1
|
Zhang M, Wang Z, Su Y, Yan W, Ouyang Y, Fan Y, Huang Y, Yang H. TDP1 represents a promising therapeutic target for overcoming tumor resistance to chemotherapeutic agents: progress and potential. Bioorg Chem 2025; 154:108072. [PMID: 39705934 DOI: 10.1016/j.bioorg.2024.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme that plays a crucial role in repairing DNA lesions caused by the entrapment of DNA topoisomerase IB (TOP1)-DNA break-associated crosslinks. TDP1 inhibitors exhibit synergistic effects with TOP1 inhibitors in cancer cells, effectively overcoming resistance to TOP1 inhibitors. Therefore, this approach presents a promising strategy for reversing tumor resistance to TOP1 inhibitors. This review comprehensively outlines the structural and biological features of TDP1, the substrates involved in its catalytic hydrolysis, and its potential as a therapeutic target in oncology. Additionally, we summarize the various screening methods used to identify TDP1 inhibitors, alongside the latest advancements in TDP1 inhibitor research.
Collapse
Affiliation(s)
- Meimei Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Ziqiang Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yan Su
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Wenbo Yan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yifan Ouyang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, School of Medicine, Ningde Normal University, Ningde, Fujian 352100, People's Republic of China.
| | - Yanru Fan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Yu Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Hao Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| |
Collapse
|
2
|
Lee D, Lee S, Jang YS, Ryoo R, Kim JK, Kang KS, Kim KH. N, N-Dimethyl-anthranilic Acid from Calvatia nipponica Mushroom Fruiting Bodies Induces Apoptotic Effects on MDA-MB-231 Human Breast Cancer Cells. Nutrients 2023; 15:3091. [PMID: 37513511 PMCID: PMC10386113 DOI: 10.3390/nu15143091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer ranks among the most prevalent malignancies affecting women worldwide, and apoptosis-targeting drugs are attractive candidates for the treatment of cancer. In the current study, we investigated the in vitro cytotoxicity of the mushroom Calvatia nipponica in human breast cancer cells (MDA-MB-231), identified potential antitumor compounds through bioactivity-guided isolation, and elucidated the antitumor, pro-apoptotic molecular mechanisms of the identified bioactive compounds. C. nipponica is edible when young, and it has been used as a food source as well as a traditional medicine in wound dressings. However, only a limited number of studies have reported its chemical composition and biological activities. In the screening test, the methanol extract of C. nipponica fruiting bodies exhibited cytotoxicity against MDA-MB-231 cells. Bioactivity-guided fractionation of the methanol (MeOH) extract and chemical investigation of the active fractions resulted in the isolation of fourteen compounds (1-14), including six alkaloids (1-3, 5, 7, and 8), two phenolic compounds (4 and 6), one fatty acid (9), and five steroids (10-14). The structures of the isolated compounds were determined using NMR spectroscopic methods, liquid chromatography-mass spectrometry, and comparison of data with previously reported values. The isolated compounds (1-14) were tested for cytotoxicity against MDA-MB-231 cells, where compound 1, i.e., N,N-dimethyl-anthranilic acid, exhibited the most significant cytotoxicity against MDA-MB-231 cells, with an IC50 value of 90.28 ± 4.23 μM and apoptotic cell death of 56.01% ± 2.64% at 100 μM. Treatment with compound 1 resulted in an upregulation of protein levels, including cleaved caspase-8, cleaved poly (ADP-ribose) polymerase, Bcl-2-associated X protein (Bax), cleaved caspase-3, cleaved caspase-9, Bad, and Cytochrome c, but decreased the levels of B-cell lymphoma 2 (Bcl-2). Overall, these results indicate that N,N-dimethyl-anthranilic acid (1) may have anti-breast cancer activity and is probably involved in the induction of apoptosis mediated by extrinsic and intrinsic signaling pathways.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Seulah Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yoon Seo Jang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Rhim Ryoo
- Special Forest Products Division, Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Yang H, Qin C, Wu M, Wang FT, Wang W, Agama K, Pommier Y, Hu DX, An LK. Synthesis and Biological Activities of 11- and 12-Substituted Benzophenanthridinone Derivatives as DNA Topoisomerase IB and Tyrosyl-DNA Phosphodiesterase 1 Inhibitors. ChemMedChem 2023; 18:e202200593. [PMID: 36932053 PMCID: PMC10233710 DOI: 10.1002/cmdc.202200593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/06/2023] [Indexed: 03/19/2023]
Abstract
Herein, a series of 11- or 12-substituted benzophenanthridinone derivatives was designed and synthesized for the discovery of dual topoisomerase IB (TOP1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors. Enzyme-based assays indicated that two compounds 12 and 38 showed high TOP1 inhibitory potency (+++), and four compounds 35, 37, 39 and 43 showed good TDP1 inhibition with IC50 values ranging from 10 to 18 μM. 38 could induce cellular TOP1cc formation, resulting in the highest cytotoxicity against HCT-116 cells (0.25 μM). The most potent TDP1 inhibitor 43 (10 μM) could induce cellular TDP1cc formation and enhance topotecan-induced DNA damage and showed strong synergistic cytotoxicity with topotecan in both MCF-7 and MCF-7/TDP1 cells.
Collapse
Affiliation(s)
- Hao Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P. R. China
| | - Chao Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Min Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Fang-Ting Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Wenjie Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keli Agama
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - De-Xuan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
4
|
Yang H, Wang FT, Wu M, Wang W, Agama K, Pommier Y, An LK. Synthesis of 11-aminoalkoxy substituted benzophenanthridine derivatives as tyrosyl-DNA phosphodiesterase 1 inhibitors and their anticancer activity. Bioorg Chem 2022; 123:105789. [PMID: 35429714 PMCID: PMC10557912 DOI: 10.1016/j.bioorg.2022.105789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 11/19/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme that repairs DNA lesions caused by the trapping of DNA topoisomerase IB (TOP1)-DNA break-associated crosslinks. TDP1 inhibitors have synergistic effect with TOP1 inhibitors in cancer cells and can overcome cancer cell resistance to TOP1 inhibitors. Here, we report the synthesis of 11-aminoalkoxy substituted benzophenanthridine derivatives as selective TDP1 inhibitors and show that six compounds 14, 16, 18, 20, 25 and 27 exhibit high TDP1 inhibition potency. The most potent TDP1 inhibitor 14 (IC50 = 1.7 ± 0.24 μM) induces cellular TDP1cc formation and shows synergistic effect with topotecan in four human cancer cell lines MCF-7, A549, H460 and HepG2.
Collapse
Affiliation(s)
- Hao Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang-Ting Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenjie Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Keli Agama
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510006, China.
| |
Collapse
|
5
|
Zhabinskii VN, Drasar P, Khripach VA. Structure and Biological Activity of Ergostane-Type Steroids from Fungi. Molecules 2022; 27:2103. [PMID: 35408501 PMCID: PMC9000798 DOI: 10.3390/molecules27072103] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mushrooms are known not only for their taste but also for beneficial effects on health attributed to plethora of constituents. All mushrooms belong to the kingdom of fungi, which also includes yeasts and molds. Each year, hundreds of new metabolites of the main fungal sterol, ergosterol, are isolated from fungal sources. As a rule, further testing is carried out for their biological effects, and many of the isolated compounds exhibit one or another activity. This study aims to review recent literature (mainly over the past 10 years, selected older works are discussed for consistency purposes) on the structures and bioactivities of fungal metabolites of ergosterol. The review is not exhaustive in its coverage of structures found in fungi. Rather, it focuses solely on discussing compounds that have shown some biological activity with potential pharmacological utility.
Collapse
Affiliation(s)
- Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| | - Pavel Drasar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technicka 5, CZ-166 28 Prague, Czech Republic;
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| |
Collapse
|
6
|
Pyranodipyran Derivatives with Tyrosyl DNA Phosphodiesterase 1 Inhibitory Activities and Fluorescent Properties from Aspergillus sp. EGF 15-0-3. Mar Drugs 2022; 20:md20030211. [PMID: 35323510 PMCID: PMC8954640 DOI: 10.3390/md20030211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 12/02/2022] Open
Abstract
Four new benzodipyran racemates, namely (±)-aspergiletals A–D (3–6), representing a rare pyrano[4,3-h]chromene scaffold were isolated together with eurotiumide G (1) and eurotiumide F (2) from the soft-coral-derived fungus Aspergillus sp. EGF 15-0-3. All the corresponding optically pure enantiomers were successfully separated by a chiral HPLC column. The structures and configurations of all the compounds were elucidated based on the combination of NMR and HRESIMS data, chiral separation, single-crystal X-ray diffraction, quantum chemical 13C NMR, and electronic circular dichroism calculations. Meanwhile, the structure of eurotiumide G was also revised. The TDP1 inhibitor activities and photophysical properties of the obtained compounds were evaluated. In the TDP1 inhibition assay, as a result of synergy between (+)-6 and (−)-6, (±)-6 displayed strong inhibitory activity to TDP1 with IC50 values of 6.50 ± 0.73 μM. All compounds had a large Stokes shift and could be utilized for elucidating the mode of bioactivities by fluorescence imaging.
Collapse
|
7
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2020. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:1115-1134. [PMID: 34825847 DOI: 10.1080/10286020.2021.2004131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The new natural products reported in 2020 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2020 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
The First Berberine-Based Inhibitors of Tyrosyl-DNA Phosphodiesterase 1 (Tdp1), an Important DNA Repair Enzyme. Int J Mol Sci 2020; 21:ijms21197162. [PMID: 32998385 PMCID: PMC7582571 DOI: 10.3390/ijms21197162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022] Open
Abstract
A series of berberine and tetrahydroberberine sulfonate derivatives were prepared and tested against the tyrosyl-DNA phosphodiesterase 1 (Tdp1) DNA-repair enzyme. The berberine derivatives inhibit the Tdp1 enzyme in the low micromolar range; this is the first reported berberine based Tdp1 inhibitor. A structure–activity relationship analysis revealed the importance of bromine substitution in the 12-position on the tetrahydroberberine scaffold. Furthermore, it was shown that the addition of a sulfonate group containing a polyfluoroaromatic moiety at position 9 leads to increased potency, while most of the derivatives containing an alkyl fragment at the same position were not active. According to the molecular modeling, the bromine atom in position 12 forms a hydrogen bond to histidine 493, a key catalytic residue. The cytotoxic effect of topotecan, a clinically important topoisomerase 1 inhibitor, was doubled in the cervical cancer HeLa cell line by derivatives 11g and 12g; both displayed low toxicity without topotecan. Derivatives 11g and 12g can therefore be used for further development to sensitize the action of clinically relevant Topo1 inhibitors.
Collapse
|