1
|
Liu KX, Yang J, Li QS. Enhanced Performance via End-Group Alteration of Benzodithiophene-Based Donors for Organic Solar Cells: a Theoretical Study. Chem Asian J 2025; 20:e202401245. [PMID: 39589114 DOI: 10.1002/asia.202401245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
Donor in organic solar cells (OSCs) is essential for promoting charge transport and enhancing photoelectric conversion efficiency. In this work, five new donors M1-M5 were designed by changing the end group to 3-hexyl-2,4-dithiothiazolidine, dicyano-hexylrhodanine, 1,1-dicyanomethylene-3-indanone, 1,3-indenedione and 1,1-dicyano-5,6-difluoroindanone, respectively. The optoelectronic properties of the six donors and their interfacial properties with the well-known acceptor Y6 were studied by density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The calculation results show that the absorption ranges of M1-M5 in the visible light region are expanded, the red shift degrees of M1 and M3 are obvious (73 nm, 63 nm), and the light absorption abilities are obviously improved. The hole migration efficiency of M2, M4 and M5 is improved, which is beneficial to improve the charge transfer efficiency. The proportion of charge transfer states at the M1/Y6 and M4/Y6 interfaces increased by 7.5 % and 2.5 %, respectively. Moreover, the charge transfer states generated at the M1/Y6 interface through the intermolecular electric field mechanism and hot exciton mechanism are more dominant. Our calculation results not only provide several potential small molecule donors for experimental synthesis, but also have certain reference value for understanding the charge transfer mechanism at the donor/acceptor (D/A) interface.
Collapse
Affiliation(s)
- Kai-Xin Liu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jie Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Quan-Song Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
2
|
Wang LL, Han JH, Zhou HP, Pan QQ, Zhao ZW, Su Z. Superior End-Group Stacking Promotes Simultaneous Multiple Charge-Transfer Mechanisms in Organic Solar Cells with an All-Fused-Ring Nonfullerene Acceptor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35390-35399. [PMID: 38922684 DOI: 10.1021/acsami.4c05136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The all-fused-ring acceptor (AFRA) is a success for nonfullerene materials and has attracted considerable attention as its high optical and chemical stability expected to reduce energy loss, and power conversion efficiency (PCE) approaching 15% in constructed all-small-molecule organic solar cells (OSCs). Herein, the intrinsic role of the structure of AFRA F13 and the reason for its high PCE were revealed by comparison with those of typical fused acceptors IDT-IC and Y6. An increased degree of conjugation in F13 leads to broader and red-shifted absorption peaks, facilitating enhancement of the short-circuit current. Multiple charge-transfer mechanisms are mainly attributed to the higher Frenkel exciton (FE) state due to the multiple transition ways for acceptors in the C1-CN:F13 system. The increased number of atoms contributing to the charge-transfer (CT) state facilitated the existence of more superior stacking patterns with easy formation of CT and FE/CT states and a high charge separation rate. It was found using the AFRA is an effective strategy to enhance end-group stacking, enhancing the borrowing of oscillator strength to promote multiple CT mechanisms in the complexes, explaining the high performance of this OSC device. This work is promising to guide designing an efficient AFRA in the future.
Collapse
Affiliation(s)
- Li-Li Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China
| | - Jin-Hong Han
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China
| | - Hai-Ping Zhou
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China
| | - Qing-Qing Pan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China
| | - Zhi-Wen Zhao
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhongmin Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
3
|
Chen M, Liu J, Cao Y, Liu Q. The novel non-fully-fused ring small molecule acceptors: End-capped modification investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124034. [PMID: 38367344 DOI: 10.1016/j.saa.2024.124034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/15/2023] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
End-capped modification is an efficacious strategy for developing high-performance acceptor materials. In this paper, the experimentally synthesized A-D-A'-D-A type non-fully-fused ring acceptor IDTBT-4F (R) was used as a reference molecule, and five small molecule acceptors for R1-R5 were investigated by changing R's terminal functional groups. By using DFT/B3PW91/6-31G (d,p) method, the ground-state structures of all molecules were studied. The absorption spectra of these acceptors were gained by the TD-DFT/MPW1PW91/6-31G (d,p) approach. Meanwhile, the charge density difference and transition density matrix were analyzed effectively. It can be observed that, compared to the R molecule, all developed molecules exhibited narrower energy gaps, larger absorption wavelengths, more red-shifted absorption spectra, lower excitation energies, higher dipole moment and greater electron-accepting capacity. The strategy of functional group substitution is superior to halogen substitution in improving the aforementioned parameters. Both terminal π-extension and end-group chlorination strategies can synergistically enhance molecular performance. In addition, we also calculated the electron mobility of the dimers constructed by all the molecules, among which R1 and R4 molecules designed with -COOCH3 functional group substitution and R2 molecule with terminal chlorination achieved superior electron mobility compared to R molecule due to their significant electronic coupling. Overall, the study shows that the designed molecules can be highly effective candidates for applications of organic solar cells.
Collapse
Affiliation(s)
- Minmin Chen
- College of Science, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Jinglin Liu
- College of Science, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Yajie Cao
- College of Science, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Qian Liu
- Department of Applied Physics, Xi'an University of Technology, Xi'an 710054, Shaanxi, China.
| |
Collapse
|
4
|
Zubair H, Akhter MS, Waqas M, Ishtiaq M, Bhatti IA, Iqbal J, Skawky AM, Khera RA. A computational insight into enhancement of photovoltaic properties of non-fullerene acceptors by end-group modulations in the structural framework of INPIC molecule. J Mol Graph Model 2024; 126:108664. [PMID: 37948853 DOI: 10.1016/j.jmgm.2023.108664] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Improving the open circuit voltage is a major challenge for enhancing the overall efficiency of organic solar cells. Current work has concentrated on improving open-circuit voltage by designing new molecular frameworks from an INPIC molecule having a conjugated fused core. We modulated the structure by changing the terminal groups of the reference molecule (INPIC) with seven strong electron-withdrawing units. We investigated various optoelectronic attributes, charge transfer, and photovoltaic and geometrical parameters by compiling the B3LYP/6-31G(d,p) functional of the DFT approach. The optical absorption for modulated molecules ranges from 748.51 nm to 845.96 nm while showing higher oscillation strength than INPIC. At the same time, their impressive charge transport is attributed to their smaller excitation and exciton binding energy, higher electron/hole mobility, narrower band gap, and a more than 99 % intramolecular charge transfer. The larger dipole moments help in the dense interaction of acceptors with employed donor J61 which, in turn, improves charge transfer at the donor-acceptor interface. One of the triumphs that are difficult to get in organic molecules is success in achieving a higher open circuit voltage (VOC). Our conceptualized molecular frameworks of acceptors are featured with a notable VOC improvement in the range of 1.84-2.05 eV. Thus, the results of the current investigation pave the root for architecting the acceptor molecules with impressive optoelectrical properties that may be capable of providing high photovoltaic output. Thus these acceptors can be utilized for the development of advanced organic solar cells in future.
Collapse
Affiliation(s)
- Hira Zubair
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhamed Salim Akhter
- Department of Chemistry, College of Science, University of Bahrain, P. O. Box 32028, Bahrain.
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Mariam Ishtiaq
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ijaz Ahmed Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ahmed M Skawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
5
|
Liu KX, Yang J, Bai Y, Li QS. Designing Benzodithiophene-Based Small Molecule Donors for Organic Solar Cells by Regulation of Halogenation Effects. J Phys Chem A 2023; 127:8985-8993. [PMID: 37874943 DOI: 10.1021/acs.jpca.3c04347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The donors are key components of organic solar cells (OSCs) and play crucial roles in their photovoltaic performance. Herein, we designed two new donors (BTR-γ-Cl and BTR-γ-F) by finely optimizing small molecule donors (BTR-Cl and BTR-F) with a high performance. The optoelectronic properties of the four donors and their interfacial properties with the well-known acceptor Y6 were studied by density functional theory and time-dependent density functional theory. Our calculations show that the studied four donors have large hole mobility and strong interactions with Y6, where the BTR-γ-Cl/Y6 has the largest binding energy. Importantly, the proportion of charge transfer (CT) states increases at the BTR-γ-Cl/Y6 (50%) and BTR-γ-F/Y6 (45%) interfaces. The newly designed donors are more likely to achieve CT states through intermolecular electric field (IEF) and hot exciton mechanisms than the parent molecules; meanwhile, donors containing Cl atoms are more inclined to produce CT states through the direct excitation mechanism than those containing F atoms. Our results not only provided two promising donors but also shed light on the halogenation effects on donors in OSCs, which might be important to design efficient photovoltaic materials.
Collapse
Affiliation(s)
- Kai-Xin Liu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yang Bai
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Quan-Song Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Huang SQ, Wang LL, Pan QQ, Zhao ZW, Gao Y, Su ZM. A Theoretical Study on the Underlying Factors of the Difference in Performance of Organic Solar Cells Based on ITIC and Its Isomers. Molecules 2023; 28:6968. [PMID: 37836811 PMCID: PMC10574239 DOI: 10.3390/molecules28196968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, non-fullerene-based organic solar cells (OSCs) have made great breakthroughs, and small structural differences can have dramatic impacts on the power conversion efficiency (PCE). We take ITIC and its isomers as examples to study their effects on the performance of OSCs. ITIC and NFBDT only differed in the side chain position, and they were used as models with the same donor molecule, PBDB-T, to investigate the main reasons for the difference in their performance in terms of theoretical methods. In this work, a detailed comparative analysis of the electronic structure, absorption spectra, open circuit voltage and interfacial parameters of the ITIC and NFBDT systems was performed mainly by combining the density functional theory/time-dependent density functional theory and molecular dynamics simulations. The results showed that the lowest excited state of the ITIC molecule possessed a larger ∆q and more hybrid FE/CT states, and PBDB-T/ITIC had more charge separation paths as well as a larger kCS and smaller kCR. The reason for the performance difference between PBDB-T/ITIC and PBDB-T/NFBDT was elucidated, suggesting that ITIC is a superior acceptor based on a slight modulation of the side chain and providing a guiding direction for the design of superior-performing small molecule acceptor materials.
Collapse
Affiliation(s)
- Si-Qi Huang
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Li-Li Wang
- Jilin Provincial Key Laboratory of Straw–Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China;
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun 130022, China; (Q.-Q.P.); (Z.-M.S.)
| | - Qing-Qing Pan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun 130022, China; (Q.-Q.P.); (Z.-M.S.)
| | - Zhi-Wen Zhao
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Ying Gao
- Jilin Provincial Key Laboratory of Straw–Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China;
| | - Zhong-Min Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun 130022, China; (Q.-Q.P.); (Z.-M.S.)
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
7
|
Incorporation of a Boron-Nitrogen Covalent Bond Improves the Charge-Transport and Charge-Transfer Characteristics of Organoboron Small-Molecule Acceptors for Organic Solar Cells. Molecules 2023; 28:molecules28020811. [PMID: 36677871 PMCID: PMC9861936 DOI: 10.3390/molecules28020811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
An organoboron small-molecular acceptor (OSMA) MB←N containing a boron-nitrogen coordination bond (B←N) exhibits good light absorption in organic solar cells (OSCs). In this work, based on MB←N, OSMA MB-N, with the incorporation of a boron-nitrogen covalent bond (B-N), was designed. We have systematically investigated the charge-transport properties and interfacial charge-transfer characteristics of MB-N, along with MB←N, using the density functional theory (DFT) and the time-dependent density functional theory (TD-DFT). Theoretical calculations show that MB-N can simultaneously boost the open-circuit voltage (from 0.78 V to 0.85 V) and the short-circuit current due to its high-lying lowest unoccupied molecular orbital and the reduced energy gap. Moreover, its large dipole shortens stacking and greatly enhances electron mobility by up to 5.91 × 10-3 cm2·V-1·s-1. Notably, the excellent interfacial properties of PTB7-Th/MB-N, owing to more charge transfer states generated through the direct excitation process and the intermolecular electric field mechanism, are expected to improve OSCs performance. Together with the excellent properties of MB-N, we demonstrate a new OSMA and develop a new organoboron building block with B-N units. The computations also shed light on the structure-property relationships and provide in-depth theoretical guidance for the application of organoboron photovoltaic materials.
Collapse
|
8
|
Sabir S, Hadia N, Iqbal J, Mehmood RF, Akram SJ, Khan MI, Shawky AM, Raheel M, Somaily H, Khera RA. DFT molecular modeling of A2-D-A1-D-A2 type DF-PCIC based small molecules acceptors for organic photovoltaic cells. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
In silico modelling of acceptor materials by End-capped and π-linker modifications for High-Performance organic solar Cells: Estimated PCE > 18%. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Yang J, Ding WL, Li QS, Li ZS. Theoretical Study of Non-Fullerene Acceptors Using End-Capped Groups with Different Electron-Withdrawing Abilities toward Efficient Organic Solar Cells. J Phys Chem Lett 2022; 13:916-922. [PMID: 35049301 DOI: 10.1021/acs.jpclett.1c03943] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acceptors in organic solar cells (OSCs) are of paramount importance. On the basis of the well-known non-fullerene acceptor Y6, six acceptors (Y6-COH, Y6-COOH, Y6-CN, Y6-SO2H, Y6-CF3, and Y6-NO2) were designed by end-capped manipulation. The effects of end-capped engineering on electronic properties, optical properties, and interfacial charge-transfer states were systematically studied by density functional theory, time-dependent density functional theory, and molecular dynamics. The designed acceptors possess suitable energy levels and improved optical properties. More importantly, the electron mobility of the new acceptors was greatly enhanced, even more than 20 times that of the parent molecule. Among them, Y6-NO2 with the lowest-lying frontier molecular orbitals and the largest red-shifted absorption was selected to construct interfaces with the donor PM6. PM6/Y6-NO2 exhibits stronger interfacial interactions and enhanced charge-transfer characteristics compared with PM6/Y6. This work not only enhances the understanding of the structure-property relationship for acceptors but also offers a set of promising acceptors for high-performance OSCs.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wei-Lu Ding
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Quan-Song Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ze-Sheng Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
11
|
Yang J, Li QS, Li ZS. Theoretical design of asymmetric A-D 1A'D 2-A type non-fullerene acceptors for organic solar cells. Phys Chem Chem Phys 2021; 23:12321-12328. [PMID: 34019060 DOI: 10.1039/d1cp01155c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The acceptor in organic solar cells (OSCs) is of paramount importance for achieving a high photovoltaic performance. Based on the well-known non-fullerene acceptor Y6, we designed a set of asymmetric A-D1A'D2-A type new acceptors Y6-C, Y6-N, Y6-O, Y6-Se, and Y6-Si by substituting the two S atoms of one thieno[3,2-b]thiophene unit with C, N, O, Se, and Si atoms, respectively. The electronic, optical, and crystal properties of Y6 and the designed acceptors, as well as the interfacial charge-transfer (CT) mechanisms between the donor PM6 and the investigated acceptors have been systematically studied. It is found that the newly designed asymmetric acceptors possess suitable energy levels and strong interactions with the donor PM6. Importantly, the newly designed acceptors exhibit enhanced light harvesting ability and more CT states with larger oscillator strengths in the 40 lowest excited states. Among the multiple CT mechanisms, the direct excitation of CT states is found to be more favored in the case of PM6/newly designed acceptors than that of PM6/Y6. This work not only offers a set of promising acceptors superior to Y6, but also demonstrates that designing acceptors with asymmetric structure could be an effective strategy to improve the performance of OSCs.
Collapse
Affiliation(s)
- Jie Yang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China.
| | - Quan-Song Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China.
| | - Ze-Sheng Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|