1
|
Montaño-González PA, Bravo-Lozano LM, Chevance S, Dole F, Rosselgong J, Loyer P, Tranchimand S, Chapel JP, Gauffre F, Schatz C, Bravo-Anaya LM. Interactions between PEI and biological polyanions and the ability of glycosaminoglycans in destabilizing PEI/peGFP-C3 polyplexes for genetic material release. Int J Biol Macromol 2025; 301:140351. [PMID: 39880239 DOI: 10.1016/j.ijbiomac.2025.140351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
The lack of understanding of polyplexes stability and their dissociation mechanisms, allowing the release of DNA, is currently a major limitation in non-viral gene delivery. One proposed mechanism for DNA-based polyplexes dissociation is based on the electrostatic interactions between polycations and biological polyanions, such as glycosaminoglycans (GAGs). This work aimed at investigating whether GAGs such as heparin, chondroitin sulphate and hyaluronic acid promote the dissociation of PEI/DNA polyplexes. We studied the electrostatic complexation between branched poly(ethyleneimine) (b-PEI25) and polyanions (model DNA and GAGs) through conductivity and ζ-potential measurements. The formation of b-PEI25/polyanion polyplexes through electrostatic interactions was analyzed in depth, providing key insights into charge stoichiometry, morphology, thermodynamics and physicochemical characteristics. The stability of polyplexes was tested in the presence of the different GAGs. Heparin was found to be the only polyanion capable of releasing peGFP-C3 plasmid from polyplexes, complexing stoichiometrically with the free b-PEI25 in excess, before releasing the plasmid. The ability of GAGs to disrupt polyplexes and release DNA was correlated with the thermodynamic characteristics of b-PEI25/polyanions complexation. Our findings indicate that heparin's strong interaction with PEI and its high charge density, compared to other GAGs and polyanions, are pivotal in determining complex stability and promoting DNA release.
Collapse
Affiliation(s)
| | | | - Soizic Chevance
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - François Dole
- Centre de Recherche Paul Pascal (CRPP), UMR CNRS 5031, Université de Bordeaux, 33600 Pessac, France
| | - Julien Rosselgong
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Pascal Loyer
- Univ Rennes, Inserm, INRAE, Institut NUMECAN, UMR-A 1341, UMR-S 1317, Plateforme SynNanoVect, F-35000 Rennes, France
| | - Sylvain Tranchimand
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, F-35000 Rennes, France
| | - Jean-Paul Chapel
- Centre de Recherche Paul Pascal (CRPP), UMR CNRS 5031, Université de Bordeaux, 33600 Pessac, France
| | - Fabienne Gauffre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Christophe Schatz
- Univ Bordeaux, Bordeaux INP, LCPO, CNRS, UMR 5629, F-33000 Pessac, France
| | | |
Collapse
|
2
|
Simon L, Zhou D, Coeurvolan A, Lapinte V, Lecommandoux S, Garanger E, Bégu S. Dual Responsive Emulsions Based on Amphiphilic Elastin-like Polypeptide Bioconjugates. Bioconjug Chem 2024; 35:1923-1932. [PMID: 39532301 DOI: 10.1021/acs.bioconjchem.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
To achieve the desired therapeutic response, drug delivery systems must ensure the controlled release of the loaded content at the targeted site. One possible strategy relies on the improvement of conventional drug delivery systems. To do so, smart polymers, able to change their behavior upon chemical, physical, or biological stimuli, can be used. In this context, this study aims to evaluate the potential of natural amphiphilic smart elastin-like polypeptides grafted with alkyl chains (ELP-g-Bu) to stabilize conventional oil-in-water emulsions and trigger the release of loaded molecules upon dual stimuli. With butyl pendant chains and methionine residues, the macromolecular surfactant ELP-g-Bu demonstrated a modification of physicochemical properties, looking at critical aggregation concentration, upon both temperature and oxidation stimuli. The macromolecular surfactant was then able to stabilize a paraffin-oil-in-water emulsion. The ELP-g-Bu emulsion presented a droplet size of 9 ± 1 μm and stability for at least a month at 4 and 25 °C. After successful loading of a fluorescent lipophilic molecule used as a drug model, a complete destabilization of the ELP-g-Bu emulsion and burst release of the content was achieved with thermal triggering at 42 °C. In oxidative conditions, a partial release was measured, which can be improved by increasing the number of oxidable thioether groups. Overall, these dually responsive amphiphilic ELP-g-Bu demonstrated their potential for smart-polymer-based drug delivery systems that can be promising for inflammatory disease treatment as increased temperature and radical oxygen species are present in such cases.
Collapse
Affiliation(s)
- Laurianne Simon
- ICGM, University Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | - Dongxu Zhou
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, ENSMAC, 16 Avenue Pey-Berland, Pessac F-33600, France
| | - Anita Coeurvolan
- ICGM, University Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | - Vincent Lapinte
- ICGM, University Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | - Sébastien Lecommandoux
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, ENSMAC, 16 Avenue Pey-Berland, Pessac F-33600, France
| | - Elisabeth Garanger
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, ENSMAC, 16 Avenue Pey-Berland, Pessac F-33600, France
| | - Sylvie Bégu
- ICGM, University Montpellier, CNRS, ENSCM, Montpellier 34293, France
| |
Collapse
|
3
|
Aayush A, Darji S, Estes KM, Yeh E, Thompson DH. Development of an Elastin-like Polypeptide-Based Nucleic Acid Delivery System Targeted to EGFR+ Bladder Cancer Cells Using a Layer-by-Layer Approach. Biomacromolecules 2024; 25:5729-5744. [PMID: 39185801 PMCID: PMC11388462 DOI: 10.1021/acs.biomac.4c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
Nucleic acid (NA)-based therapies are revolutionizing biomedical research through their ability to control cellular functions at the genetic level. This work demonstrates a versatile elastin-like polypeptide (ELP) carrier system using a layer-by-layer (LbL) formulation approach that delivers NA cargos ranging in size from siRNA to plasmids. The components of the system can be reconfigured to modulate the biochemical and biophysical characteristics of the carrier for engaging the unique features of the biological target. We show the physical characterization and biological performance of LbL ELP nucleic acid nanoparticles (LENNs) in murine and human bladder tumor cell lines. Targeting bladder tumors is difficult owing to the constant influx of urine into the bladder, leading to low contact times (typically <2 h) for therapeutic agents delivered via intravesical instillation. LENN complexes bind to bladder tumor cells within 30 min and become rapidly internalized to release their NA cargo within 60 min. Our data show that a readily adaptable NA-delivery system has been created that is flexible in its targeting ability, cargo size, and disassembly kinetics. This approach provides an alternative path to either lipid nanoparticle formulations that suffer from inefficiency and physicochemical instability or viral vectors that are plagued by manufacturing and immune rejection challenges. This agile ELP-based nanocarrier provides an alternative route for nucleic acid delivery using a biomanufacturable, biodegradable, biocompatible, and highly tunable vehicle capable of targeting cells via engagement with overexpressed cell surface receptors.
Collapse
Affiliation(s)
- Aayush Aayush
- Department of Chemistry &
Purdue Institute for Cancer Research, Purdue
University, Bindley Bioscience Center, West Lafayette, Indiana 47907, United States
| | - Saloni Darji
- Department of Chemistry &
Purdue Institute for Cancer Research, Purdue
University, Bindley Bioscience Center, West Lafayette, Indiana 47907, United States
| | - Kiera M. Estes
- Department of Chemistry &
Purdue Institute for Cancer Research, Purdue
University, Bindley Bioscience Center, West Lafayette, Indiana 47907, United States
| | - Emily Yeh
- Department of Chemistry &
Purdue Institute for Cancer Research, Purdue
University, Bindley Bioscience Center, West Lafayette, Indiana 47907, United States
| | - David H. Thompson
- Department of Chemistry &
Purdue Institute for Cancer Research, Purdue
University, Bindley Bioscience Center, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Espuche B, Moya SE, Calderón M. Nanogels: Smart tools to enlarge the therapeutic window of gene therapy. Int J Pharm 2024; 653:123864. [PMID: 38309484 DOI: 10.1016/j.ijpharm.2024.123864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Gene therapy can potentially treat a great number of diseases, from cancer to rare genetic disorders. Very recently, the development and emergency approval of nucleic acid-based COVID-19 vaccines confirmed its strength and versatility. However, gene therapy encounters limitations due to the lack of suitable carriers to vectorize therapeutic genetic material inside target cells. Nanogels are highly hydrated nano-size crosslinked polymeric networks that have been used in many biomedical applications, from drug delivery to tissue engineering and diagnostics. Due to their easy production, tunability, and swelling properties they have called the attention as promising vectors for gene delivery. In this review, nanogels are discussed as vectors for nucleic acid delivery aiming to enlarge gene therapy's therapeutic window. Recent works highlighting the optimization of inherent transfection efficiency and biocompatibility are reviewed here. The importance of the monomer choice, along with the internal structure, surface decoration, and responsive features are outlined for the different transfection modalities. The possible sources of toxicological endpoints in nanogels are analyzed, and the strategies to limit them are compared. Finally, perspectives are discussed to identify the remining challenges for the nanogels before their translation to the market as transfection agents.
Collapse
Affiliation(s)
- Bruno Espuche
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Sergio E Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
| |
Collapse
|
5
|
Eweje F, Walsh ML, Ahmad K, Ibrahim V, Alrefai A, Chen J, Chaikof EL. Protein-based nanoparticles for therapeutic nucleic acid delivery. Biomaterials 2024; 305:122464. [PMID: 38181574 PMCID: PMC10872380 DOI: 10.1016/j.biomaterials.2023.122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/25/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
To realize the full potential of emerging nucleic acid therapies, there is a need for effective delivery agents to transport cargo to cells of interest. Protein materials exhibit several unique properties, including biodegradability, biocompatibility, ease of functionalization via recombinant and chemical modifications, among other features, which establish a promising basis for therapeutic nucleic acid delivery systems. In this review, we highlight progress made in the use of non-viral protein-based nanoparticles for nucleic acid delivery in vitro and in vivo, while elaborating on key physicochemical properties that have enabled the use of these materials for nanoparticle formulation and drug delivery. To conclude, we comment on the prospects and unresolved challenges associated with the translation of protein-based nucleic acid delivery systems for therapeutic applications.
Collapse
Affiliation(s)
- Feyisayo Eweje
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Michelle L Walsh
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115
| | - Kiran Ahmad
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Vanessa Ibrahim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Assma Alrefai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
7
|
Hadar D, Strugach DS, Amiram M. Conjugates of Recombinant Protein‐Based Polymers: Combining Precision with Chemical Diversity. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dagan Hadar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Daniela S. Strugach
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| |
Collapse
|
8
|
Sun Y, Ma X, Jing X, Hu H. PAMAM-Functionalized Cellulose Nanocrystals with Needle-Like Morphology for Effective Cancer Treatment. NANOMATERIALS 2021; 11:nano11071640. [PMID: 34206695 PMCID: PMC8307312 DOI: 10.3390/nano11071640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
Gene therapy is used to correct or compensate for diseases caused by gene defects and abnormalities. Improving the transfection efficiency and reducing the toxicity of gene carriers are the keys to gene therapy. Similar to a typical cationic gene carrier—polyethylenimine (PEI, 25 kDa)—the polyamidoamine (PAMAM) dendrimer also has a large number of amino groups. These amino groups can be complexed with nucleic acids after protonation under physiological conditions. However, the concentrated positive charge can cause undesirable cytotoxicity. Cellulose nanocrystals (CNCs) have good biocompatibility and unique needle-like morphology, and have been proven to be efficiently taken up by cells. In this article, three-dimensional spherical PMAMA dendrimers are conjugated onto the surface of CNCs to obtain a kind of needle-like cationic carrier (CNC-PAMAM). PAMAM dendrimers act as anchors to bind the plasmid DNAs (pDNA) to the surface of the CNC. The prepared CNC-based carrier showed high transfection efficiency and low toxicity. The CNC-PAMAM can effectively deliver the suicide gene to the tumor site, enabling the suicide gene/prodrug system (cytosine deaminase/5-fluorocytosine (CD/5-FC)) to play an effective anti-tumor role in vivo. This research demonstrates that the functionalization of CNCs with PAMAM dendrimers is an effective method for developing novel gene delivery systems.
Collapse
Affiliation(s)
- Yanzhen Sun
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.S.); (X.J.)
| | - Xiaoli Ma
- Qingdao Institute of Measurement Technology, Qingdao 266000, China;
| | - Xiaodong Jing
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.S.); (X.J.)
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.S.); (X.J.)
- Correspondence:
| |
Collapse
|