1
|
Knappe GA, Gorman J, Bigley AN, Harvey SP, Bathe M. Heterovalent Click Reactions on DNA Origami. Bioconjug Chem 2025; 36:476-485. [PMID: 40042652 DOI: 10.1021/acs.bioconjchem.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Nucleic acid nanoparticles (NANPs) fabricated by using the DNA origami method have broad utility in materials science and bioengineering. Their site-specific, heterovalent functionalization with secondary molecules such as proteins or fluorophores is a unique feature of this technology that drives its utility. Currently, however, there are few chemistries that enable fast, efficient covalent functionalization of NANPs with a broad conjugate scope and heterovalency. To address this need, we introduce synthetic methods to access inverse electron-demand Diels-Alder chemistry on NANPs. We demonstrate a broad conjugate scope, characterize application-relevant kinetics, and integrate this new chemistry with strain-promoted azide-alkyne cycloaddition chemistry to enable heterovalent click reactions on NANPs. We applied these chemistries to formulate a prototypical chemical countermeasure against chemical nerve agents. We envision this additional chemistry finding broad utility in the synthetic toolkit accessible to the nucleic acid nanotechnology community.
Collapse
Affiliation(s)
- Grant A Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffrey Gorman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew N Bigley
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, Oklahoma 73096, United States
| | - Steven P Harvey
- U.S. Army Edgewood Chemical Biological Center, RDCB-DRC-C, Aberdeen Providing Ground, Maryland 21010, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Hao Z, Kong L, Ruan L, Deng Z. Recent Advances in DNA Origami-Enabled Optical Biosensors for Multi-Scenario Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1968. [PMID: 39683355 DOI: 10.3390/nano14231968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Over the past few years, significant progress has been made in DNA origami technology due to the unrivaled self-assembly properties of DNA molecules. As a highly programmable, addressable, and biocompatible nanomaterial, DNA origami has found widespread applications in biomedicine, such as cell scaffold construction, antimicrobial drug delivery, and supramolecular enzyme assembly. To expand the scope of DNA origami application scenarios, researchers have developed DNA origami structures capable of actively identifying and quantitatively reporting targets. Optical DNA origami biosensors are promising due to their fast-to-use, sensitive, and easy implementation. However, the conversion of DNA origami to optical biosensors is still in its infancy stage, and related strategies have not been systematically summarized, increasing the difficulty of guiding subsequent researchers. Therefore, this review focuses on the universal strategies that endow DNA origami with dynamic responsiveness from both de novo design and current DNA origami modification. Various applications of DNA origami biosensors are also discussed. Additionally, we highlight the advantages of DNA origami biosensors, which offer a single-molecule resolution and high signal-to-noise ratio as an alternative to traditional analytical techniques. We believe that over the next decade, researchers will continue to transform DNA origami into optical biosensors and explore their infinite possible uses.
Collapse
Affiliation(s)
- Ziao Hao
- State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Lijun Kong
- State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Longfei Ruan
- State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Zhengtao Deng
- State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Huang Y, Zhao Z, Yi G, Zhang M. Importance of DNA nanotechnology for DNA methyltransferases in biosensing assays. J Mater Chem B 2024; 12:4063-4079. [PMID: 38572575 DOI: 10.1039/d3tb02947f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
DNA methylation is the process by which specific bases on a DNA sequence acquire methyl groups under the catalytic action of DNA methyltransferases (DNMT). Abnormal changes in the function of DNMT are important markers for cancers and other diseases; therefore, the detection of DNMT and the selection of its inhibitors are critical to biomedical research and clinical practice. DNA molecules can undergo intermolecular assembly to produce functional aggregates because of their inherently stable physical and chemical properties and unique structures. Conventional DNMT detection methods are cumbersome and complicated processes; therefore, it is necessary to develop biosensing technology based on the assembly of DNA nanostructures to achieve rapid analysis, simple operation, and high sensitivity. The design of the relevant program has been employed in life science, anticancer drug screening, and clinical diagnostics. In this review, we explore how DNA assembly, including 2D techniques like hybridization chain reaction (HCR), rolling circle amplification (RCA), catalytic hairpin assembly (CHA), and exponential isothermal amplified strand displacement reaction (EXPAR), as well as 3D structures such as DNA tetrahedra, G-quadruplexes, DNA hydrogels, and DNA origami, enhances DNMT detection. We highlight the benefits of these DNA nanostructure-based biosensing technologies for clinical use and critically examine the challenges of standardizing these methods. We aim to provide reference values for the application of these techniques in DNMT analysis and early cancer diagnosis and treatment, and to alert researchers to challenges in clinical application.
Collapse
Affiliation(s)
- Yuqi Huang
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital, Chongqing 400050, China.
| | - Zixin Zhao
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Gang Yi
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Mingjun Zhang
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital, Chongqing 400050, China.
| |
Collapse
|
4
|
Nifker G, Grunwald A, Margalit S, Tulpova Z, Michaeli Y, Har-Gil H, Maimon N, Roichman E, Schütz L, Weinhold E, Ebenstein Y. Dam Assisted Fluorescent Tagging of Chromatin Accessibility (DAFCA) for Optical Genome Mapping in Nanochannel Arrays. ACS NANO 2023; 17:9178-9187. [PMID: 37154345 PMCID: PMC10210529 DOI: 10.1021/acsnano.2c12755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Proteins and enzymes in the cell nucleus require physical access to their DNA target sites in order to perform genomic tasks such as gene activation and transcription. Hence, chromatin accessibility is a central regulator of gene expression, and its genomic profile holds essential information on the cell type and state. We utilized the E. coli Dam methyltransferase in combination with a fluorescent cofactor analogue to generate fluorescent tags in accessible DNA regions within the cell nucleus. The accessible portions of the genome are then detected by single-molecule optical genome mapping in nanochannel arrays. This method allowed us to characterize long-range structural variations and their associated chromatin structure. We show the ability to create whole-genome, allele-specific chromatin accessibility maps composed of long DNA molecules extended in silicon nanochannels.
Collapse
Affiliation(s)
- Gil Nifker
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Assaf Grunwald
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Sapir Margalit
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Zuzana Tulpova
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yael Michaeli
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Hagai Har-Gil
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Noy Maimon
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Elad Roichman
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Leonie Schütz
- Institute
of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Elmar Weinhold
- Institute
of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Yuval Ebenstein
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
5
|
Knappe GA, Wamhoff EC, Bathe M. Functionalizing DNA origami to investigate and interact with biological systems. NATURE REVIEWS. MATERIALS 2023; 8:123-138. [PMID: 37206669 PMCID: PMC10191391 DOI: 10.1038/s41578-022-00517-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 05/21/2023]
Abstract
DNA origami has emerged as a powerful method to generate DNA nanostructures with dynamic properties and nanoscale control. These nanostructures enable complex biophysical studies and the fabrication of next-generation therapeutic devices. For these applications, DNA origami typically needs to be functionalized with bioactive ligands and biomacromolecular cargos. Here, we review methods developed to functionalize, purify, and characterize DNA origami nanostructures. We identify remaining challenges, such as limitations in functionalization efficiency and characterization. We then discuss where researchers can contribute to further advance the fabrication of functionalized DNA origami.
Collapse
Affiliation(s)
- Grant A. Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| | - Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| |
Collapse
|
6
|
Mathew SS, Ahamed AAS, Abraham I, Prabhu DD, John F, George J. Self‐Assemblies of DNA ‐ Amphiphiles Nanostructures for New Design Strategies of Varied Morphologies. ChemistrySelect 2022. [DOI: 10.1002/slct.202202146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - A A Subuhan Ahamed
- School of Chemistry University of Hyderabad Hyderabad 500046 Telangana India
| | - Ignatious Abraham
- Department of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala India 682013
| | - Deepak D Prabhu
- Department of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala India 682013
| | - Franklin John
- Department of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala India 682013
| | - Jinu George
- Department of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala India 682013
| |
Collapse
|
7
|
Tomkuvienė M, Meier M, Ikasalaitė D, Wildenauer J, Kairys V, Klimašauskas S, Manelytė L. Enhanced nucleosome assembly at CpG sites containing an extended 5-methylcytosine analogue. Nucleic Acids Res 2022; 50:6549-6561. [PMID: 35648439 PMCID: PMC9226530 DOI: 10.1093/nar/gkac444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Methylation of cytosine to 5-methylcytosine (mC) at CpG sites is a prevalent reversible epigenetic mark in vertebrates established by DNA methyltransferases (MTases); the attached methyl groups can alter local structure of DNA and chromatin as well as binding of dedicated proteins. Nucleosome assembly on methylated DNA has been studied extensively, however little is known how the chromatin structure is affected by larger chemical variations in the major groove of DNA. Here, we studied the nucleosome formation in vitro on DNA containing an extended 5mC analog, 5-(6-azidohex-2-ynyl)cytosine (ahyC) installed at biological relevant CpG sites. We found that multiple ahyC residues on 80-Widom and Hsp70 promoter DNA fragments proved compatible with nucleosome assembly. Moreover, unlike mC, ahyC increases the affinity of histones to the DNA, partially altering nucleosome positioning, stability, and the action of chromatin remodelers. Based on molecular dynamics calculations, we suggest that these new features are due to increased DNA flexibility at ahyC-modified sites. Our findings provide new insights into the biophysical behavior of modified DNA and open new ways for directed design of synthetic nucleosomes.
Collapse
Affiliation(s)
- Miglė Tomkuvienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Markus Meier
- Biochemistry III, University of Regensburg, Regensburg, Bavaria, DE-93053, Germany
| | - Diana Ikasalaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Julia Wildenauer
- Biochemistry III, University of Regensburg, Regensburg, Bavaria, DE-93053, Germany
| | - Visvaldas Kairys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Laura Manelytė
- Biochemistry III, University of Regensburg, Regensburg, Bavaria, DE-93053, Germany
| |
Collapse
|
8
|
DNA Labeling Using DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:535-562. [DOI: 10.1007/978-3-031-11454-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Knappe GA, Wamhoff EC, Read BJ, Irvine DJ, Bathe M. In Situ Covalent Functionalization of DNA Origami Virus-like Particles. ACS NANO 2021; 15:14316-14322. [PMID: 34490781 PMCID: PMC8628367 DOI: 10.1021/acsnano.1c03158] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
DNA origami is a powerful nanomaterial for biomedical applications due in part to its capacity for programmable, site-specific functionalization. To realize these applications, scalable and efficient conjugation protocols are needed for diverse moieties ranging from small molecules to biomacromolecules. Currently, there are no facile and general methods for in situ covalent modification and label-free quantification of reaction conversion. Here, we investigate the postassembly functionalization of DNA origami and the subsequent high-performance liquid chromatography-based characterization of these nanomaterials. Following this approach, we developed a versatile DNA origami functionalization and characterization platform. We observed quantitative in situ conversion using widely accessible click chemistry for carbohydrates, small molecules, peptides, polymers, and proteins. This platform should provide broader access to covalently functionalized DNA origami, as illustrated here by PEGylation for passivation and HIV antigen decoration to construct virus-like particle vaccines.
Collapse
Affiliation(s)
- Grant A. Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Benjamin J. Read
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Darrell J. Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, United States of America
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States of America
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to
| |
Collapse
|
10
|
Jalali E, Thorson JS. Enzyme-mediated bioorthogonal technologies: catalysts, chemoselective reactions and recent methyltransferase applications. Curr Opin Biotechnol 2021; 69:290-298. [PMID: 33901763 DOI: 10.1016/j.copbio.2021.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/28/2022]
Abstract
Transferases have emerged as among the best catalysts for enzyme-mediated bioorthogonal functional group installation to advance innovative in vitro, cell-based and in vivo chemical biology applications. This review introduces the key considerations for selecting enzyme catalysts and chemoselective reactions most amenable to bioorthogonal platform development and highlights relevant key technology development and applications for one ubiquitous transferase subclass - methyltransferases (MTs). Within this context, recent advances in MT-enabled bioorthogonal labeling/conjugation relevant to DNA, RNA, protein, and natural products (i.e. complex small molecule metabolites) are highlighted.
Collapse
Affiliation(s)
- Elnaz Jalali
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536, United States
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536, United States; Center for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, Lexington, KY 40536, United States.
| |
Collapse
|