1
|
Li S, Ye S, Zhang W, He H, Zhang Y, Xiong M, Chen Y, Wang M, Nie Z. Magnetic Ion-Imprinted Materials for Selective Adsorption of Cr(VI): Adsorption Behavior and Mechanism Study. Molecules 2024; 29:1952. [PMID: 38731444 PMCID: PMC11085326 DOI: 10.3390/molecules29091952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the increase of hexavalent Cr(VI) wastewater discharged from industrial production, it seriously pollutes water bodies and poses a risk to human health. Adsorption is used as an effective means to treat Cr(VI), but its effectiveness is affected by pH, and the adsorption performance decreases when acidity is strong. Furthermore, research on the mechanism of Cr(VI) adsorption using DFT calculations needs to be developed. This study focuses on the development of magnetically responsive core-shell nano-ion imprinted materials (Fe3O4@GO@IIP) through magnetic separation and surface imprinting techniques. Characterization techniques including FT-IR, XRD, and EDS confirmed the core-shell nanostructure of Fe3O4@GO@IIP. Batch adsorption experiments and model simulations demonstrated the exceptional adsorption capacity of Fe3O4@GO@IIP for Cr(VI) in strongly acidic solutions (pH = 1), reaching a maximum of 89.18 mg/g. The adsorption mechanism was elucidated through XPS and DFT calculations, revealing that Fe3O4@GO@IIP operates through electrostatic interactions and chemical adsorption, with charge transfer dynamics quantified during the process. This research provides new insights for addressing Cr(VI) treatment in highly acidic environments.
Collapse
Affiliation(s)
| | | | | | - Hongxing He
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; (S.L.)
| | | | | | | | | | - Zhifeng Nie
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; (S.L.)
| |
Collapse
|
2
|
Lazar MM, Ghiorghita CA, Dragan ES, Humelnicu D, Dinu MV. Ion-Imprinted Polymeric Materials for Selective Adsorption of Heavy Metal Ions from Aqueous Solution. Molecules 2023; 28:molecules28062798. [PMID: 36985770 PMCID: PMC10055817 DOI: 10.3390/molecules28062798] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The introduction of selective recognition sites toward certain heavy metal ions (HMIs) is a great challenge, which has a major role when the separation of species with similar physicochemical features is considered. In this context, ion-imprinted polymers (IIPs) developed based on the principle of molecular imprinting methodology, have emerged as an innovative solution. Recent advances in IIPs have shown that they exhibit higher selectivity coefficients than non-imprinted ones, which could support a large range of environmental applications starting from extraction and monitoring of HMIs to their detection and quantification. This review will emphasize the application of IIPs for selective removal of transition metal ions (including HMIs, precious metal ions, radionuclides, and rare earth metal ions) from aqueous solution by critically analyzing the most relevant literature studies from the last decade. In the first part of this review, the chemical components of IIPs, the main ion-imprinting technologies as well as the characterization methods used to evaluate the binding properties are briefly presented. In the second part, synthesis parameters, adsorption performance, and a descriptive analysis of solid phase extraction of heavy metal ions by various IIPs are provided.
Collapse
Affiliation(s)
- Maria Marinela Lazar
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Claudiu-Augustin Ghiorghita
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Ecaterina Stela Dragan
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Doina Humelnicu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Carol I Bd. 11, 700506 Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| |
Collapse
|
3
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
4
|
Cobalt (II)-Mediated Molecularly Imprinted Polymer as a Monolithic Stationary Phase for Separation of Racemic Citronellal by Liquid Chromatography. ScientificWorldJournal 2022; 2022:7891525. [PMID: 35264914 PMCID: PMC8901358 DOI: 10.1155/2022/7891525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 11/18/2022] Open
Abstract
A metal-mediated molecularly imprinted polymer (MMIP) monolithic column was prepared as the stationary phase for high-performance liquid chromatography (HPLC) and applied to the enantiomeric separation of rac-citronellal. MMIP column was prepared through in situ copolymerizations with the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate/[BMIM][BF4] as the primary pore-forming agent and cobalt(II) acetate as the metal pivot. Interactions between polymer components in the synthesized monolith were assessed by FTIR to identify the functional groups. The monolith morphology was characterized with SEM, and the template removal was detected by UV Spectrophotometry at 253 nm. In this study, (R)-(+)-citronellal was used as a template, whereas 4-vinylpyridine (4-VP) was employed as the functional monomer with two monomer crosslinkers, trimethylolpropane trimethacrylate (TRIM), and ethylene glycol dimethacrylate (EDMA). The ternary mixture of porogenic solvent consisted of [BMIM][BF4], dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) with the applied ratio of 1 : 1:1 (v/v) and 10 : 1:5 (v/v) for the preparation of MMIP using TRIM and EDMA crosslinkers, respectively. Co(II) ion was added to the porogenic solvent before being mixed with the functional monomer and the crosslinker mixtures. Separating the rac-citronellal was achieved on the synthesized MMIP, showing better selectivity than the monolithic metal-mediated nonimprinted polymer (MNIP), nonimprinted polymer (NIP), and molecularly imprinted polymer (MIP).
Collapse
|
5
|
Chen ZP, Li D, Xu L, Jiang YF, Lin K, Zhao Y, Zhao J. Cationic metal-organic frameworks constructed from a trigonal imidazole-containing ligand for the removal of Cr2O72- in water. NEW J CHEM 2022. [DOI: 10.1039/d2nj01567f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, cationic metal-organic frameworks (MOFs) have drawn considerable attention in the treatment of wastewater containing toxic anions via anion exchange due to the presence of exchangeable anions in their pores....
Collapse
|
6
|
Reville EK, Sylvester EH, Benware SJ, Negi SS, Berda EB. Customizable molecular recognition: advancements in design, synthesis, and application of molecularly imprinted polymers. Polym Chem 2022. [DOI: 10.1039/d1py01472b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecularly imprinted polymers (MIPs) are unlocking the door to synthetic materials that are capable of molecular recognition.
Collapse
Affiliation(s)
- Erinn K. Reville
- Department of Chemistry, University of New Hampshire, 03824, Durham, NH, USA
| | | | - Sarah J. Benware
- Department of Chemistry, University of Wisconsin-Madison, 54706, Madison, WI, USA
| | - Shreeya S. Negi
- Department of Chemistry and Biochemistry, California Polytechnic State University, 93410, San Luis Obispo, CA, USA
| | - Erik B. Berda
- Department of Chemistry, University of New Hampshire, 03824, Durham, NH, USA
| |
Collapse
|
7
|
Metwally MG, Benhawy AH, Khalifa RM, El Nashar RM, Trojanowicz M. Application of Molecularly Imprinted Polymers in the Analysis of Waters and Wastewaters. Molecules 2021; 26:6515. [PMID: 34770924 PMCID: PMC8587002 DOI: 10.3390/molecules26216515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The increase of the global population and shortage of renewable water resources urges the development of possible remedies to improve the quality and reusability of waste and contaminated water supplies. Different water pollutants, such as heavy metals, dyes, pesticides, endocrine disrupting compounds (EDCs), and pharmaceuticals, are produced through continuous technical and industrial developments that are emerging with the increasing population. Molecularly imprinted polymers (MIPs) represent a class of synthetic receptors that can be produced from different types of polymerization reactions between a target template and functional monomer(s), having functional groups specifically interacting with the template; such interactions can be tailored according to the purpose of designing the polymer and based on the nature of the target compounds. The removal of the template using suitable knocking out agents renders a recognition cavity that can specifically rebind to the target template which is the main mechanism of the applicability of MIPs in electrochemical sensors and as solid phase extraction sorbents. MIPs have unique properties in terms of stability, selectivity, and resistance to acids and bases besides being of low cost and simple to prepare; thus, they are excellent materials to be used for water analysis. The current review represents the different applications of MIPs in the past five years for the detection of different classes of water and wastewater contaminants and possible approaches for future applications.
Collapse
Affiliation(s)
- Mahmoud G. Metwally
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Abdelaziz H. Benhawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Reda M. Khalifa
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Rasha M. El Nashar
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Marek Trojanowicz
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
8
|
Jagirani MS, Balouch A, Mahesar SA, Alveroğlu E, Kumar A, Tunio A, Abdullah. Selective and sensitive detoxification of toxic lead ions from drinking water using lead (II) ion-imprinted interpenetrating polymer linkage. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03546-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Evaluation of the performance of a selective magnetite molecularly imprinted polymer for extraction of quercetin from onion samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Kusumkar VV, Galamboš M, Viglašová E, Daňo M, Šmelková J. Ion-Imprinted Polymers: Synthesis, Characterization, and Adsorption of Radionuclides. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1083. [PMID: 33652580 PMCID: PMC7956459 DOI: 10.3390/ma14051083] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022]
Abstract
Growing concern over the hazardous effect of radionuclides on the environment is driving research on mitigation and deposition strategies for radioactive waste management. Currently, there are many techniques used for radionuclides separation from the environment such as ion exchange, solvent extraction, chemical precipitation and adsorption. Adsorbents are the leading area of research and many useful materials are being discovered in this category of radionuclide ion separation. The adsorption technologies lack the ability of selective removal of metal ions from solution. This drawback is eliminated by the use of ion-imprinted polymers, these materials having targeted binding sites for specific ions in the media. In this review article, we present recently published literature about the use of ion-imprinted polymers for the adsorption of 10 important hazardous radionuclides-U, Th, Cs, Sr, Ce, Tc, La, Cr, Ni, Co-found in the nuclear fuel cycle.
Collapse
Affiliation(s)
- Vipul Vilas Kusumkar
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Michal Galamboš
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Eva Viglašová
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Martin Daňo
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehová 7, 115 19 Prague, Czech Republic;
| | - Jana Šmelková
- Department of Administrative Law and Environmental Law, Faculty of Law, Comenius University in Bratislava, Safarikovo namestie 6, 810 00 Bratislava, Slovakia;
| |
Collapse
|
11
|
Jagirani MS, Ozalp O, Soylak M. New Trend in the Extraction of Pesticides from the Environmental and Food Samples Applying Microextraction Based Green Chemistry Scenario: A Review. Crit Rev Anal Chem 2021; 52:1343-1369. [PMID: 33560139 DOI: 10.1080/10408347.2021.1874867] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focused on the green microextraction methods used for the extraction of pesticides from the environmental and food samples. Microextraction techniques have been explored and applied in various fields of analytical chemistry since its beginning, as evinced by the numerous reviews published. The success of any technique in science and technology is measured by the simplicity, environmentally friendly, and its applications; and the microextraction technique is highly successive. Deliberations were attentive to studies where efforts have been made to validate the methods through the inter-laboratory comparison study to assess the analytical performance of microextraction techniques against conventional methods. Succinctly, developed microextraction methods are shown to impart significant benefits over conventional techniques. Provided that the analytical community continues to put forward attention and resources into the growth and validation of the microextraction technique, a promising future for microextraction is forecasted.
Collapse
Affiliation(s)
- Muhammad Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Ozgur Ozalp
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|