1
|
Zheng Y, Yuan T, Arooj I, Yin H, Yin J. The role of surface modification in the interactions between CdTe quantum dots and ABC transporters in lung cancer cells. Food Chem Toxicol 2025; 195:115127. [PMID: 39580017 DOI: 10.1016/j.fct.2024.115127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/23/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
This paper aimed to investigate the role of surface modification on the potential interaction between CdTe quantum dots (QDs) and ABC transporters in doxorubicin-resistant lung cancer (A549/DOX) cells. For this purpose, CdTe QDs modified with -glutathione (GSH), -carboxy (COOH), and -amino (NH2) were applied, with the former two QDs exhibiting negative potentials and the latter ones being positive. All the three QDs reduced cell viability in a concentration-dependent manner, with NH2-CdTe QDs being more toxic. Such phenomena might be due to the adherence of NH2-CdTe QDs to negative cell membrane and thereby causing an enhanced accumulation. Addition of transporter inhibitors significantly enhanced the intracellular accumulation and toxicity of negative QDs, but such phenomena were barely found or even reversed for NH2-CdTe QDs, indicating that ABC transporters mainly excreted negative QDs. All the QDs caused little effects on the mRNA expression of ABC transporters, which should be due to the fact that the induction effects of QDs have been attenuated by the disruption of cell membrane. Overall, these results reveal the mechanism by which ABC transporters are involved in the efflux of CdTe QDs with different surface modifications, which could help the detoxification of QDs in the environment.
Collapse
Affiliation(s)
- Yu Zheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, 215163, PR China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, PR China
| | - Tongkuo Yuan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, 215163, PR China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, PR China
| | - Iqra Arooj
- Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, The Women University, Multan, 66000, Pakistan
| | - Huancai Yin
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, 215163, PR China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, PR China.
| | - Jian Yin
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, 215163, PR China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, PR China.
| |
Collapse
|
2
|
Yin J, Hu J, Deng X, Zheng Y, Tian J. ABC transporter-mediated MXR mechanism in fish embryos and its potential role in the efflux of nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115397. [PMID: 37619399 DOI: 10.1016/j.ecoenv.2023.115397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
ATP-binding cassette (ABC) transporters are believed to protect aquatic organisms by pumping xenobiotics out, and recent investigation has suggested their involvement in the detoxification and efflux of nanoparticles (NPs), but their roles in fish embryos are poorly understood. In this regard, this paper summarizes the recent advances in research pertaining to the development of ABC transporter-mediated multi-xenobiotic resistance (MXR) mechanism in fish embryos and the potential interaction between ABC transporters and NPs. The paper focuses on: (1) Expression, function, and modulation mechanism of ABC proteins in fish embryos; (2) Potential interaction between ABC transporters and NPs in cell models and fish embryos. ABC transporters could be maternally transferred to fish embryos and thus play an important role in the detoxification of various chemical pollutants and NPs. There is a need to understand the specific mechanism to benefit the protection of aquatic resources.
Collapse
Affiliation(s)
- Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Jinan Guo Ke Medical Technology Development Co., Ltd, Jinan 250001, PR China.
| | - Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yu Zheng
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu 215163, PR China
| | - Jingjing Tian
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Jinan Guo Ke Medical Technology Development Co., Ltd, Jinan 250001, PR China
| |
Collapse
|
3
|
Dong J, Yuan L, Hu C, Cheng X, Qin JJ. Strategies to overcome cancer multidrug resistance (MDR) through targeting P-glycoprotein (ABCB1): An updated review. Pharmacol Ther 2023; 249:108488. [PMID: 37442207 DOI: 10.1016/j.pharmthera.2023.108488] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
The emergence of multidrug resistance (MDR) in malignant tumors is one of the leading threats encountered currently in many chemotherapeutic agents. The overexpression of the ATP-binding cassette (ABC) transporters is involved in MDR. P-glycoprotein (P-gp)/ABCB1 is a member of the ABC transporter family that significantly increases the efflux of various anticancer drugs from tumor cells. Therefore, targeting P-gp with small molecule inhibitors is an effective therapeutic strategy to overcome MDR. Over the past four decades, diverse compounds with P-gp inhibitory activity have been identified to sensitize drug-resistant cells, but none of them has been proven clinically useful to date. Research efforts continue to discover an effective approach for circumventing MDR. This review has provided an overview of the most recent advances (last three years) in various strategies for circumventing MDR mediated by P-gp. It may be helpful for the scientists working in the field of drug discovery to further synthesize and discover new chemical entities/therapeutic modalities with less toxicity and more efficacies to overcome MDR in cancer chemotherapy.
Collapse
Affiliation(s)
- Jinyun Dong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Li Yuan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Can Hu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Xiangdong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
4
|
Inside-out extracellular vesicles-like biomimetic magnetic nanoparticles for efficient screening P-Glycoprotein inhibitors to overcome cancer multidrug resistance. Colloids Surf B Biointerfaces 2023; 222:113134. [PMID: 36630772 DOI: 10.1016/j.colsurfb.2023.113134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
The discovery of P-Glycoprotein (P-gp) inhibitors to block chemotherapy drugs efflux is considered an attractive treatment strategy for overcoming cancer multidrug resistance (MDR). Cell membrane biomimetic platform has emerged as a promising candidate method for screening small molecule P-gp inhibitors from natural products. However, randomly oriented cell membrane coating does not guarantee the inward-opening conformation of P-gp, limiting the precise screening of P-gp inhibitors. Herein, inside-out orientation extracellular vesicles camouflaged magnetic nanoparticles (IOVMNPs) were prepared to discover P-gp inhibitors with low toxicity and high efficiency from natural products. The orientation of extracellular vesicles on the surface of IOVMNPs was rigorously confirmed by immunogold electron microscopy and sialic acid quantification assay. Finally, two potential P-gp inhibitors, honokiol and magnolol, were captured by obtained IOVMNPs. The effect of MDR reversal in combination with chemotherapy drugs was further verified by pharmacological activity experiments. The inside-out orientation extracellular vesicles encapsulation strategy provides an effective tool for the discovery of novel P-gp inhibitors from nature products, thus further extending the application field of orientation assembly cell membrane biomimetic magnetic nanoparticles. This inside-out extracellular vesicles coating also proposes a new concept for the assembly of cell membrane biomimetic platform.
Collapse
|
5
|
Yadav P, Ambudkar SV, Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnology 2022; 20:423. [PMID: 36153528 PMCID: PMC9509578 DOI: 10.1186/s12951-022-01626-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer often develops multidrug resistance (MDR) when cancer cells become resistant to numerous structurally and functionally different chemotherapeutic agents. MDR is considered one of the principal reasons for the failure of many forms of clinical chemotherapy. Several factors are involved in the development of MDR including increased expression of efflux transporters, the tumor microenvironment, changes in molecular targets and the activity of cancer stem cells. Recently, researchers have designed and developed a number of small molecule inhibitors and derivatives of natural compounds to overcome various mechanisms of clinical MDR. Unfortunately, most of the chemosensitizing approaches have failed in clinical trials due to non-specific interactions and adverse side effects at pharmacologically effective concentrations. Nanomedicine approaches provide an efficient drug delivery platform to overcome the limitations of conventional chemotherapy and improve therapeutic effectiveness. Multifunctional nanomaterials have been found to facilitate drug delivery by improving bioavailability and pharmacokinetics, enhancing the therapeutic efficacy of chemotherapeutic drugs to overcome MDR. In this review article, we discuss the major factors contributing to MDR and the limitations of existing chemotherapy- and nanocarrier-based drug delivery systems to overcome clinical MDR mechanisms. We critically review recent nanotechnology-based approaches to combat tumor heterogeneity, drug efflux mechanisms, DNA repair and apoptotic machineries to overcome clinical MDR. Recent successful therapies of this nature include liposomal nanoformulations, cRGDY-PEG-Cy5.5-Carbon dots and Cds/ZnS core–shell quantum dots that have been employed for the effective treatment of various cancer sub-types including small cell lung, head and neck and breast cancers.
Collapse
|
6
|
Zhang YB, Xu D, Bai L, Zhou YM, Zhang H, Cui YL. A Review of Non-Invasive Drug Delivery through Respiratory Routes. Pharmaceutics 2022; 14:1974. [PMID: 36145722 PMCID: PMC9506287 DOI: 10.3390/pharmaceutics14091974] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
With rapid and non-invasive characteristics, the respiratory route of administration has drawn significant attention compared with the limitations of conventional routes. Respiratory delivery can bypass the physiological barrier to achieve local and systemic disease treatment. A scientometric analysis and review were used to analyze how respiratory delivery can contribute to local and systemic therapy. The literature data obtained from the Web of Science Core Collection database showed an increasing worldwide tendency toward respiratory delivery from 1998 to 2020. Keywords analysis suggested that nasal and pulmonary drug delivery are the leading research topics in respiratory delivery. Based on the results of scientometric analysis, the research hotspots mainly included therapy for central nervous systems (CNS) disorders (Parkinson's disease, Alzheimer's disease, depression, glioblastoma, and epilepsy), tracheal and bronchial or lung diseases (chronic obstructive pulmonary disease, asthma, acute lung injury or respiratory distress syndrome, lung cancer, and idiopathic pulmonary fibrosis), and systemic diseases (diabetes and COVID-19). The study of advanced preparations contained nano drug delivery systems of the respiratory route, drug delivery barriers investigation (blood-brain barrier, BBB), and chitosan-based biomaterials for respiratory delivery. These results provided researchers with future research directions related to respiratory delivery.
Collapse
Affiliation(s)
- Yong-Bo Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Dong Xu
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Lu Bai
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yan-Ming Zhou
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
7
|
Zhang M, Zhang Z, Song X, Zhu J, Sng JA, Li J, Wen Y. Synthesis and Characterization of Palmitoyl- block-poly(methacryloyloxyethyl Phosphorylcholine) Polymer Micelles for Anticancer Drug Delivery. Biomacromolecules 2022; 23:4586-4596. [DOI: 10.1021/acs.biomac.2c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Miao Zhang
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Zhongxing Zhang
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Xia Song
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jing An Sng
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
- National University of Singapore (Chongqing) Research Institute, 2 Huizhu Road, Yubei District, Chongqing 401120, China
| | - Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- National University of Singapore (Chongqing) Research Institute, 2 Huizhu Road, Yubei District, Chongqing 401120, China
| |
Collapse
|
8
|
Multidrug Resistance (MDR): A Widespread Phenomenon in Pharmacological Therapies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030616. [PMID: 35163878 PMCID: PMC8839222 DOI: 10.3390/molecules27030616] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Multidrug resistance is a leading concern in public health. It describes a complex phenotype whose predominant feature is resistance to a wide range of structurally unrelated cytotoxic compounds, many of which are anticancer agents. Multidrug resistance may be also related to antimicrobial drugs, and is known to be one of the most serious global public health threats of this century. Indeed, this phenomenon has increased both mortality and morbidity as a consequence of treatment failures and its incidence in healthcare costs. The large amounts of antibiotics used in human therapies, as well as for farm animals and even for fishes in aquaculture, resulted in the selection of pathogenic bacteria resistant to multiple drugs. It is not negligible that the ongoing COVID-19 pandemic may further contribute to antimicrobial resistance. In this paper, multidrug resistance and antimicrobial resistance are underlined, focusing on the therapeutic options to overcome these obstacles in drug treatments. Lastly, some recent studies on nanodrug delivery systems have been reviewed since they may represent a significant approach for overcoming resistance.
Collapse
|
9
|
Nano Drug Delivery Systems: Effective Therapy Strategies to Overcome Multidrug Resistance in Tumor Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Pham-Nguyen OV, Lee JW, Park Y, Jin S, Kim SR, Jung YM, Yoo HS. Atom transfer radical-polymerized cationic shells on gold nanoparticles for near infrared-triggered photodynamic therapy of tumor-bearing animals. J Mater Chem B 2021; 9:9700-9710. [PMID: 34779468 DOI: 10.1039/d1tb02004h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold nanoparticles (AuNPs) were surface-engineered with a cationic corona to enhance the incorporation of photosensitizers for photodynamic therapy (PDT). The cationic corona composed of poly(2-(dimethylamino)ethyl methacrylate) was atom transfer radical-polymerized on the surface of the AuNPs. The cationic corona of the engineered surface was characterized by dynamic light scattering, electron microscopy, Raman spectroscopy, and mass spectroscopy. Chlorin-e6 (Ce6) incorporated onto the surface-engineered AuNPs exhibited higher cell incorporation efficiency than bare AuNPs. Ce6-incorporated AuNPs were confirmed to release singlet oxygen upon NIR irradiation. Compared to Ce6, Ce6-incorporated AuNPs exhibited higher cellular uptake and cytotoxicity against cancer cells in an irradiation time-dependent manner. Near-infrared-irradiated animals administered Ce6-incorporated AuNPs exhibited higher levels of tumor suppression without noticeable body weight loss. This result was attributed to the higher localization of Ce6 at the tumor sites to induce cancer cell apoptosis. Thus, we envision that engineered AuNPs with cationic corona can be tailored to effectively deliver photosensitizers to tumor sites for photodynamic therapy.
Collapse
Affiliation(s)
- Oanh-Vu Pham-Nguyen
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Ju Won Lee
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sila Jin
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Song Rae Kim
- Korea Basic Science Institute, Chuncheon Center, Chuncheon, 24341, Republic of Korea
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Institute of Bioscience and Biotechnology, Kangwon National University, Republic of Korea
| |
Collapse
|
11
|
Zhao R, Ning X, Wang M, Yu A, Wang Y. A multifunctional nano-delivery system enhances the chemo- co-phototherapy of tumor multidrug resistance via mitochondrial-targeting and inhibiting P-glycoprotein-mediated efflux. J Mater Chem B 2021; 9:9174-9182. [PMID: 34698329 DOI: 10.1039/d1tb01658j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite the excellent progress of chemotherapy and phototherapy in tumor treatment, their effectiveness on multidrug-resistant (MDR) tumors is still unsatisfactory. One of the main obstacles is drug efflux caused by P-glycoprotein in MDR cells. Herein, we developed a nano-delivery system that combines a P-glycoprotein inhibitor with chemotherapy and phototherapy to overcome MDR. Briefly, the system is prepared by the self-assembly of a ROS-triggered doxorubicin prodrug (PTD) and mitochondrial-targeted D-α-tocopherol polyethyleneglycol succinate (TPP-TPGS), in which a photoactive drug, IR780, is encapsulated (PTD/TT/IR780). PTD/TT/IR780 can target the release of TPP-TPGS, doxorubicin and IR780 at the mitochondrial site of MDR cells through ROS trigger. D-α-Tocopherol polyethyleneglycol succinate (TPGS) is a P-glycoprotein inhibitor, which will reduce the efflux of doxorubicin and IR780 from MDR cells. Under irradiation of an 808 nm near-infrared laser, IR780 generates heat and ROS, causing mitochondrial damage and prompting MDR cell apoptosis. At the same time, ROS can reduce the ATP content, which inhibits the P-glycoprotein function. In addition, an increase in the ROS generates positive feedback, allowing more nanoparticles to be cleaved and further promoting payload release in MDR cells, thereby enhancing the synergistic efficacy of chemotherapy and phototherapy. The in vitro cellular assay showed that PTD/TT/IR780 significantly inhibited MDR cell proliferation at a very low drug concentration (IC50 = 0.27 μg mL-1 doxorubicin-equivalent concentration). In vivo animal experiments based on BALB/c nude mice bearing MCF-7/ADR tumors confirmed a superior antitumor efficacy and an excellent biosafety profile. These findings demonstrate that this multifunctional nanoplatform provides a new approach for the treatment of MDR tumors.
Collapse
Affiliation(s)
- Runze Zhao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Xiaoyue Ning
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Mengqi Wang
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ao Yu
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjian Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
12
|
Lai X, Geng X, Li M, Tang M, Liu Q, Yang M, Shen L, Zhu Y, Wang S. Glutathione-responsive PLGA nanocomplex for dual delivery of doxorubicin and curcumin to overcome tumor multidrug resistance. Nanomedicine (Lond) 2021; 16:1411-1427. [PMID: 34047204 DOI: 10.2217/nnm-2021-0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: This work aims to develop an injectable nano-drug delivery system to overcome tumor multidrug resistance (MDR). Methods: A drug delivery nanoplatform based on PEGylated PLGA with glutathione (GSH) responsivity was constructed for dual delivery of doxorubicin and curcumin (termed DCNP), and its MDR reversal efficiency was studied in vitro and in vivo. Results: The DCNPs exhibited a rapid drug release profile under high GSH concentration and could enhance the cellular uptake and cytotoxicity of doxorubicin to MDR cancer cells. Moreover, the DCNPs showed better biocompatibility, longer blood circulation and enhanced antitumor efficiency compared with free drugs. Conclusion: The GSH-responsive nanocarrier is believed to be a promising candidate for overcoming tumor MDR.
Collapse
Affiliation(s)
- Xuandi Lai
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, PR China
| | - Xinran Geng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Mengqing Li
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, PR China
| | - Mengxiong Tang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, PR China
| | - Qiong Liu
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, PR China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Yu Zhu
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, PR China
| | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, PR China
| |
Collapse
|
13
|
Yuan T, Sun J, Tian J, Hu J, Yin H, Yin J. Involvement of ABC transporters in the detoxification of non-substrate nanoparticles in lung and cervical cancer cells. Toxicology 2021; 455:152762. [PMID: 33766574 DOI: 10.1016/j.tox.2021.152762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
This paper aimed to systemically investigate the role of adenosine triphosphate-binding cassette (ABC transporters) in the detoxification of non-substrate nanoparticles including titanium dioxide (n-TiO2, 5-10 nm) and gold (AuNPs, 3 nm, 15 nm, and 80 nm, named as Au-3, Au-15 and Au-80) in human lung cancer (A549) and human cervical cancer (HeLa) cells. All these nanoparticles were of larger hydrophilic diameters than the channel sizes of ABC transporters, thus should not be the substrates of membrane proteins. After 24-h treatment, they induced significant cytotoxicity as reflected by the reduction in cell viability and glutathione (GSH) contents, as well as the increase in reactive oxygen species (ROS) level. At median-lethal concentrations (10 mg/L n-TiO2, 2 mg/L Au-3, 5 mg/L Au-15, and 10 mg/L Au-80 for A549 cells; 20 mg/L n-TiO2, 2 mg/L Au-3, 5 mg/L Au-15, and 10 mg/L Au-80 for Hela cells), all the nanoparticles significantly induced the gene expressions and activities of ABC transporters including P-glycoprotein (PGP) and multidrug resistance associated protein 1 (MRP1). Addition of transporter inhibitors enhanced the ROS levels produced by nanoparticles, but didn't alter their death-inducing effects and intracellular accumulations. With specific suppressors, transcription factors like nuclear factor-erythroid 2-related factor-2 (NRF2) and pregnane X receptor (PXR) were proved to be important in the induction of ABC transporters by nanoparticles. After all, this paper revealed a damage-dependent modulation of ABC transporters by non-substrate nanoparticles. The up-regulated ABC transporters could help in reducing the oxidative stress produced by nanoparticles. Such information should be useful in assessing the environmental risk of nanoparticles, as well as their interactions with other chemical toxicants or drugs.
Collapse
Affiliation(s)
- Tongkuo Yuan
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Jinan Guo Ke Medical Technology Development Co., Ltd, PR China
| | - Jiaojiao Sun
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jingjing Tian
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Academy for Engineering & Technology, Fudan University, Shanghai 200433, PR China
| | - Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Huancai Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Jinan Guo Ke Medical Technology Development Co., Ltd, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| | - Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Jinan Guo Ke Medical Technology Development Co., Ltd, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
14
|
Khot VM, Salunkhe AB, Pricl S, Bauer J, Thorat ND, Townley H. Nanomedicine-driven molecular targeting, drug delivery, and therapeutic approaches to cancer chemoresistance. Drug Discov Today 2020; 26:724-739. [PMID: 33359624 DOI: 10.1016/j.drudis.2020.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/13/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Cancer cell resistance to chemotherapeutics (chemoresistance) poses a significant clinical challenge that oncology research seeks to understand and overcome. Multiple anticancer drugs and targeting agents can be incorporated in nanomedicines, in addition to different treatment modalities, forming a single nanoplatform that can be used to address tumor chemoresistance. Nanomedicine-driven molecular assemblies using nucleic acids, small interfering (si)RNAs, miRNAs, and aptamers in combination with stimuli-responsive therapy improve the pharmacokinetic (PK) profile of the drugs and enhance their accumulation in tumors and, thus, therapeutic outcomes. In this review, we highlight nanomedicine-driven molecular targeting and therapy combination used to improve the 3Rs (right place, right time, and right dose) for chemoresistant tumor therapies.
Collapse
Affiliation(s)
- Vishwajeet M Khot
- Department of Medical Physics, Center for Interdisciplinary Research, D.Y. Patil Education Society (Institution Deemed to be University), Kolhapur 416006, MS, India.
| | | | - Sabrina Pricl
- MolBNL@UniTS-DEA University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-137 Lodz, Poland
| | - Joanna Bauer
- Department of Biomedical Engineering, Faculty of Fundamental Technology, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland
| | - Nanasaheb D Thorat
- Nuffield Department of Women's & Reproductive Health, Division of Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Department of Engineering Science, University of Oxford, South Parks Road, Oxford, OX1 3PJ, UK.
| | - Helen Townley
- Nuffield Department of Women's & Reproductive Health, Division of Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Department of Engineering Science, University of Oxford, South Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|