir MN, Khalid M, Imran M, Irfan A. Synthesis, single-crystal exploration, and theoretical insights of arylsulfonylated 2-amino-6-methylpyrimidin derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Sonication-assisted synthesis of new Schiff bases derived from 3-ethoxysalicylaldehyde: Crystal structure determination, Hirshfeld surface analysis, theoretical calculations and spectroscopic studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Titanium(IV) complex containing ONO-tridentate Schiff base ligand: Synthesis, crystal structure determination, Hirshfeld surface analysis, spectral characterization, theoretical and computational studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130653] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Kargar H, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Tahir MN, Ashfaq M, Munawar KS. Synthesis, crystal structure determination, Hirshfeld surface analysis, spectral characterization, theoretical and computational studies of titanium(IV) Schiff base complex. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1972984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hadi Kargar
- Department of Chemical Engineering, Faculty of Engineering, Ardakan University, Ardakan, Iran
| | | | | | | | - Muhammad Ashfaq
- Department of Physics, University of Sargodha, Punjab, Pakistan
| | - Khurram Shahzad Munawar
- Department of Chemistry, University of Sargodha, Punjab, Pakistan
- Department of Chemistry, University of Mianwali, Mianwali, Pakistan
| |
Collapse
|
36
|
Ashfaq M, Munawar KS, Tahir MN, Dege N, Yaman M, Muhammad S, Alarfaji SS, Kargar H, Arshad MU. Synthesis, Crystal Structure, Hirshfeld Surface Analysis, and Computational Study of a Novel Organic Salt Obtained from Benzylamine and an Acidic Component. ACS OMEGA 2021; 6:22357-22366. [PMID: 34497924 PMCID: PMC8412916 DOI: 10.1021/acsomega.1c03078] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/06/2021] [Indexed: 05/27/2023]
Abstract
A novel Schiff base compound named as phenylmethanaminium (E)-4-((benzylimino)methyl)benzoate C7H10N+. C15H12NO2 - (A) is synthesized by the chemical reaction of benzylamine and 4-carboxybenzaldehyde in ethanol, and the structure of the titled compound is verified using the single-crystal X-ray diffraction technique. Structural investigation inferred that the crystal packing is mainly stabilized by N-H···O and comparatively weak C-H···O bonding between the cation and anion and further stabilized by weak C-H···π and C-O···π interactions. Hirshfeld surface analysis is employed to explore the noncovalent interactions that are responsible for crystal packing quantitatively. Furthermore, we have used state-of-the-art quantum chemical calculations to get comprehensive insights into the structure-optoelectronic property relationship for the entitled compound. The molecular geometry of compound A is optimized at the M06/6-311G* level of theory. The linear polarizability, third-order nonlinear optical (NLO) polarizability, total and partial density of states, and UV-visible spectrum are calculated through quantum chemical calculations. We believe that compound A is not only a new addition to crystallographic data but also possesses good optical and NLO properties for its potential use in lasers and frequency-converting applications.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha 40100, Pakistan
- Department
of Physics, University of Mianwali, Mianwali 42200, Pakistan
| | - Khurram Shahzad Munawar
- Department
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
- Department
of Chemistry, University of Mianwali, Mianwali 42200, Pakistan
| | | | - Necmi Dege
- Department
of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University, Kurupelit, Samsun 55139, Turkey
| | - Mavise Yaman
- Department
of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University, Kurupelit, Samsun 55139, Turkey
| | - Shabbir Muhammad
- Department
of Physics, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Saleh S. Alarfaji
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hadi Kargar
- Department
of Chemical Engineering, Faculty of Engineering, Ardakan University, Ardakan 184, Iran
| | | |
Collapse
|
37
|
Kargar H, Forootan P, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Amiri Rudbari H, Shahzad Munawar K, Ashfaq M, Nawaz Tahir M. Novel oxovanadium and dioxomolybdenum complexes of tridentate ONO-donor Schiff base ligand: Synthesis, characterization, crystal structures, Hirshfeld surface analysis, DFT computational studies and catalytic activity for the selective oxidation of benzylic alcohols. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120414] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Ultrasound-based synthesis, SC-XRD, NMR, DFT, HSA of new Schiff bases derived from 2-aminopyridine: Experimental and theoretical studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130105] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Exploring weak intermolecular interactions in two bis-1,3,4-oxadiazoles derivatives: A combined X-ray diffraction, Hirshfeld surface analysis and theoretical studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Rocha M, Echeverría GA, Piro OE, Jios JL, Ulic SE, Gil DM. Role of fluorine-fluorine and weak intermolecular interactions in the supramolecular network of a new trifluoromethyl-1,5-benzodiazepine: Crystal structure, Hirshfeld surface analysis and theoretical study. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2020.109697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Galvez CE, Rocha M, Villecco MB, Echeverría GA, Piro OE, Loandos MDH, Gil DM. Role of hydrogen bonds and weak non-covalent interactions in the supramolecular assembly of 9-hydroxyeucaliptol: crystal structure, Hirshfeld surface analysis, and DFT calculations. J Mol Model 2021; 27:13. [PMID: 33403477 DOI: 10.1007/s00894-020-04633-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 11/29/2022]
Abstract
The compound 1,3,3-trimethyl-2-oxabicyclo[2.2.2]octan-9-ol (9-hydroxyeucaliptol) has been prepared and characterized by single-crystal X-ray diffraction analysis, infrared, Raman, and UV-visible spectroscopies. The molecular geometry of the title compound was also investigated theoretically by density functional theory (DFT) calculations to compare with the experimental data. The substance crystallizes in the trigonal crystal system, space group P32 with Z = 9 molecules per unit cell. There are three independent molecules in the crystal asymmetric unit having the same chirality and showing some differences in the orientation of the H-atom of the hydroxyl group. The crystal structure of 9-hydroxyeucaliptol shows that the hydroxyl group presents an anti-conformation with respect to the O-atom of the ether group. The crystal packing of 9-hydroxyeucaliptol is stabilized by intermolecular O-H···O hydrogen bonds involving the hydroxyl groups of different molecules, which play a decisive role in the preferred conformation adopted in solid state. The intermolecular interactions observed in solid state were also studied through the Hirshfeld surface analysis and quantum theory of atoms in molecules (QTAIM) approaches. Energy framework calculations have also been carried out to analyze and visualize the topology of the supramolecular assembly, and the results indicate a significant contribution from electrostatic energy over the dispersion.
Collapse
Affiliation(s)
- Carolina E Galvez
- Cátedra de Química Orgánica II. Instituto de Química Orgánica. Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, T4000INI, San Miguel de Tucumán, Argentina
| | - Mariana Rocha
- INBIOFAL (CONICET-UNT). Instituto de Química Orgánica. Facultad de Bioquímica, Química y Farmacia, Ayacucho 471, T4000INI, San Miguel de Tucumán, Argentina
| | - Margarita B Villecco
- Cátedra de Química Orgánica II. Instituto de Química Orgánica. Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, T4000INI, San Miguel de Tucumán, Argentina
| | - Gustavo A Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Institute IFLP (CONICET, CCT-La Plata), C. C. 67, 1900, La Plata, Argentina
| | - Oscar E Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Institute IFLP (CONICET, CCT-La Plata), C. C. 67, 1900, La Plata, Argentina
| | - María Del H Loandos
- Cátedra de Química Orgánica II. Instituto de Química Orgánica. Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, T4000INI, San Miguel de Tucumán, Argentina
| | - Diego M Gil
- INBIOFAL (CONICET-UNT). Instituto de Química Orgánica. Facultad de Bioquímica, Química y Farmacia, Ayacucho 471, T4000INI, San Miguel de Tucumán, Argentina.
| |
Collapse
|
42
|
Ahmed MN, Ghias M, Shah SWA, Shoaib M, Tahir MN, Ashfaq M, Ibrahim MAA, Andleeb H, Gil DM, Frontera A. X-ray characterization, Hirshfeld surface analysis, DFT calculations, in vitro and in silico lipoxygenase inhibition (LOX) studies of dichlorophenyl substituted 3-hydroxy-chromenones. NEW J CHEM 2021. [DOI: 10.1039/d1nj04340d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports the synthesis, X-ray characterization and theoretical study of dichlorophenyl substituted 3-hydroxy-chromenones focusing on the low prevalence of halogen bonds and in vitro and in silico lipoxygenase inhibition (LOX) studies.
Collapse
Affiliation(s)
- Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir Muzaffarabad, 13100, Pakistan
| | - Mehreen Ghias
- Department of Pharmacy, University of Malakand, Chakdara, Dir Lower, KPK, Pakistan
| | - Syed Wadood Ali Shah
- Department of Pharmacy, University of Malakand, Chakdara, Dir Lower, KPK, Pakistan
| | - Mohammad Shoaib
- Department of Pharmacy, University of Malakand, Chakdara, Dir Lower, KPK, Pakistan
| | | | - Muhammad Ashfaq
- Department of Physics University of Sargodha, Sargodha, Pakistan
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Hina Andleeb
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Diego M. Gil
- INBIOFAL (CONICET – UNT), Instituto de Química Orgánica. Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, T4000INI, San Miguel de Tucumán, Argentina
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| |
Collapse
|
43
|
Ahmed MN, Madni M, Anjum S, Andleeb S, Hameed S, Khan AM, Ashfaq M, Tahir MN, Gil DM, Frontera A. Crystal engineering with pyrazolyl-thiazole derivatives: structure-directing role of π-stacking and σ-hole interactions. CrystEngComm 2021. [DOI: 10.1039/d1ce00256b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The structure-directing role of a variety of noncovalent interactions in the solid state of pyrazolyl-thiazole derivatives has been analyzed energetically using DFT calculations and by means of Hirshfeld surface analysis.
Collapse
Affiliation(s)
- Muhammad Naeem Ahmed
- Department of Chemistry
- The University of Azad Jammu and Kashmir
- Muzaffarabad
- 13100 Pakistan
| | - Murtaza Madni
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Shaista Anjum
- Department of Chemistry
- The University of Azad Jammu and Kashmir
- Muzaffarabad
- 13100 Pakistan
| | - Saiqa Andleeb
- Department of Zoology
- The University of Azad Jammu and Kashmir
- Muzaffarabad
- 13100 Pakistan
| | - Shahid Hameed
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Abdul Majeed Khan
- Research Laboratory of Bioenergy
- Department of Chemistry
- Federal Urdu University of Arts, Science and Technology
- Karachi-75300
- Pakistan
| | | | | | - Diego M. Gil
- INBIOFAL (CONICET – UNT)
- Instituto de Química Orgánica
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
| | - Antonio Frontera
- Department of Quimica
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| |
Collapse
|
44
|
Saeed A, Khurshid A, Flörke U, Echeverría GA, Piro OE, Gil DM, Rocha M, Frontera A, El-Seedi HR, Mumtaz A, Erben MF. Intermolecular interactions in antipyrine-like derivatives 2-halo- N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1 H-pyrazol-4-yl)benzamides: X-ray structure, Hirshfeld surface analysis and DFT calculations. NEW J CHEM 2020. [DOI: 10.1039/d0nj03958f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Based on experimental and computational data, a complex network of intermolecular interactions has been rationalized for antipyrine compounds.
Collapse
|