1
|
Pérez-Ramos P, Biniari G, Soengas RG, Rodríguez-Solla H, Simal C. Visible-Light Photocatalysis for Sustainable Chromene Synthesis and Functionalization. Chemistry 2025; 31:e202500283. [PMID: 40100639 DOI: 10.1002/chem.202500283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/20/2025]
Abstract
Chromenes represent a biologically significant family of heterocycles, widely present in pharmaceutical compounds and secondary metabolites. Their importance in synthesis and medicinal chemistry has driven continuous efforts to develop advanced and efficient synthetic methodologies. Over the past decade, photoredox catalysis has revolutionized Organic Synthesis, offering innovative and sustainable strategies for the construction and functionalization of complex molecules. The synthesis of chromene derivatives has greatly benefited from the integration of visible-light-promoted methodologies, which utilize light as an abundant and non-toxic energy source, enabling greener chemical transformations. In this review, the latest progress in visible-light-mediated approaches for the synthesis of chromene derivatives, along with the photochemical reactivity of these relevant frameworks, are summarized.
Collapse
Affiliation(s)
- Paula Pérez-Ramos
- Department of Organic and Inorganic Chemistry, and Instituto Universitario de Química Organometálica Enrique Moles, University of Oviedo, Julián Clavería 8, Oviedo, 33006, Spain
| | - Georgia Biniari
- Department of Chemistry (Division of Organic Chemistry, Biochemistry, and Natural Products), University of Patras, University Campus, Patras, 26504, Greece
| | - Raquel G Soengas
- Department of Organic and Inorganic Chemistry, and Instituto Universitario de Química Organometálica Enrique Moles, University of Oviedo, Julián Clavería 8, Oviedo, 33006, Spain
| | - Humberto Rodríguez-Solla
- Department of Organic and Inorganic Chemistry, and Instituto Universitario de Química Organometálica Enrique Moles, University of Oviedo, Julián Clavería 8, Oviedo, 33006, Spain
| | - Carmen Simal
- Department of Chemistry (Division of Organic Chemistry, Biochemistry, and Natural Products), University of Patras, University Campus, Patras, 26504, Greece
| |
Collapse
|
2
|
Huang Q, Jin X, Wang H, Zhao C, Zhu L, Wang X. Water-Controlled Geminal Hydroxyphosphinoylation and Diphosphinoylation of Enaminones with H-Phosphine Oxides. J Org Chem 2025; 90:3862-3876. [PMID: 40048242 DOI: 10.1021/acs.joc.4c02768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A water-controlled geminal phosphinoylation of enaminones with H-phosphine oxides has been established through AlCl3-mediated C-N bond cleavage in this work, which provides a novel strategy for accessing various hydroxy and diphosphinoyl products 3a and 4a in high yields. The transformation features excellent functional group tolerance, operational simplicity, and high atom economy, and is amenable for phosphinoylation of complex molecule skeletons. Preliminary mechanism studies suggest the conversion from 3a to 4a involve the elimination of hydroxyl group, and water and temperature plays a critical role in influencing the reaction pathway and product selectivity. This research provides significant value to the geminal functionalization of enaminones.
Collapse
Affiliation(s)
- Qiang Huang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xin Jin
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Huabin Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Changkuo Zhao
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lei Zhu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xianheng Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
3
|
Wang X, Peng M, Wang Y, Song S, Xu Y, Chen L, Yu F. Eco-Friendly and Efficient Synthesis of 2-Hydroxy-3-Hydrazono-Chromones Through α, β-C(sp 2)-H Bond Difunctionalization/Chromone Annulation Reaction of o-Hydroxyaryl Enaminones, Water, and Aryldiazonium Salts. Molecules 2025; 30:1194. [PMID: 40141971 PMCID: PMC11944599 DOI: 10.3390/molecules30061194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
A novel, eco-friendly, and efficient method for constructing 2,3-disubstituted chromone skeletons from readily available water, o-hydroxyaryl enaminones (o-HPEs), and aryldiazonium salts has been developed under mild reaction conditions. This α,β-C(sp2)-H bond difunctionalization/chromone annulation reaction strategy is achieved by building two C(sp3)-O bonds and a C(sp2)-N bond, which provides a practical pathway for the preparation of 2-hydroxy-3-hydrazono-chromones in moderate to excellent yields, enabling broad substrate scope and good functional group tolerance, as well as gram-scale synthesis. This protocol offers a valuable tool for synthesizing diverse functionalized chromones with potential applications in drug discovery and industrial synthesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (X.W.); (M.P.); (Y.W.); (S.S.); (Y.X.)
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (X.W.); (M.P.); (Y.W.); (S.S.); (Y.X.)
| |
Collapse
|
4
|
Zhang WM, Zhao QS, Chen SY, Zhang CH, Yan SJ. Cascade Annulation for Synthesizing Chromenopyrrolones from o-Hydroxyphenyl Enaminones and 2-Halo- N-alkyloxyacetamides. J Org Chem 2024; 89:18322-18336. [PMID: 39600256 DOI: 10.1021/acs.joc.4c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A cascade cyclization reaction comprising two halogenation reactions and a Michael addition was developed for the synthesis of chromeno[2,3-c]pyrrole-3-ones 4. Additionally, another cascade cyclization reaction, which involves a halogenation reaction followed by two intramolecular Michael additions, was established for the synthesis of chromeno[2,3-b]pyrrole-2-ones 5. Both types of compounds were synthesized from o-hydroxyphenyl enaminones and 2-halo-N-alkyloxyacetamides through a process that facilitated the intramolecular formation of C-C, C-O, and C-N bonds to effectively establish two fused rings in a single operation. This novel protocol is efficient, uses readily accessible starting materials, and operates under mild conditions, demonstrating tolerance for various functional groups while achieving good yields.
Collapse
Affiliation(s)
- Wei-Min Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Qing-Sheng Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Si-Yi Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Cong-Hai Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
5
|
Roy P, Mahato K, Shrestha D, Mohandoss S, Lee SW, Lee YR. Recent advances in site-selective transformations of β-enaminones via transition-metal-catalyzed C-H functionalization/annulation. Org Biomol Chem 2024; 23:36-58. [PMID: 39529594 DOI: 10.1039/d4ob01612b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
β-Enaminone transformation strategies are widely employed in the synthesis of numerous biologically active drugs and natural products, highlighting their significance in medicinal chemistry. In recent years, various strategies have been developed for synthesizing several five- and six-membered heterocycles, as well as substituted polyaromatic scaffolds, which serve as crucial synthons in drug development, from β-enaminones. Among these approaches, site-selective transformations of β-enaminones via C-H activation and annulation have been particularly well explored. This review summarizes the most recent literature (over the past eight years) on β-enaminone transformations for developing bioactive scaffolds through site-selective C-H bond functionalization and annulation.
Collapse
Affiliation(s)
- Prasanta Roy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Karuna Mahato
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Divya Shrestha
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Seung Woo Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
6
|
Suresh S, Palla S, Chung DR, Chien HS, Du BX, Shinde J, Kavala V, Yao CF. Catalyst-free reactions of anilines with β-chloroenones: synthesis of α-chloroenaminones and 1,4-benzodiazepines. Org Biomol Chem 2024; 22:8857-8868. [PMID: 39189549 DOI: 10.1039/d4ob00954a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The Michael addition of anilines to β-chloroenones gives enaminones by the elimination of hydrochloric acid (HCl). These enaminones are transformed into α-chloroenaminones via in situ sp2 C-H functionalization. Anilines that are attached to an electron-donating group react more readily with β-chloroenone to give the corresponding products in excellent yields. A highly atom-economical method has been developed using dimethyl sulfoxide (DMSO) as a green oxidant and solvent. The desired α-functionalized enaminones are formed in good yields with excellent Z-selectivity. We have established the generality of this reaction with many substrates, and scaled-up reactions have been performed to showcase the practical applications. A catalyst-free double annulation of β-chloroenones with o-phenylenediamine has also been demonstrated for the synthesis of 1,4-benzodiazepine derivatives in moderate yields under mild reaction conditions.
Collapse
Affiliation(s)
- Sundaram Suresh
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Sowndarya Palla
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Dai-Ru Chung
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Hung-Sheng Chien
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Bo-Xun Du
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Jivan Shinde
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Veerababurao Kavala
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| |
Collapse
|
7
|
Cen K, Liu Y, Yu J, Zeng Z, Hou Q, He G, Ouyang M, Wang Q, Wang D, Zhao F, Cai J. Electrocatalytic Cascade Selenylation/Cyclization/Deamination of 2-Hydroxyaryl Enaminones: Synthesis of 3-Selenylated Chromones under Mild Conditions. J Org Chem 2024; 89:8632-8640. [PMID: 38843514 DOI: 10.1021/acs.joc.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Herein, we disclosed a highly efficient pathway toward 3-selenylated chromone derivatives via electrocatalytic cascade selenylation/cyclization/deamination of 2-hydroxyaryl enaminones with diselenides. This method showed mild conditions, easy operation, wide substrate scope, and good functional group tolerance. Furthermore, this electrosynthesis strategy was amendable to scale-up the reaction. Additionally, the preliminary experiments revealed that this reaction probably proceeded via a cation pathway instead of a radical pathway.
Collapse
Affiliation(s)
- Kaili Cen
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yuan Liu
- Chuanshan College University of South China, Hengyang, Hunan 421001, China
| | - Junhong Yu
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Zhouting Zeng
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qian Hou
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Guojun He
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Mixia Ouyang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qiaolin Wang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Dahan Wang
- Department of Food and Chemical Engineering, Shaoyang University, Shaoyang, Hunan 422100, China
| | - Feng Zhao
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Jinhui Cai
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
8
|
Zhao P, Zhou Y, Wang C, Wu AX. Iodine-Promoted Thioylation and Dicarbonylation of Enaminone α-C Sites: Synthesis of Fully Substituted Thiazoles via C═C Bond Cleavage. J Org Chem 2024; 89:2505-2515. [PMID: 38315825 DOI: 10.1021/acs.joc.3c02539] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A novel iodine-promoted difunctionalization of α-C sites in enaminones was demonstrated as a means of synthesizing a variety of fully substituted thiazoles by constructing C-C(CO), C-S, and C-N bonds. This transformation allows the realization of enaminones as unusual aryl C2 synthons and simultaneously allows the thioylation and dicarbonylation of α-C sites. A preliminary mechanistic study was performed and indicated that the cleavage of C═C bonds in enaminones involves a bicyclization/ring-opening and oxidative coupling sequence.
Collapse
Affiliation(s)
- Peng Zhao
- Institute of Advanced Studies, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Can Wang
- Institute of Advanced Studies, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
9
|
Hu W, Diao X, Yuan J, Liang W, Yang W, Yang L, Ma J, Zhang S. Photoredox-Catalyzed Tandem Cyclization of Enaminones with N-Sulfonylaminopyridinium Salts toward the Synthesis of 3-Sulfonaminated Chromones. J Org Chem 2024; 89:644-655. [PMID: 38088130 DOI: 10.1021/acs.joc.3c02399] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A photoredox-catalyzed intermolecular tandem sulfonamination/cyclization of enaminones was realized by using N-aminopyridinium salts as the sulfonaminated reagents without transition-metal catalysts or bases. The reaction exhibits a broad scope and good functional group tolerance, good yields, and regioselectivity. Preliminary mechanistic studies support the radical property of the reaction and the involvement of N-centered radical intermediates.
Collapse
Affiliation(s)
- Wenyu Hu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Xiaoqiong Diao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Wei Liang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Wan Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Liangru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Ji Ma
- Tobacco Research Institute of China National Tobacco Company, Zhengzhou 450001, P.R. China
| | - Shouren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, P. R. China
| |
Collapse
|
10
|
Wu LH, Liu X, Liu ZW, Chen ZX, Fu XL, Yang K. Metal-free synthesis of difluoro/trifluoromethyl carbinol-containing chromones via tandem cyclization of o-hydroxyaryl enaminones. Org Biomol Chem 2023; 21:9236-9241. [PMID: 37966029 DOI: 10.1039/d3ob01582c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We herein propose a HFIP-promoted tandem cyclization reaction for the synthesis of difluoro/trifluoromethyl carbinol-containing chromones from o-hydroxyphenyl enaminones at room temperature. This protocol provides a facile and efficient approach to access diverse difluoro/trifluoromethylated carbinols in good to excellent yields. In addition, gram-scale and synthetic derivatization experiments have also been performed.
Collapse
Affiliation(s)
- Long-Hui Wu
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Xia Liu
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Zhao-Wen Liu
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Zhi-Xi Chen
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Xin-Lei Fu
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Kai Yang
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| |
Collapse
|
11
|
Xia JH, Chen Q, Yuan JW, Shi WS, Yang LR, Xiao YM. Selectfluor-mediated tandem cyclization of enaminones with diselenides toward the synthesis of 3-selenylated chromones. RSC Adv 2023; 13:26948-26959. [PMID: 37692339 PMCID: PMC10486202 DOI: 10.1039/d3ra05246j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
A practical and metal-free approach for the regioselective selenation of chromones employing Selectfluor reagent under mild conditions is described. The developed method is suitable for a wide substrate scope and affords 3-selenylated chromones in good to excellent yield with high selectivity. An ionic mechanism is proposed for this transformation. Furthermore, the application of potassium thiocyanate with enaminones for the synthesis of thiocyano chromones in this transformation is also successful.
Collapse
Affiliation(s)
- Ji-Hong Xia
- ENOVA Pharmaceutical Research (Nanjing) Co. Ltd Nanjing 210033 P. R. China
| | - Qian Chen
- School of Chemistry & Chemical Engineering, Henan University of Technology Zhengzhou 450001 China
| | - Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology Zhengzhou 450001 China
| | - Wei-Shuo Shi
- School of Chemistry & Chemical Engineering, Henan University of Technology Zhengzhou 450001 China
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology Zhengzhou 450001 China
| | - Yong-Mei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology Zhengzhou 450001 China
| |
Collapse
|
12
|
Lin Y, Wan JP, Liu Y. Cascade in Situ Iodination, Chromone Annulation, and Cyanation for Site-Selective Synthesis of 2-Cyanochromones. J Org Chem 2023; 88:4017-4023. [PMID: 36862999 DOI: 10.1021/acs.joc.3c00206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A facile cascade reaction for the site selective synthesis of 2-cyanochromones is described. By using simple o-hydroxyphenyl enaminones and potassium ferrocyanide trihydrate (K4[Fe(CN)6]3·3H2O) as starting materials and I2/AlCl3 as promoters, the products are furnished via tandem chromone ring formation and C-H cyanation. The in situ formation of 3-iodochromone and a formal 1,2-hydrogen atom transfer (HAT) process account for the unconventional site selectivity. In addition, the synthesis of 2-cyanoquinolin-4-one has been realized by employing corresponding 2-aminophenyl enaminone as substrate.
Collapse
Affiliation(s)
- Yan Lin
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
13
|
Wu W, Fan S, Wu X, Fang L, Zhu J. Cobalt Homeostatic Catalysis for Coupling of Enaminones and Oxadiazolones to Quinazolinones. J Org Chem 2023; 88:1945-1962. [PMID: 36705660 DOI: 10.1021/acs.joc.2c01934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transition metal catalysis has revolutionized modern synthetic chemistry for its diverse modes of coordination reactivity. However, this versatility in reactivity is also the predominant cause of catalyst deactivation, a persisting issue that can significantly compromise its synthetic value. Homeostatic catalysis, a catalytic process that can sustain its productive catalytic cycle even when chemically disturbed, is proposed herein as an effective tactic to address the challenge. In particular, a cobalt homeostatic catalysis process has been developed for the water-tolerant coupling of enaminones and oxadiazolones to quinazolinones. Dynamic covalent bonding serves as a mechanistic handle for the preferred buffering of water onto enaminone and reverse exchange by a released secondary amine, thus securing reversible entry into cobalt's dormant and active states for productive catalysis. Through this homeostatic catalysis mode, a broad structural scope has been achieved for quinazolinones, enabling further elaboration into distinct pharmaceutically active agents.
Collapse
Affiliation(s)
- Weiping Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Shuaixin Fan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Xuan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Lili Fang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Liu N, Cuan X, Li H, Duan X. Progress in the Study of α-Functionalization of Enaminone. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
15
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
16
|
Duan X, Liu K, Meng Z, Guo Y, Li H, Liu N, Qu W, Duan X, Ma J. 1,3-Dibromo-5, 5-dimethylhydantoin (DBDMH)-Promoted Cross-Coupling of Enaminones with Phenols under Metal-Free Conditions. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Wang Z, Zhao B, Liu Y, Wan J. Recent Advances in Reactions Using Enaminone in Water or Aqueous Medium. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhouying Wang
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Baoli Zhao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang 312000 People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| |
Collapse
|
18
|
Fu L, Wan JP, Zhou L, Liu Y. Copper-catalyzed C-H/N-H annulation of enaminones and alkynyl esters for densely substituted pyrrole synthesis. Chem Commun (Camb) 2022; 58:1808-1811. [PMID: 35040446 DOI: 10.1039/d1cc06768k] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, the copper-catalyzed annulation of enaminones with alkynyl esters for the facile synthesis of different pyrroles with a 2,3,4,5-tetrasubstituted structure has been developed. With Cu(OAc)2 as the only catalyst, the tunable synthesis of 2-vinyl and 2,3-dicarboxyl-functionalized pyrroles has been achieved by using terminal and internal alkynyl esters, respectively. The synthesis of 2-vinyl pyrroles represents the first example accessing 2-vinyl substituted pyrroles via direct cascade reactions involving vinylation and pyrrole ring formation.
Collapse
Affiliation(s)
- Leiqing Fu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China. .,College of Chemistry and Bio-Engineering, Yichun University, Yichun, Jiangxi 336000, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Liyun Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| |
Collapse
|
19
|
Lu L, Zhao XJ, Dessie W, Xia X, Duan X, He J, Wang R, Liu Y, Wu C. Visible-light-promoted trifluoromethylselenolation of ortho-hydroxyarylenaminones. Org Biomol Chem 2022; 20:1754-1758. [DOI: 10.1039/d1ob02402g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of an efficient process that employs easy to handle and shelf-stable reagents for the synthesis of trifluoromethylselenylated heterocyclics remains a daunting challenge in organic synthesis. Herein, we report a...
Collapse
|
20
|
Zhao Y, Wang H, Kang X, Zhang R, Feng N, Su Q. Controllable methylenation with ethylene glycol as the methylene source: bridging enaminones and synthesis of tetrahydropyrimidines. Org Chem Front 2022. [DOI: 10.1039/d2qo01187e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controllable methylenation using renewable ethylene glycol as the methylene source has been developed for the introduction of one or two methylene building blocks.
Collapse
Affiliation(s)
- Yulei Zhao
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Huimin Wang
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xin Kang
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ruihua Zhang
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Nan Feng
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Qi Su
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
21
|
Benny AT, Arikkatt SD, Vazhappilly CG, Kannadasan S, Thomas R, Leelabaiamma MSN, Radhakrishnan EK, Shanmugam P. Chromone a Privileged Scaffold in Drug Discovery: Developments on the Synthesis and Bioactivity. Mini Rev Med Chem 2021; 22:1030-1063. [PMID: 34819000 DOI: 10.2174/1389557521666211124141859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/12/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
Chromones are the class of secondary metabolites broadly occurred in the plant kingdom in a noticeable quantity. This rigid bicyclic system has been categorized "as privileged scaffolds in compounds" in medicinal chemistry. The wide biological responses made them an important moiety in a drug discovery program. This review provides updates on the various methods of synthesis of chromones and biological applications in medicinal chemistry. Various synthetic strategies for the construction of chromones include readily available phenols, salicylic acid and its derivatives, ynones, chalcones, enaminones, chalcones and 2-hydroxyarylalkylketones as starting materials. Synthesis of chromones by using metal, metal free, nanomaterials and different catalysts are included. Details of diverse biological activities such as anti-cancer agents, antimicrobial agents, anti-viral property, anti-inflammatory agents, antioxidants, Monoamine Oxidase-B (MAO-B) Inhibitors, anti-Alzheimer's agents, anti-diabetic agent, antihistaminic potential, antiplatelet agents of chromone derivatives are diecussed.
Collapse
Affiliation(s)
- Anjitha Theres Benny
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014. India
| | - Sonia D Arikkatt
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014. India
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah. United Arab Emirates
| | | | - Renjan Thomas
- Division of Molecular Pathology, Strand Lifesciences, HCG Hospital, Bangalore - 560 0270. India
| | | | | | - Ponnusamy Shanmugam
- Organic and Bioorganic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai-600020. India
| |
Collapse
|
22
|
Shang ZH, Zhang XJ, Li YM, Wu RX, Zhang HR, Qin LY, Ni X, Yan Y, Wu AX, Zhu YP. One-Pot Synthesis of Chromone-Fused Pyrrolo[2,1- a]isoquinolines and Indolizino[8,7- b]indoles: Iodine-Promoted Oxidative [2 + 2 + 1] Annulation of O-Acetylphenoxyacrylates with Tetrahydroisoquinolines and Noreleagnines. J Org Chem 2021; 86:15733-15742. [PMID: 34633821 DOI: 10.1021/acs.joc.1c01682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iodine-promoted one-pot cascade oxidative annulation reaction has been developed for the synthesis of chromone-fused-pyrrolo[2,1-a]isoquinolines and indolizino[8,7-b]indoles from o-acetylphenoxyacrylates, tetrahydroisoquinolines, and noreleagnines. This process underwent a logical approach to both chromone-fused-pyrrolo[2,1-a]isoquinolines and chromone-fused-indolizino[8,7-b]indoles isolamellarin derivatives. Manipulations of l-menthol and dl-α-tocopherol demonstrate the applications of this strategy.
Collapse
Affiliation(s)
- Zhi-Hao Shang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, People's Republic of China
| | - Xiang-Jin Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, People's Republic of China
| | - Yi-Ming Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, People's Republic of China
| | - Rui-Xue Wu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, People's Republic of China
| | - Hui-Ru Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, People's Republic of China
| | - Lu-Ying Qin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, People's Republic of China
| | - Xue Ni
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, People's Republic of China
| | - Yu Yan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, People's Republic of China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Hubei, Wuhan 430079, People's Republic of China
| | - Yan-Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, People's Republic of China
| |
Collapse
|
23
|
Yu Q, Liu Y, Wan JP. Metal-free C(sp2)-H perfluoroalkylsulfonylation and configuration inversion: Stereoselective synthesis of α-perfluoroalkylsulfonyl E-enaminones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Liu T, Wan JP, Liu Y. Metal-free enaminone C-N bond cyanation for the stereoselective synthesis of ( E)- and ( Z)-β-cyano enones. Chem Commun (Camb) 2021; 57:9112-9115. [PMID: 34498638 DOI: 10.1039/d1cc03292e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A highly practical method for C-CN bond formation by C-N bond cleavage on enaminones leading to the efficient synthesis of β-cyano enones is developed. The reactions take place efficiently to provide (E)-β-cyano enones with only a molecular iodine catalyst. In addition, the additional employment of oxalic acid enables the selective synthesis of (Z)-β-cyano enones.
Collapse
Affiliation(s)
- Ting Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| |
Collapse
|
25
|
Zhang T, Yao W, Wan J, Liu Y. Transition‐Metal‐Free C(
sp
2
)‐H Dithiocarbamation and Chromone Annulation Cascade for 3‐Dithiocarbamyl Chromone Synthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100617] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tao Zhang
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Weijun Yao
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| |
Collapse
|
26
|
Lin Y, Jin J, Wang C, Wan JP, Liu Y. Electrochemical C-H Halogenations of Enaminones and Electron-Rich Arenes with Sodium Halide (NaX) as Halogen Source for the Synthesis of 3-Halochromones and Haloarenes. J Org Chem 2021; 86:12378-12385. [PMID: 34392684 DOI: 10.1021/acs.joc.1c01347] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Without employing an external oxidant, the simple synthesis of 3-halochromones and various halogenated electron-rich arenes has been realized with electrode oxidation by employing the simplest sodium halide (NaX, X = Cl, Br, I) as halogen source. This electrochemical method is advantageous for the simple and mild room temperature operation, environmental friendliness as well as broad substrate scope in both C-H bond donor and halogen source components.
Collapse
Affiliation(s)
- Yan Lin
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Jun Jin
- BioDuro-Sundia, 233 North FuTe Road, Shanghai200131, People's Republic of China
| | - Chaoli Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| |
Collapse
|
27
|
Tian Q, Xiao S, Cheng G. Base‐Promoted
Synthesis of
3‐Alkenyl
‐2‐pyridones from
N
‐Propargyl
‐β‐enaminones and Aryl Aldehydes. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University Xiamen Fujian 361021 China
| | - Shangyun Xiao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University Xiamen Fujian 361021 China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University Xiamen Fujian 361021 China
| |
Collapse
|
28
|
Zhao Z, Tian Q, Chen Y, Wen S, Zhang Y, Cheng G. Base-Promoted Stereoselective Hydrogenation of Ynamides with Sulfonyl Hydrazide to Give Z-Enamides. J Org Chem 2021; 86:10407-10413. [PMID: 34314182 DOI: 10.1021/acs.joc.1c01085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A base-mediated semihydrogenation of ynamides using p-toluenesulfonyl hydrazide as an inexpensive and easy-to-handle hydrogen donor is reported. This transition-metal-free protocol avoids overhydrogenation and reduction of other functional groups, generating the thermodynamically unfavorable Z-enamides exclusively.
Collapse
Affiliation(s)
- Zemin Zhao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen, Fujian 361021, China
| | - Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yanhui Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen, Fujian 361021, China
| | - Si Wen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yuqing Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen, Fujian 361021, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen, Fujian 361021, China
| |
Collapse
|
29
|
Hypervalent iodine mediated C-H amination of quinoxalinones with heteroaromatic amines under metal-free conditions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Song Y, Wang LC, Du S, Chen Z, Wu XF. The cascade coupling/iodoaminocyclization reaction of trifluoroacetimidoyl chlorides and allylamines: metal-free access to 2-trifluoromethyl-imidazolines. Org Biomol Chem 2021; 19:6115-6119. [PMID: 34165110 DOI: 10.1039/d1ob00986a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free cascade coupling/iodoaminocyclization reaction for the rapid assembly of 2-trifluoromethyl-imidazolines has been disclosed. The transformation applies readily accessible trifluoroacetimidoyl chlorides, allylamines and N-iodosuccinimides as the starting substrates, achieving an efficient and straightforward pathway to construct diverse imidazoline derivatives. Excellent efficiency of the reaction is observed (higher than 90% isolated yield for half of the examples), and the obtained imidazoline products bearing a pendent iodomethyl group could be easily transformed into other synthetically valuable compounds.
Collapse
Affiliation(s)
- Yufei Song
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Le-Cheng Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Shiying Du
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China and Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, 18059 Rostock, Germany.
| |
Collapse
|
31
|
Duan X, Li H, Li W, Wang J, Liu N. NBS‐Promoted C−H Amination of Enaminones for the Synthesis of N‐Heterocycle Substituted Enaminones**. ChemistrySelect 2021. [DOI: 10.1002/slct.202101726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiyan Duan
- School of Chemical Engineering & Pharmaceutics Henan University of Science and Technology Luoyang 471003 Henan China
| | - Huimin Li
- School of Chemical Engineering & Pharmaceutics Henan University of Science and Technology Luoyang 471003 Henan China
| | - Weinan Li
- School of Chemical Engineering & Pharmaceutics Henan University of Science and Technology Luoyang 471003 Henan China
| | - Junqi Wang
- School of Chemical Engineering & Pharmaceutics Henan University of Science and Technology Luoyang 471003 Henan China
| | - Ning Liu
- School of Nursing Henan University of Science and Technology Luoyang 471003 Henan China
| |
Collapse
|
32
|
Abstract
C-X (X = halogen) bonds are indispensable functional groups in organic synthesis
by mediating a massive number of important organic reactions. While a variety of different
catalytic strategies are available for generating C-X bonds, those methods enabling the C-X
bond formation under transition metal-free conditions via the C-H bond functionalization are
particularly interesting because of the inherent atom economy and environmental friendliness
associated with such methods. Herein, the advancements in the transition metal-free halogenation
of C(2)-H bond are reviewed.
Collapse
Affiliation(s)
- Tian Luo
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Shanghui Tian
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
33
|
Fu L, Xu Z, Wan JP, Liu Y. The Domino Chromone Annulation and a Transient Halogenation-Mediated C–H Alkenylation toward 3-Vinyl Chromones. Org Lett 2020; 22:9518-9523. [DOI: 10.1021/acs.orglett.0c03548] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Leiqing Fu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
- College of Chemistry and Bio-Engineering, Yichun University, Yichun, Jiangxi 336000, P. R. China
| | - Zhongrong Xu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
34
|
Tian S, Luo T, Zhu Y, Wan JP. Recent advances in the diversification of chromones and flavones by direct C H bond activation or functionalization. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Abstract
AbstractEnaminones are gaining increasing interest because of their unique properties and their importance in organic synthesis as versatile building blocks. N,N-Dimethyl enaminones offer a better leaving group (a dimethylamine group) than other enaminones, and allow further elaboration via a range of facile chemical transformations. Over the past five years, there have been an increasing number of reports describing the synthetic applications of N,N-dimethyl enaminones. This review provides a comprehensive overview on the synthetic applications of N,N-dimethyl enaminones that have been reported since 2016.1 Introduction2 Direct C(sp2)–H α-Functionalization2.1 Synthesis of α-Sulfenylated N,N-Dimethyl Enaminones2.2 Synthesis of α-Thiocyanated N,N-Dimethyl Enaminones2.3 Synthesis of α-Acyloxylated N,N-Dimethyl Enaminones3 Functionalization Reactions via C=C Double Bond Cleavage3.1 Synthesis of Functionalized Methyl Ketones3.2 Synthesis of α-Ketoamides, α-Ketoesters and 1,2-Diketones3.3 Synthesis of N-Sulfonyl Amidines4 Construction of All-Carbon Aromatic Scaffolds4.1 Synthesis of Benzaldehydes4.2 Synthesis of the Naphthalenes5 Construction of Heterocyclic Scaffolds5.1 Synthesis of Five-Membered Heterocycles5.2 Synthesis of Six-Membered Heterocycles5.3 Synthesis of Quinolines 5.4 Synthesis of Functionalized Chromones5.5 Synthesis of Other Fused Polycyclic Heterocycles6 Conclusions and Perspectives
Collapse
Affiliation(s)
- Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology
| | | |
Collapse
|
36
|
C4-Alkylamination of C4-Halo-1 H-1-tritylpyrazoles Using Pd(dba) 2 or CuI. Molecules 2020; 25:molecules25204634. [PMID: 33053697 PMCID: PMC7594063 DOI: 10.3390/molecules25204634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/17/2022] Open
Abstract
Alkylamino coupling reactions at the C4 positions of 4-halo-1H-1-tritylpyrazoles were investigated using palladium or copper catalysts. The Pd(dba)2 catalyzed C-N coupling reaction of aryl- or alkylamines, lacking a β-hydrogen atom, proceeded smoothly using tBuDavePhos as a ligand. As a substrate, 4-Bromo-1-tritylpyrazole was more effective than 4-iodo or chloro-1-tritylpyrazoles. Meanwhile, the CuI mediated C-N coupling reactions of 4-iodo-1H-1-tritylpyrazole were effective for alkylamines possessing a β-hydrogen atom.
Collapse
|
37
|
Deng L, Liu Y, Zhu Y, Wan J. Transition‐Metal‐Free Annulation of Enamines and Tosyl Azide toward N‐Heterocycle Fused and 5‐Amino‐1,2,3‐Triazoles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Leiling Deng
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang P. R. China
| | - Yanping Zhu
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University 264005 Yantai P. R. China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang P. R. China
| |
Collapse
|
38
|
Gan L, Wei L, Wan J. Catalyst‐Free Synthesis of α‐Diazoketones in Water by Microwave Promoted Enaminone C=C Double Bond Cleavage. ChemistrySelect 2020. [DOI: 10.1002/slct.202002247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lu Gan
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
- School of ScienceNanchang Institute of Technology Nanchang 330029 P. R. China
| | - Li Wei
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
39
|
Yu Q, Liu Y, Wan JP. Transition metal-free synthesis of 3-trifluoromethyl chromones via tandem C–H trifluoromethylation and chromone annulation of enaminones. Org Chem Front 2020. [DOI: 10.1039/d0qo00855a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis of 3-trifluoromethyl chromones has been realized via transition metal-free reactions of o-hydroxyphenyl enaminones and the Langlois reagent via cascade C–H trifluoromethylation and chromone annulation.
Collapse
Affiliation(s)
- Qing Yu
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| |
Collapse
|