1
|
Minj A, Sahu S, Singh Tanwar LK, Ghosh KK. Au@Ag nanoparticles: an analytical tool to study the effect of tyrosine on dopamine levels. RSC Adv 2024; 14:19271-19283. [PMID: 38887644 PMCID: PMC11181135 DOI: 10.1039/d4ra01872a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The neurotransmitter dopamine (DA) plays important roles in the human body, including regulatory functions, movement, memory and motivational control. The direct intake of DA is impossible as it cannot cross the blood-brain barrier (BBB) efficiently. Notably, l-tyrosine works as a precursor of DA in the human brain. Herein, we report an analytical method that strongly supports the hypothesis that the intake of tyrosine (Tyr)-rich food enhances DA levels. For this analysis, citrate-coated gold-core silver-shell nanoparticles (Au@Ag NPs) were synthesized. The interaction of DA with the Au@Ag NPs was investigated using multiple spectroscopic techniques, and different thermodynamic parameters were evaluated to assign the binding mechanism. Real sample analysis with Tyr-rich food was also conducted to study the effect of Tyr on DA levels. Analytical studies were performed to verify the outcomes of the present work. The limit of detection of the Au@Ag NPs-DA system for Tyr was found to be 1.64 mM. This study can contribute to development in the fields of medicine and pharmaceuticals, particularly in regard to neuromedicine. One of the major advantages of this investigation is that it will fuel research interest in the supplementation of neurotransmitters and help categorize Tyr as a dietary precursor of dopamine.
Collapse
Affiliation(s)
- Angel Minj
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India +91-94252 16204
| | - Sushama Sahu
- Govt. Narayanrao Meghawale Girls College Dhamtari Chhattisgarh India
| | - Lavkesh Kumar Singh Tanwar
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India +91-94252 16204
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India +91-94252 16204
| |
Collapse
|
2
|
Park EJ, Ha TH. Pb 2+ Ion Sensors Employing Gold Etching Process: Comparative Investigation on Au Nanorods and Au Nanotriangles. SENSORS (BASEL, SWITZERLAND) 2024; 24:497. [PMID: 38257590 PMCID: PMC10820728 DOI: 10.3390/s24020497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The leaching phenomenon of gold (Au) nanomaterials by Pb2+ ions in the presence of 2-mercaptoethanol (2-ME) and thiosulfate (S2O32- ion) has been systematically applied to a Pb2+ ion sensor. To further investigate the role of Pb2+ ions in sensors containing Au nanomaterials, we revisited the leaching conditions for Au nanorods and compared them with the results for Au nanotriangles. By monitoring the etching rate, it was revealed that Pb2+ ions were important for the acceleration of the etching rate mainly driven by 2-ME and S2O32- pairs, and nanomolar detection of Pb2+ ions were shown to be promoted through this catalytic effect. Using the etchant, the overall size of the Au nanorods decreased but showed an unusual red-shift in UV-Vis spectrum indicating increase of aspect ratio. Indeed, the length of Au nanorods decreased by 9.4% with the width decreasing by 17.4% over a 30-min reaction time. On the other hand, the Au nanotriangles with both flat sides surrounded mostly by dense Au{111} planes showed ordinary blue-shift in UV-Vis spectrum as the length of one side was reduced by 21.3%. By observing the changes in the two types of Au nanomaterials, we inferred that there was facet-dependent alloy formation with lead, and this difference resulted in Au nanotriangles showing good sensitivity, but lower detection limits compared to the Au nanorods.
Collapse
Affiliation(s)
- Eun Jin Park
- Core Research Facility and Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea;
- Department of Nanobiotechnology, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Tai Hwan Ha
- Core Research Facility and Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea;
- Department of Nanobiotechnology, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Madani-Nejad E, Shokrollahi A, Shahdost-Fard F. A smartphone-based colorimetric assay using Au@Ag core-shell nanoparticles as the nanoprobes for visual tracing of fluvoxamine in biofluids as a common suicide drug. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122665. [PMID: 37011439 DOI: 10.1016/j.saa.2023.122665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/25/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In the present study, bimetallic nanoparticles (NPs) consisting of gold (AuNPs) as the core and silver (AgNPs) as the shell have been synthesized and applied as the nanoprobe for detection of fluvoxamine (FXM) as the anti-depression drug. The physicochemical properties of the prepared citrate-capped Au@Ag core-shell NPs have been characterized by UV-Vis, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) techniques. The design of the smartphone-based colorimetric FXM sensor relies on the fast hydrolysis of FXM under alkaline conditions by producing of 2-(Aminooxy)ethanamine without any significant peak at 400-700 nm. The interaction of the resulted molecule with the nanoprobe induced a red shift in the longitudinal localized surface plasmon resonance (LSPR) peak of the nanoprobe, which was accompanied by sharp and vivid color variations in the solution. A linear relationship between the absorption signal increasing by FXM concentration increasing from 1 µM to 10 µM presented a simple, low cost and minimally instrumented format for FXM quantification with a limit of detection (LOD) of 100 nM. The collected visual data with the elegant colorimetric response of the nanoprobe in the presence of FXM from Indian red to light red violet and bluish-purple color offered simple detection of FXM with the naked eye. The satisfactory results of the proposed cost-effective sensor in the rapid assay of FXM in human serum, urine, saliva and pharmaceutical samples guarantee the potential of the nanoprobe for on-site and visual determination of FXM in actual samples. The proposed sensor as the first non-invasive FXM sensor for saliva sample analysis may hold great promise to provide the technical support for the rapid and valid detection of FXM for forensic medicine and clinical organizations.
Collapse
Affiliation(s)
| | | | - F Shahdost-Fard
- Department of Chemistry, Farhangian University, Tehran 19396-14464, Iran.
| |
Collapse
|
4
|
Sahu S, Ghosh KK. Selective detection of tartaric acid using amino acid interlinked silver nanoparticles as a colorimetric probe. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3323-3334. [PMID: 35969181 DOI: 10.1039/d2ay01088g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A variety of biomolecules with different functional groups play critical roles in almost all the processes occurring in living cells. Interaction of metallic nanoparticles (NPs) with various biomolecules generates a layer of molecules on their surface, and this biomolecular rich layer formed on the NP surface is described as a "biomolecular corona". The physicochemical properties of the NPs, including size, adsorption affinity, and charge on the particles' surfaces are the major factors influencing the characteristics of this corona. The formation of various biomolecular corona has been studied well, whereas the amino acid corona is relatively new by exploring their stability. In the present study, a novel formation of an amino acid corona with a fundamental interaction mechanism for a selective detection procedure using a colorimetric platform has been proposed. Herein, amino acid-coated silver NPs (AgNPs) have been used as a template with spectroscopic (steady state UV-Vis, FTIR) and imaging (HR-TEM, DLS) techniques. Our findings demonstrated that among different amino acid coronas, glutathione (GSH) stabilized AgNPs show a rapid reaction with tartaric acid. The extent and thermodynamics of the formed complex between the GSH/AgNPs and tartaric acid have also been studied and this suggested that the complex formed is spontaneous and energy releasing in nature.
Collapse
Affiliation(s)
- Sushama Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India.
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India.
| |
Collapse
|
5
|
SPR-based assay kit for rapid determination of Pb2+. Anal Chim Acta 2022; 1220:340030. [DOI: 10.1016/j.aca.2022.340030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022]
|
6
|
Berta L, Coman NA, Rusu A, Tanase C. A Review on Plant-Mediated Synthesis of Bimetallic Nanoparticles, Characterisation and Their Biological Applications. MATERIALS 2021; 14:ma14247677. [PMID: 34947271 PMCID: PMC8705710 DOI: 10.3390/ma14247677] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
The study of bimetallic nanoparticles (BNPs) has constantly been expanding, especially in the last decade. The biosynthesis of BNPs mediated by natural extracts is simple, low-cost, and safe for the environment. Plant extracts contain phenolic compounds that act as reducing agents (flavonoids, terpenoids, tannins, and alkaloids) and stabilising ligands moieties (carbonyl, carboxyl, and amine groups), useful in the green synthesis of nanoparticles (NPs), and are free of toxic by-products. Noble bimetallic NPs (containing silver, gold, platinum, and palladium) have potential for biomedical applications due to their safety, stability in the biological environment, and low toxicity. They substantially impact human health (applications in medicine and pharmacy) due to the proven biological effects (catalytic, antioxidant, antibacterial, antidiabetic, antitumor, hepatoprotective, and regenerative activity). To the best of our knowledge, there are no review papers in the literature on the synthesis and characterisation of plant-mediated BNPs and their pharmacological potential. Thus, an effort has been made to provide a clear perspective on the synthesis of BNPs and the antioxidant, antibacterial, anticancer, antidiabetic, and size/shape-dependent applications of BNPs. Furthermore, we discussed the factors that influence BNPs biosyntheses such as pH, temperature, time, metal ion concentration, and plant extract.
Collapse
Affiliation(s)
- Lavinia Berta
- Department of General and Inorganic Chemistry, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania;
| | - Năstaca-Alina Coman
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutical Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania
- Correspondence:
| | - Corneliu Tanase
- Pharmaceutical Botany Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| |
Collapse
|
7
|
Sahu S, Sharma S, Kant T, Shrivas K, Ghosh KK. Colorimetric determination of L-cysteine in milk samples with surface functionalized silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118961. [PMID: 33010538 DOI: 10.1016/j.saa.2020.118961] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
A simple, selective and sensitive method is proposed for determination of cysteine (Cys) in milk samples using ionic liquid functionalized silver nanoparticles (ILs-AgNPs) as a colorimetric probe. ILs-AgNPs was synthesized by simple reduction method using silver nitrate as a precursor and sodium borohydride as a reducing agent and functionalized with ILs to prevent particles from self-aggregation. The sensing mechanism has been dependent on the color change of ILs-AgNPs and red shift of absorption band from 395 nm to 560 nm in the visible region, which is found proportional to the concentration of target analyte in sample. ILs-AgNPs was characterized in absence and presence of Cys by UV-vis, Fourier transform-infrared (FTIR) spectroscopy, transmission electron microscope (TEM) and dynamic light scattering (DLS). The linear range was acquired in the range of 0-100 ng mL-1, with correlation coefficient (R2) of 0.996 and limit of detection (LOD) of 4.0 nM. The binding mechanism and interactions between Cys and ILs-AgNPs was confirmed by calculating the binding constant and thermodynamic parameters such as enthalpy (∆H), entropy (∆S) and Gibb's free energy (∆G). The use of ILs-AgNPs exhibited high colorimetric selectivity for Cys in milk samples in presence of other amino acids. This proposed strategy possessed the advantages of simplicity and selectivity, hence is applied for analysis of Cys in milk samples.
Collapse
Affiliation(s)
- Sushama Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, C.G., India
| | - Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, C.G., India
| | - Tushar Kant
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, C.G., India
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, C.G., India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, C.G., India.
| |
Collapse
|
8
|
Saha A, Khalkho BR, Deb MK. Au–Ag core–shell composite nanoparticles as a selective and sensitive plasmonic chemical probe for l-cysteine detection in Lens culinaris (lentils). RSC Adv 2021; 11:20380-20390. [PMID: 35479888 PMCID: PMC9034027 DOI: 10.1039/d1ra01824h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/25/2021] [Indexed: 01/05/2023] Open
Abstract
The present work reported is a simple and selective method for the colorimetrical detection of l-cysteine in Lens culinaris (or lentils) using Au–Ag core–shell (Au core Ag shell) composite nanoparticles as a chemical probe.
Collapse
Affiliation(s)
- Anushree Saha
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492 010
- India
| | - Beeta Rani Khalkho
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492 010
- India
| | - Manas Kanti Deb
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492 010
- India
| |
Collapse
|