1
|
Mao Y, Liu X, Chu X, Chen F, Shi R, Liu Z, Wu Y, Liu Y, Bu W. Nanomedicine-Driven Modulation of Reductive Stress for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e01968. [PMID: 40569215 DOI: 10.1002/advs.202501968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/26/2025] [Indexed: 06/28/2025]
Abstract
Redox balance is crucial for cellular function and adaptation to environmental changes, with its disruption playing a key role in the progression of various diseases, including cancer. While oxidative stress caused by excessive reactive oxygen species (ROS) has been widely studied and targeted in cancer therapies, such approaches face significant challenges within the tumor microenvironment. On the opposite end, reductive stress results from an overabundance of reducing equivalents, disrupting normal ROS-dependent signaling pathways and leading to cellular dysfunction. Despite its importance in tumor biology, reductive stress has received less attention than oxidative stress. This group has deliberately driven tumors into a state of reductive stress, thereby exposing unique vulnerabilities and validating a novel therapeutic strategy. Here, the concept and mechanisms of reductive stress is reviewed, introduced methods for detecting it, and discussed its dual role in tumor progression and potential as a therapeutic target. Recent advances in nanomedicine, particularly in the design of functional nanomaterials, enabling precise modulation of cellular redox states are also highlighted. By selectively inducing reductive stress within tumors, nanomedicine offers a promising strategy to exploit tumor vulnerabilities, overcome drug resistance, and improve cancer therapy efficacy.
Collapse
Affiliation(s)
- Yumin Mao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Xianping Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Xu Chu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Feixiang Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Ruicheng Shi
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Zonghao Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Yelin Wu
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China
| | - Yanyan Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Ma J, Yu H, Li G, An T. Mechanism of cytochrome P450s mediated interference with glutathione and amino acid metabolisms from halogenated PAHs exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134589. [PMID: 38772114 DOI: 10.1016/j.jhazmat.2024.134589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
Epidemiological evidence indicates that exposure to halogenated polycyclic aromatic hydrocarbons (HPAHs) is associated with many adverse effects. However, the mechanisms of metabolic disorder of HPAHs remains limited. Herein, effects of pyrene (Pyr), and its halogenated derivatives (1-chloropyrene (1-Cl-Pyr), 1-bromopyrene (1-Br-Pyr)) on endogenous metabolic pathways were investigated, in human hepatoma (HepG2) and HepG2-derived cell lines expressing various human cytochrome P450s (CYPs). Non-targeted metabolomics results suggested that 1-Br-Pyr and Pyr exposure (625 nM) induced disruption in glutathione and riboflavin metabolism which associated with redox imbalance, through abnormal accumulation of oxidized glutathione, mediated by bioactivation of CYP2E1. Conversely, CYP2C9-mediated 1-Cl-Pyr significantly interfered with glutathione metabolism intermediates, including glycine, L-glutamic acid and pyroglutamic acid. Notably, CYP1A1-mediated Pyr-induced perturbation of amino acid metabolism which associated with nutrition and glycolipid metabolism, resulting in significant upregulation of most amino acids, whereas halogenated derivatives mediated by CYP1A2 substantially downregulated amino acids. In conclusion, this study suggested that Pyr and its halogenated derivatives exert potent effects on endogenous metabolism disruption under the action of various exogenous metabolic enzymes (CYPs). Thus, new evidence was provided to toxicological mechanisms of HPAHs, and reveals potential health risks of HPAHs in inducing diseases caused by redox and amino acid imbalances.
Collapse
Affiliation(s)
- Jiaying Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key cLaboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key cLaboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key cLaboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key cLaboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Martin A, Rivera-Fuentes P. Fluorogenic polymethine dyes by intramolecular cyclization. Curr Opin Chem Biol 2024; 80:102444. [PMID: 38520774 DOI: 10.1016/j.cbpa.2024.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
Fluorescence imaging plays a pivotal role in the study of biological processes, and cell-permeable fluorogenic dyes are crucial to visualize intracellular structures with high specificity. Polymethine dyes are vitally important fluorophores in single-molecule localization microscopy and in vivo imaging, but their use in live cells has been limited by high background fluorescence and low membrane permeability. In this review, we summarize recent advances in the development of fluorogenic polymethine dyes via intramolecular cyclization. Finally, we offer an outlook on the prospects of fluorogenic polymethine dyes for bioimaging.
Collapse
Affiliation(s)
- Annabell Martin
- Department of Chemistry, University of Zurich, Zurich, Switzerland; École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | | |
Collapse
|
4
|
Michel L, Auvray M, Askenatzis L, Badet-Denisot MA, Bignon J, Durand P, Mahuteau-Betzer F, Chevalier A. Visualization of an Endogenous Mitochondrial Azoreductase Activity under Normoxic Conditions Using a Naphthalimide Azo-Based Fluorogenic Probe. Anal Chem 2024; 96:1774-1780. [PMID: 38230524 DOI: 10.1021/acs.analchem.3c05030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In this paper, we demonstrate the existence of an endogenous mitochondrial azoreductase (AzoR) activity that can induce the cleavage of N═N double bonds of azobenzene compounds under normoxic conditions. To this end, 100% OFF-ON azo-based fluorogenic probes derived from 4-amino-1,8-naphthalimide fluorophores were synthesized and evaluated. The in vitro study conducted with other endogenous reducing agents of the cell, including reductases, demonstrated both the efficacy and the selectivity of the probe for AzoR. Confocal experiments with the probe revealed an AzoR activity in the mitochondria of living cells under normal oxygenation conditions, and we were able to demonstrate that this endogenous AzoR activity appears to be expressed at different levels across different cell lines. This discovery provides crucial information for our understanding of the biochemical processes occurring within the mitochondria. It thus contributes to a better understanding of its function, which is implicated in numerous pathologies.
Collapse
Affiliation(s)
- Laurane Michel
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Marie Auvray
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer Institut Curie,Université PSL, 91400 Orsay, France
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay, 91400 Orsay, France
| | - Laurie Askenatzis
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Marie-Ange Badet-Denisot
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Jérôme Bignon
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Philippe Durand
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Florence Mahuteau-Betzer
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer Institut Curie,Université PSL, 91400 Orsay, France
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay, 91400 Orsay, France
| | - Arnaud Chevalier
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Development of dual-fluorophore and dual-site multifunctional fluorescent probe for detecting HClO and H2S based on rhodamine-coumarin units. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Gao L, Kraus Y, Stegner A, Wein T, Heise C, von Brunn L, Fajardo-Ruiz E, Thorn-Seshold J, Thorn-Seshold O. Self-reporting styrylthiazolium photopharmaceuticals: mitochondrial localisation as well as SAR drive biological activity. Org Biomol Chem 2022; 20:7787-7794. [PMID: 36172848 DOI: 10.1039/d2ob00347c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel photoswitches offering features complementary to the well-established azobenzenes are increasingly driving high-precision research in cellular photopharmacology. Styrylthiazolium (StyTz) and styrylbenzothiazolium (StyBtz) are cellularly untested E/Z-isomerisation photoswitches which are nearly isosteric to azobenzenes, but have distinct properties: including ca. 60 nm red-shifted π → π* absorption, self-reporting fluorescence, Z → E relaxation on typical biological timescales, and decent solubility (positive charge). We tested StyTz and StyBtz for their potential as photopharmaceutical scaffolds, by applying them to photocontrol microtubule dynamics. They light-specifically disrupt microtubule network architecture and block cell proliferation: yet, testing lead compound StyBtz2 for its molecular mechanism of action showed that it did not inhibit microtubule dynamics. Using its self-reporting fluorescence, we tracked its localisation in live cells and observed accumulation of E-StyBtz2 into mitochondria; during prolonged illumination, it was released into the cytosol, and blebbing and cell death were observed. We interpret this as light-dependent rupturing of mitochondria on acute timescales. We conclude that StyTz/StyBtz can be interesting photopharmaceutical scaffolds for addressing mitochondrial, rather than cytosolic, targets.
Collapse
Affiliation(s)
- Li Gao
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Yvonne Kraus
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Andrea Stegner
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Thomas Wein
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Constanze Heise
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Leonie von Brunn
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Elena Fajardo-Ruiz
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Julia Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| |
Collapse
|
7
|
Biswas L, Niveria K, Verma AK. Paradoxical role of reactive oxygen species in bone remodelling: implications in osteoporosis and possible nanotherapeutic interventions. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Osteoporosis is a metabolic bone disorder that affects both sexes and is the most common cause of fractures. Osteoporosis therapies primarily inhibit osteoclast activity, and are seldom designed to trigger new bone growth thereby frequently causing severe systemic adverse effects. Physiologically, the intracellular redox state depends on the ratio of pro-oxidants, oxidizing agents (reactive oxygen species, ROS) and antioxidants. ROS is the key contributor to oxidative stress in osteoporosis as changes in redox state are responsible for dynamic bone remodeling and bone regeneration. Imbalances in ROS generation vs. antioxidant systems play a pivotal role in pathogenesis of osteoporosis, stimulating osteoblasts and osteocytes towards osteoclastogenesis. ROS prevents mineralization and osteogenesis, causing increased turnover of bone loss. Alternatively, antioxidants either directly or indirectly, contribute to activation of osteoblasts leading to differentiation and mineralization, thereby reducing osteoclastogenesis. Owing to the unpredictability of immune responsiveness and reported adverse effects, despite promising outcomes from drugs against oxidative stress, treatment in clinics targeting osteoclast has been limited. Nanotechnology-mediated interventions have gained remarkable superiority over other treatment modalities in regenerative medicine. Nanotherapeutic approaches exploit the antioxidant properties of nanoparticles for targeted drug delivery to trigger bone repair, by enhancing their osteogenic and anti-osteoclastogenic potentials to influence the biocompatibility, mechanical properties and osteoinductivity. Therefore, exploiting nanotherapeutics for maintaining the differentiation and proliferation of osteoblasts and osteoclasts is quintessential.
Collapse
Affiliation(s)
- Largee Biswas
- 1Nanobiotech lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Karishma Niveria
- 1Nanobiotech lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Anita Kamra Verma
- 1Nanobiotech lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India 2Fellow, Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi 110007, India
| |
Collapse
|
8
|
Mehta V, Suman P, Chander H. High levels of unfolded protein response component CHAC1 associates with cancer progression signatures in malignant breast cancer tissues. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2351-2365. [PMID: 35930144 DOI: 10.1007/s12094-022-02889-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE The aberrant mRNA expression of a UPR component Cation transport regulator homolog 1 (CHAC1) has been reported to be associated with poor survival in breast and ovarian cancer patients, however, the expression of CHAC1 at protein levels in malignant breast tissues is underreported. The following study aimed at analyzing CHAC1 protein expression in malignant breast cancer tissues. METHODS Evaluation of CHAC1 expression in invasive ductal carcinomas (IDCs) with known ER, PR, and HER2 status was carried out using immunohistochemistry (IHC) with CHAC1 specific antibody. The Human breast cancer tissue microarray (TMA, cat# BR1503f, US Biomax, Inc., Rockville, MD) was used to determine CHAC1 expression. The analysis of CHAC1 IHC was done to determine its expression in terms of molecular subtypes of breast cancer, lymph node status, and proliferation index using Qu-Path software. Survival analysis was studied with a Kaplan-Meier plotter. RESULTS Immunohistochemical analysis of CHAC1 in breast cancer tissues showed significant up-regulation of CHAC1 as compared to the adjacent normal and benign tissues. Interestingly, CHAC1 immunostaining revealed high expression in tumor tissues with high proliferation and positive lymph node metastasis suggesting that CHAC1 might have an important role to play in breast cancer progression. Furthermore, high CHAC1 expression is associated with poor overall survival (OS) in large breast cancer patient cohorts. CONCLUSION As a higher expression of CHAC1 was observed in tissue cores with high Ki67 index and positive lymph node metastasis it may be concluded that enhanced CHAC1 expression correlates with proliferation and metastasis. The further analysis of breast cancer patients' survival data through KM plot indicated that high CHAC1 expression is associated with a bad prognosis hinting that CHAC1 may have a possible prognostic significance in breast cancer.
Collapse
Affiliation(s)
- Vikrant Mehta
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Prabhat Suman
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Harish Chander
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India. .,Biotherapeutics Division, National Institute of Biologicals, Noida, 201309, India.
| |
Collapse
|