1
|
Wang AL, Zhao HH, Jiang HW, Xu PF. Photosensitized Imino-Sulfamoylation of Alkenes with Oxime Carbamates. Org Lett 2025; 27:4880-4885. [PMID: 40311065 DOI: 10.1021/acs.orglett.5c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
In this study, we have devised a strategy that employs oxime carbamate as a bifunctional diamination reagent in combination with SO2 to realize imino-sulfamoylation of alkenes. This protocol is characterized by its mild conditions, operational simplicity, and metal-free nature, while demonstrating broad functional group tolerance for alkenes. Furthermore, the application of this method provides an accessible route to a diverse range of β-amino sulfonamide derivatives.
Collapse
Affiliation(s)
- Ai-Lian Wang
- State Key Laboratory of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Huan-Huan Zhao
- State Key Laboratory of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Hao-Wen Jiang
- State Key Laboratory of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Peng-Fei Xu
- State Key Laboratory of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
2
|
Wang Y, Huang X, Chen J, Xu J, Song Q. Diastereoselective radical cascade cyclization to access indole-fused diazepine derivatives. Org Biomol Chem 2025; 23:4349-4354. [PMID: 40223734 DOI: 10.1039/d5ob00219b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The synthesis of polycyclic indoles is significant in organic chemistry, due to such heterocyclic frameworks being present in numerous bioactive pharmaceuticals and natural alkaloids. Herein, we provide an efficient radical cascade cyclization strategy to generate indole-fused diazepine derivatives using phosphoryl or sulfonyl radicals with N-(2-(1H-indol-1-yl)phenyl)-N-methylmethacrylamides. The merits of this synthesis are attributed to its accessible starting materials, broad substrate compatibility and excellent diastereoselectivity.
Collapse
Affiliation(s)
- Yutong Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Xiujuan Huang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, Xiamen, Fujian 361021, China.
| | - Jinglong Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, Xiamen, Fujian 361021, China.
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China.
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
3
|
Huang R, Wang W, Lu K, Zhao X. Visible-light-induced cascade radical cyclization to access sulfamoylated benzo[4,5]imidazo[2,1- a]isoquinolin-6(5 H)-ones. Org Biomol Chem 2025; 23:892-899. [PMID: 39635756 DOI: 10.1039/d4ob01809e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We report, for the first time, a visible-light-induced cascade radical sulfamoylation and cyclization of 2-arylbenzoimidazoles using sulfamoyl chlorides as sulfamoylation reagents to access sulfamoylated benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-ones. The readily available nature of sulfamoyl chlorides and the metal-free conditions make this method a promising strategy for the synthesis of these compounds.
Collapse
Affiliation(s)
- Rong Huang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| | - Wenbo Wang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
4
|
Ren JW, Zhang QH, Han CS, Zhang HX, Wang YB, Shi HR, Sun JH, Han YF. L-Amino acid ester as a biomimetic reducing agent for the reduction of unsaturated CC bonds. Org Biomol Chem 2025; 23:654-659. [PMID: 39600194 DOI: 10.1039/d4ob01640h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The first example of an efficient protocol for the reduction of disubstituted methyleneindolinones, isoindigos and tetrasubstituted olefins for the synthesis of 3-substituted 2-oxindoles, dihydroisoindigos and tetrasubstituted ethane derivatives using an L-amino acid ester as an attractive biomimetic reducing agent has been developed. This new protocol has the advantages of mild reaction conditions without the need for any metal catalysts, a broad substrate scope (31 examples), excellent yields (90-98%) and good functional group tolerance, providing an operationally simple and practically useful methodology for reductive reactions. The L-amino acid derivative, which is cheap, nontoxic and easy to handle, serves as a new biomimetic reducing agent for use in organic chemistry, providing a novel and promising approach for future applications in reductive reactions.
Collapse
Affiliation(s)
- Ji-Wei Ren
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Qing-Hao Zhang
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Cheng-Shuai Han
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Huai-Xin Zhang
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Ya-Bin Wang
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Hai-Rui Shi
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Jing-Hui Sun
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Yin-Feng Han
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| |
Collapse
|
5
|
Yu S, Cheng Y, Pan C, Yu JT. Access to 1-aryl-pyrazolin-5-ones via photoinduced chemoselective cyclization of N-methacrylo aldehyde hydrazones. Chem Commun (Camb) 2025; 61:1196-1199. [PMID: 39698818 DOI: 10.1039/d4cc05976j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
A photocatalytic sulfamoylation/5-endo-trig cyclization of (E)-N'-arylidene-N-phenylmethacrylohydrazides with sulfamoyl chlorides was developed. The chemoselective intramolecular addition of the carbon-centered radical intermediate to the CN bond in the hydrazone motif gave the sulfamoylated pyrazolin-5-one. Besides, sulfonyl chlorides are also suitable reaction partners to access sulfonylated pyrazolin-5-ones. This approach is characterized by mild reaction conditions, broad substrates scope, excellent selectivity and the late-stage modification of drug molecules.
Collapse
Affiliation(s)
- Sheng Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Yangjian Cheng
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
6
|
Dupud R, Merugu KK, R R, Ramesh R. Synthesis of benzosultams via Ag(I)-catalyzed alkylative cyclization of vinyl sulfonamides. Org Biomol Chem 2024; 23:103-107. [PMID: 39539236 DOI: 10.1039/d4ob01583e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A convenient method to access benzo-fused-γ-sultams via alkyl radical induced cyclization of vinyl sulfonamides is presented. A wide range of carboxylic acids including sterically hindered adamantanes participated as alkyl donors in this Ag(I)-catalyzed decarboxylative alkylation. The reaction utilizes readily available starting materials and demonstrates a broad substrate scope.
Collapse
Affiliation(s)
- Raju Dupud
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Karthik Kumar Merugu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Remyachand R
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Remya Ramesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
7
|
Huang AX, Li R, Lv QY, Yu B. Photocatalytic Sulfonylation: Innovations and Applications. Chemistry 2024; 30:e202402416. [PMID: 39003604 DOI: 10.1002/chem.202402416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Photosynthesis, converting sustainable solar energy into chemical energy, has emerged as a promising craft to achieve diverse organic transformations due to its mild reaction conditions, sustainability, and high efficiency. The synthesis of sulfonated compounds has drawn significant attention in the pharmaceuticals, agrochemicals, and materials industries due to the unique structure and electronic properties of the sulfonyl groups. Over the past decades, many photocatalytic sulfonylation reactions have been developed. In this review, the recent advances in photocatalyzed sulfonylation have been reviewed since 2020, with a primary focus on discussing reaction design and mechanism.
Collapse
Affiliation(s)
- An-Xiang Huang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Qi-Yan Lv
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing, 210037, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
8
|
Mei YT, Zhang H, Jiang Y, Gu YJ, Deng JL, Yang D, Jing LH, Shi MS. Modular access to diarylmethyl sulfonamides via visible light-promoted cross-coupling reactions. Chem Commun (Camb) 2024; 60:8589-8592. [PMID: 39045678 DOI: 10.1039/d4cc02571g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
We report a novel and efficient method for the preparation of diarylmethyl sulfonamide derivatives through visible-light-induced sulfamoylation of para-quinone methides with sulfamoyl chlorides under mild, metal-free conditions. This protocol demonstrates excellent tolerance toward a wide range of functional groups, affording the corresponding products in moderate to high yields. Preliminary mechanism studies revealed that the excited photocatalyst rhodamine 6G* was mainly quenched by para-quinone methides and the generated diarylmethyl radical intermediates then underwent radical-radical cross-coupling with sulfamoyl radicals to yield the diarylmethyl sulfonamides.
Collapse
Affiliation(s)
- Yu-Tong Mei
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Hui Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Yu Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Yu-Jia Gu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Jiang-Lai Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Ming-Song Shi
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621099, China.
| |
Collapse
|
9
|
Zhong LJ, Chen H, Shang X, Xiong BQ, Tang KW, Liu Y. Oxidant-Assisted Sulfonylation/Cyclization Cascade Synthesis of Alkylsulfonylated Oxindoles via the Insertion of SO 2. J Org Chem 2024; 89:5409-5422. [PMID: 38563439 DOI: 10.1021/acs.joc.3c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An oxidant-assisted tandem sulfonylation/cyclization of electron-deficient alkenes with 4-alkyl-substituted Hantzsch esters and Na2S2O5 for the preparation of 3-alkylsulfonylated oxindoles under mild conditions in the absence of a photocatalyst and transition metal catalyst is established. The mechanism studies show that the alkyl radicals, which come from the cleavage of the C-C bond in 4-substituted Hantzsch esters under oxidant conditions, subsequently undergo the in situ insertion of sulfur dioxide to generate the crucial alkylsulfonyl radical intermediates. This three-component reaction provides an efficient and facile route for the construction of alkylsulfonylated oxindoles and avoids the use of highly toxic alkylsulfonyl chlorides or alkylsulfonyl hydrazines as alkylsulfonyl sources.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Hui Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Xuan Shang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
10
|
Li W, Huang Z, Zhong D, Li H. Photocatalyst-Free Activation of Sulfamoyl Chlorides for Regioselective Sulfamoyl-Oximation of Alkenes via Hydrogen Atom Transfer (HAT) and Halogen-Atom Transfer (XAT) Relay Strategy. Org Lett 2024; 26:2062-2067. [PMID: 38451173 DOI: 10.1021/acs.orglett.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The use of readily available and diverse sulfamoyl chlorides for synthesizing sulfonamide compounds presents an intriguing, yet significantly underexplored strategy. Activating sulfamoyl chlorides via single-electron reduction poses challenges due to their high reduction potential. Alternatively, the SO2-Cl bond in sulfamoyl chlorides could be readily cleaved by XAT. However, the existing methodologies have been limited to either the use of photocatalyst or the monofunctionalization of activated alkenes. Here, we report a regioselective sulfamoyl-oximation of alkenes by involving the activation of sulfamoyl chlorides through a HAT and XAT relay strategy in a photocatalyst-free way. The key to this success lies in the dual roles of tert-butyl nitrite (TBN), which not only serves as the source of oximes but also acts as the HAT reagent to generate the crucial XAT reactive species. The exclusion of metal catalysts or photosensitizers for utilizing light energy renders this protocol versatile and universally applicable for synthesizing a broad range of structurally diverse oxime-containing alkyl sulfonamides.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhihua Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Deliang Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huaifeng Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
11
|
Xiao ZL, Xie ZZ, Yuan CP, Deng KY, Chen K, Chen HB, Xiang HY, Yang H. Photosensitized 1,2-Difunctionalization of Alkenes to Access β-Amino Sulfonamides. Org Lett 2024; 26:2108-2113. [PMID: 38440974 DOI: 10.1021/acs.orglett.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A metal-free photosensitized 1,2-imino-sulfamoylation of olefins by employing a tailor-made sulfamoyl carbamate as the difunctionalization reagent has been established. This protocol exhibits versatility across a broad substrate scope, including aryl and aliphatic alkenes, leading to the synthesis of diverse β-imino sulfonamides in moderate to good yields. This method is characterized by its metal-free reaction system, mild reaction conditions, excellent regioselectivity, and high atom economy, serving as a promising platform for the preparation of β-amino sulfonamide-containing molecules, particularly in the context of drug discovery.
Collapse
Affiliation(s)
- Ze-Long Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Chu-Ping Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke-Yi Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, China
| | - Hong-Bin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Jiangxi Time Chemical Company, Ltd., C Park of Jinxi Xiangliao Industry, Fuzhou 344800, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, China
| |
Collapse
|
12
|
Chandu P, Mallick M, Srinivasu V, Sureshkumar D. Organophotocatalyzed Alkyl/Arylsulfonylation of Vinylcyclopropanes. Chemistry 2024; 30:e202303187. [PMID: 37926681 DOI: 10.1002/chem.202303187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
Allyl sulfones are an essential pharmacophore in many bioactive compounds. To combat their synthetic barrier, we report a practical, straightforward organophotocatalyzed methodology for accessing miscellaneously functionalized allyl sulfone derivatives using inexpensive and bench-stable sodium sulfinate salts under mild conditions. This photo-catalyzed radical sulfonylation provides access to a variety of allyl sulfones in good to excellent yields with high E : Z selectivity. A wide range of vinyl cyclopropanes, as well as aryl/hetero and alkyl sodium sulfinates, were tolerated and reliable in gram-scale synthesis. Later on, further functionalization of allyl sulfones was demonstrated. A plausible mechanism for radical sulfonylation is proposed from the control experiments.
Collapse
Affiliation(s)
- Palasetty Chandu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Manasi Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Vinjamuri Srinivasu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
13
|
Zhang Y, Han B, Gu X, Wang K, Liang S. Mn(OAc) 3-Promoted Sulfonation- ipso-Cyclization Cascade via the SO 3- Radical: The Synthesis of Spirocyclic Sulfonates. J Org Chem 2023; 88:14140-14155. [PMID: 37718492 DOI: 10.1021/acs.joc.3c01684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
A radical sulfonation-ipso-cyclization cascade promoted by Mn(OAc)3·2H2O using functionalized alkynes or alkenes and potassium metabisulfite (K2S2O5) is reported. A total of 30 spirocyclic sulfonates were synthesized under mild conditions. We also demonstrate a modular synthesis approach in multiple steps for the preparation of various azaspiro[4,5]-trienone-based sulfonamides and sulfonate esters.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| | - Bingxu Han
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| | - Xin Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Kaixuan Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| | - Shuai Liang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| |
Collapse
|
14
|
Wohlrábová L, Okoročenkova J, Palao E, Kužmová E, Chalupský K, Klán P, Slanina T. Sulfonothioated meso-Methyl BODIPY Shows Enhanced Uncaging Efficiency and Releases H 2S n. Org Lett 2023; 25:6705-6709. [PMID: 37668439 PMCID: PMC10510718 DOI: 10.1021/acs.orglett.3c02511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 09/06/2023]
Abstract
meso-Methyl BODIPY photocages stand out for their absorption properties and easy chromophore derivatization. However, their low uncaging efficiencies often hinder applications requiring release of protected substrates in high amounts. In this study, we demonstrate that the sulfonothioated BODIPY group photocleaves a sulfonylthio group from the meso-methyl position with a 10-fold higher quantum yield than the most efficient leaving groups studied to date. Photocleavage, observed in solution and in cells, is accompanied by the spatiotemporally controlled photorelease of H2Sn. For this reason, sulfonothioated BODIPY may be applied in cell signaling, redox homeostasis, and metabolic regulation studies.
Collapse
Affiliation(s)
- Lucie Wohlrábová
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 542/2, 160 00 Praha 6, Czech Republic
| | - Jana Okoročenkova
- Department
of Chemistry, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
- RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Eduardo Palao
- Department
of Chemistry, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
- RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Erika Kužmová
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 542/2, 160 00 Praha 6, Czech Republic
| | - Karel Chalupský
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 542/2, 160 00 Praha 6, Czech Republic
| | - Petr Klán
- Department
of Chemistry, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
- RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 542/2, 160 00 Praha 6, Czech Republic
- Institute
of Organic Chemistry and Chemical Biology, Goethe University, Max-von-Laue-Str.
7, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
15
|
Chandra A, Yadav N, Payra S, Parida KN. Oxidation of Thiols with IBX or DMP: One-Pot Access to Thiosulfonates or 2-Iodobenzoates and Applications in Functional Group Transformations. Org Lett 2023; 25:6256-6261. [PMID: 37602744 DOI: 10.1021/acs.orglett.3c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
o-Iodoxybenzoic acid (IBX) and Dess-Martin periodinane (DMP) are employed for thiol to thiosulfonate conversion at rt. DMP is better than IBX in terms of reaction rate, conversion, and required equivalents. IBX-mediated oxidation of benzyl thiols produced thiosulfonates, whereas DMP afforded O-benzyl esters. The one-pot conversion of a thiol to an ester is unprecedented; this atom-economic transformation has potential for functional group transformations (FGTs), e.g., an alcohol and an aldehyde are accessed from benzyl thiol.
Collapse
Affiliation(s)
- Ajeet Chandra
- Department of Chemistry, Indian Institute of Technology (IIT) Bombay, Mumbai 400 076, India
| | - Navin Yadav
- Department of Chemistry, IIT Kanpur, Kanpur 208016, India
| | - Soumen Payra
- Department of Chemistry, IIT Kanpur, Kanpur 208016, India
| | | |
Collapse
|
16
|
Ghosh S, Majumder S, Ghosh D, Hajra A. Redox-neutral carbon-heteroatom bond formation under photoredox catalysis. Chem Commun (Camb) 2023. [PMID: 37171250 DOI: 10.1039/d3cc01873c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recently, visible-light-mediated photoredox catalysis has been emerging as one of the fastest growing fields in organic chemistry because of its low cost, easy availability and environmental benignness. In the past five years, a new yet challenging trend, visible-light-induced redox-neutral carbon-heteroatom bond formation reaction involving presumed radical intermediates, has been flourishing rapidly. Although mostly transition metal-based photoredox catalysts were reported, a few organophotoredox catalysts have also shown efficacy towards carbon-heteroatom bond formation reactions. This review intends to summarize the recent research progress in redox-neutral carbon-heteroatom bond formations based on active intermediate(s) involved under photoredox catalysis.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Souvik Majumder
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Debashis Ghosh
- Department of Chemistry, St. Joseph's University, Bangalore 560027, Karnataka, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| |
Collapse
|
17
|
Lu WH, Yang D, Wang GQ, Wang T, Zhou YX, Jing LH. Photocatalytic synthesis of alkyl-alkyl sulfones via direct C(sp 3)-H bond functionalization. Org Biomol Chem 2023; 21:2822-2827. [PMID: 36928523 DOI: 10.1039/d3ob00276d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
We report a highly efficient one-pot, three-component strategy for the construction of alkyl-alkyl sulfones through a photoinduced TBADT-catalyzed C(sp3)-H sulfonylation of unactivated hydrocarbon compounds. A wide range of commercially available hydrocarbon compounds and bioactive molecules can be successfully applied to the catalytic system, affording the corresponding alkyl-alkyl sulfones in good to excellent yields (>50 examples, up to 87% yield).
Collapse
Affiliation(s)
- Wen-Hua Lu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Guo-Qin Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Ting Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Yuan-Xia Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
18
|
Zhang J, Liu C, Qiao Y, Wei M, Guan W, Mao Z, Qin H, Fang Z, Guo K. Intramolecular trapping of spiro radicals to produce unusual cyclization products from usual migration substrates. Chem Sci 2023; 14:2461-2466. [PMID: 36873849 PMCID: PMC9977401 DOI: 10.1039/d2sc05768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
A conceptually new methodology to give unusual cyclization products from usual migration substrates was disclosed. The highly complex and structurally important and valuable spirocyclic compounds were produced through radical addition, intramolecular cyclization and ring opening instead of usual migration to the di-functionalization products of olefins. Furthermore, a plausible mechanism was proposed based on a series of mechanistic studies including radical trapping, radical clock, verification experiments of intermediates, isotope labeling and KIE experiments.
Collapse
Affiliation(s)
- Jingming Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Yaqi Qiao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Minghui Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Wenjing Guan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Ziren Mao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Hong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China .,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
19
|
Han B, Ding X, Zhang Y, Gu X, Qi Y, Liang S. Mn(OAc) 3-Promoted Sulfonation-Cyclization Cascade via the SO 3– Radical: The Synthesis of Heterocyclic Sulfonates. Org Lett 2022; 24:8255-8260. [DOI: 10.1021/acs.orglett.2c03510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bingxu Han
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, 266071 Qingdao, China
| | - Xuelu Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, 266071 Qingdao, China
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, 266071 Qingdao, China
| | - Xin Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yunkun Qi
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, 266071 Qingdao, China
| | - Shuai Liang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, 266071 Qingdao, China
| |
Collapse
|
20
|
Lemmerer M, Zhang H, Fernandes AJ, Fischer T, Mießkes M, Xiao Y, Maulide N. Synthese von α-Arylacrylamiden via Lewis Base vermitteltem Aryl/Wasserstoff-Austausch. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202207475. [PMID: 38505003 PMCID: PMC10947125 DOI: 10.1002/ange.202207475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/12/2022]
Abstract
AbstractHierin stellen wir eine neue Methode für die Synthese von α‐Arylacrylamiden vor. Die Reaktion basiert auf der Nutzung polarer S‐zu‐C Arylwanderungen, induziert durch einen Lewis‐basischen Organokatalysator. Im Unterschied zu zuvor publizierten radikalischen Arylwanderungen von Sulfonylacrylamiden, ermöglicht dieser polare Prozess eine darauffolgende Eliminierung, wodurch in Summe ein formaler Aryl/Wasserstoff‐Austausch unter Ausscheidung von SO2 stattfindet. Die vorgestellte Reaktion ist selektiv für elektronenarme aromatische Gruppen, während eine Vielfalt von Substituenten am Stickstoff und an der β‐Position toleriert werden, und erzeugt nützliche Bausteine für Folgereaktionen wie Zykloadditionen und Zyklisierungen. Der Reaktionsmechanismus wurde mithilfe quantenchemischer Berechnungen erforscht, die die unerwartete Rolle der Lewis Base in mehreren Schlüsselschritten darlegten.
Collapse
Affiliation(s)
- Miran Lemmerer
- Fakultät Chemie, Institut für Organische ChemieUniversität WienWähringer Str. 381090WienÖsterreich
| | - Haoqi Zhang
- Fakultät Chemie, Institut für Organische ChemieUniversität WienWähringer Str. 381090WienÖsterreich
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz1090WienÖsterreich
| | - Anthony J. Fernandes
- Fakultät Chemie, Institut für Organische ChemieUniversität WienWähringer Str. 381090WienÖsterreich
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz1090WienÖsterreich
| | | | - Marianne Mießkes
- Fakultät Chemie, Institut für Organische ChemieUniversität WienWähringer Str. 381090WienÖsterreich
| | - Yi Xiao
- Fakultät Chemie, Institut für Organische ChemieUniversität WienWähringer Str. 381090WienÖsterreich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesLazarettgasse 14, AKH BT 25.31090WienÖsterreich
| | - Nuno Maulide
- Fakultät Chemie, Institut für Organische ChemieUniversität WienWähringer Str. 381090WienÖsterreich
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz1090WienÖsterreich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesLazarettgasse 14, AKH BT 25.31090WienÖsterreich
| |
Collapse
|
21
|
Lemmerer M, Zhang H, Fernandes AJ, Fischer T, Mießkes M, Xiao Y, Maulide N. Synthesis of α-Aryl Acrylamides via Lewis-Base-Mediated Aryl/Hydrogen Exchange. Angew Chem Int Ed Engl 2022; 61:e202207475. [PMID: 35881564 PMCID: PMC9804524 DOI: 10.1002/anie.202207475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 01/05/2023]
Abstract
Herein we report a method for the synthesis of α-aryl acrylamides leveraging polar S-to-C aryl migrations induced by a Lewis basic organocatalyst. In contrast to previously reported radical aryl migrations of sulfonyl acrylimides, this polar process enables subsequent elimination, ultimately leading to a formal aryl/hydrogen exchange including SO2 extrusion. This reaction is selective for electron-deficient aromatic groups, while tolerating a variety of substituents on nitrogen and in the β-position, and it delivers useful building blocks for further transformations, including cycloaddition and cyclisation reactions. The mechanism was investigated in detail using quantum chemical calculations, which unexpectedly revealed the Lewis base to be involved in several decisive steps.
Collapse
Affiliation(s)
- Miran Lemmerer
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Haoqi Zhang
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| | - Anthony J. Fernandes
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| | | | - Marianne Mießkes
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Yi Xiao
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesLazarettgasse 14, AKH BT 25.31090ViennaAustria
| | - Nuno Maulide
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesLazarettgasse 14, AKH BT 25.31090ViennaAustria
| |
Collapse
|
22
|
Abstract
Herein, we report a mild, rapid, straightforward method for visible-light-mediated sulfonamide ethylation to afford a diverse array of compounds with C(sp3)-sulfonamide skeletons. The method relies on inexpensive, abundant, commercially available primary, secondary, and tertiary alkyl carboxylic acids and alkyl iodides as substrates. The method has a broad substrate scope and potential utility for late-stage functionalization of natural products and synthetic medicines and can be expected to facilitate rapid structural diversification of bioactive molecules.
Collapse
Affiliation(s)
- Mingjun Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Mo Yu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Ziwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Xu D, Yu Y, Huang F, Zhou S, Zhang W. Photo‐induced sp3 C–H functionalization for the synthesis of 3,3‐disubstituted oxindoles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dongping Xu
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Yingliang Yu
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Fei Huang
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Shuangliu Zhou
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Wu Zhang
- Anhui Normal University College of Chemistry and Materials Science 1 Beijing Eastroad 241000 Wuhu CHINA
| |
Collapse
|
24
|
Padma Priya V, Natarajan K, Nandi GC. Advances in the photoredox catalysis of S(VI) compounds. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Wu X, Zhao F, Ji X, Huang H. Visible Light-Assisted Photocatalyst-Free Tandem Sulfonylation/ Cyclization for the Synthesis of Oxindoles. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Yang DY, Liu L, Gu JY, He YH, Guan Z. Photoredox Catalyzed Radical Cascade Aroylation (Sulfonylation)/Cyclization Enables Access to Fused Indolo-pyridones. J Org Chem 2021; 86:18042-18055. [PMID: 34871003 DOI: 10.1021/acs.joc.1c02335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A visible-light-initiated radical cascade reaction toward the synthesis of structurally diverse fused Indolo-pyridones is described. The reaction involves the addition of aroyl or sulfonyl radicals to N-alkyl-acryloyl-1H-indole-3-carboxamides, cyclization, and oxidative aromatization. This telescoped method circumvents lengthy prefunctionalization steps of radical precursors, which is further underpinned by the superior compatibility with a series of C-centered radicals, allowing the rapid and facile construction of numerous valuable architectures.
Collapse
Affiliation(s)
- De-Yong Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Liang Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jia-Yi Gu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
27
|
Zhang M, Chen M, Ding X, Kang J, Gao Y, He X, Wang Z, Lu A, Wang Q. The photoredox-catalyzed hydrosulfamoylation of styrenes and its application in the novel synthesis of naratriptan. Chem Commun (Camb) 2021; 57:9140-9143. [PMID: 34498639 DOI: 10.1039/d1cc04225d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The hydrosulfamoylation of diverse aryl olefins provides facile access to alkylsulfonamides. Here we report a novel protocol utilizing radical-mediated addition and a thiol-assisted strategy to achieve the hydrosulfamoylation of diverse styrenes in modest to excellent yields under mild and economic reaction conditions. The methodology was found to provide an efficient and convenient approach for the synthesis of the anti-migraine drug naratriptan and it also can be used for the late-stage functionalization of natural products or medicines.
Collapse
Affiliation(s)
- Mingjun Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Miaomiao Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Xin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Jin Kang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Yongyue Gao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Xingxing He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China.
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
| |
Collapse
|
28
|
Affiliation(s)
- Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
29
|
Renzi P, Azzi E, Lanfranco A, Moro R, Deagostino A. Visible Light as the Key for the Formation of Carbon–Sulfur Bonds in Sulfones, Thioethers, and Sulfonamides: An Update. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1509-5541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThis review summarizes the most relevant advancements made in the photocatalyzed synthesis of sulfones, thioethers, and sulfonamides from 2017 to the beginning of 2021. Synthetic strategies towards the construction of sulfur–carbon bonds are discussed together with the proposed reaction mechanisms. Interestingly, sulfur-based functional groups, which are of fundamental importance for the pharmaceutical field, can be assembled by photocatalysis in an easy and straightforward way under milder reaction conditions employing less toxic and expensive sulfur sources in comparison with common strategies.1 Introduction2 Sulfones2.1 Sodium Sulfinates and Sulfinic Acids2.2 Sulfonyl Halides2.3 Sulfonyl Hydrazones2.4 Sulfur Dioxide Surrogates2.5 Miscellaneous3 Thioethers4 Sulfonamides5 Conclusions
Collapse
|
30
|
Bajohr J, Diallo AG, Whyte A, Gaillard S, Renaud JL, Lautens M. Palladium-Catalyzed Domino Heck/Sulfination: Synthesis of Sulfonylated Hetero- and Carbocyclic Scaffolds Using DABCO-Bis(sulfur dioxide). Org Lett 2021; 23:2797-2801. [PMID: 33719466 DOI: 10.1021/acs.orglett.1c00716] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of a broad variety of hetero- and carbocyclic scaffolds via a Pd-catalyzed domino Heck/SO2 insertion reaction is reported. This reaction utilizes DABSO, a safe and easy-to-handle alternative to SO2 gas. The reaction proceeds through a sulfinate intermediate, which can act as a lynchpin for the in situ generation of sulfones, sulfonamides, and sulfonyl fluorides. Good yields and scalability are demonstrated.
Collapse
Affiliation(s)
- Jonathan Bajohr
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Abdoul G Diallo
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
| | - Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sylvain Gaillard
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
| | - Jean-Luc Renaud
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|