1
|
Vahidzadeh E, Rajashekhar H, Riddell S, Alam KM, Vrushabendrakumar D, Kumar N, Shankar K. Sponge-shaped Au nanoparticles: a stand-alone metallic photocatalyst for driving the light-induced CO 2reduction reaction. NANOTECHNOLOGY 2024; 35:495402. [PMID: 39084236 DOI: 10.1088/1361-6528/ad6998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Coinage metal nanoparticles (NPs) enable plasmonic catalysis by generating hot carriers that drive chemical reactions. Making NPs porous enhances the adsorption of reactant molecules. We present a dewetting and dealloying strategy to fabricate porous gold nanoparticles (Au-Sponge) and compare their CO2photoreduction activity with respect to the conventional gold nanoisland (Au-Island) morphology. Porous gold nanoparticles exhibit an unusually broad and red-shifted plasmon resonance which is in agreement with the results of finite difference time domain (FDTD) simulations. The key insight of this work is that the multi-step reduction of CO2driven by short-lived hot carriers generated by the d → s interband transition proceeds extremely quickly as evidenced by the generation of methane. A 3.8-fold enhancement in the photocatalytic performance is observed for the Au-Sponge in comparison to the Au-Island. Electrochemical cyclic voltammetry measurements confirm the 2.5-fold increase in the surface area and roughness factor of the Au-Sponge sample due to its porous nature. Our results indicate that the product yield is limited by the amount of surface adsorbates i.e. reactant-limited. Isotope-labeled mass spectrometry using13CO2was used to confirm that the reaction product (13CH4) originated from CO2photoreduction. We also present the plasmon-mediated photocatalytic transformation of 4-aminothiophenol (PATP) into p,p'-dimercaptoazobenzene (DMAB) using Au-Sponge and Au-Island samples.
Collapse
Affiliation(s)
- Ehsan Vahidzadeh
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| | - Harshitha Rajashekhar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| | - Saralyn Riddell
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| | - Kazi M Alam
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| | - Damini Vrushabendrakumar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| | - Navneet Kumar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada
| |
Collapse
|
2
|
Xu Y, Wu Y, Wei J, Zhao Y, Xue P. Three-dimensional hotspot structures constructed from nanoporous gold with a V-cavity and gold nanoparticles for surface-enhanced Raman scattering. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2888-2896. [PMID: 38646710 DOI: 10.1039/d4ay00348a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The intensity and sensitivity of surface-enhanced Raman scattering (SERS) spectra are highly dependent on the consistency and homogeneity of the nanomaterials. In this study, we developed a large-area three-dimensional (3D) hotspot substrate with good homogeneity and reproducibility in SERS signals. The substrate is based on the synergistic structures of nanoporous gold (NPG) and gold nanoparticles (AuNPs). NPG was combined with a periodic V-shaped nanocavity array to create nanoporous gold with a V-cavity (NPGVC) array featuring uniform hotspots. A nanoporous gold V-shaped resonant cavity (NPGVRC) structure was developed by incorporating AuNPs into the NPGVC array. The coupling action between the AuNPs and NPGVC resulted in a SERS-enhanced electromagnetic field with 3D hotspot distribution. The strategic incorporation of NPG and V-cavity array significantly expanded the surface area available for analyte adsorption and interaction with AuNPs. Using rhodamine 6G (R6G) and malachite green (MG) as probe molecules, the SERS performance was investigated, and the NPGVRC substrate not only showed excellent enhancement with the limit of detection as low as 10-11 M, but also presented good homogeneity. NPGVRC was then used for biological detection of the influenza A virus, where we acquired and examined the characteristic SERS spectra of two spike proteins. It is demonstrated that there is significant potential for our proposed SERS platform to be used in biosensors.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Yan Wu
- Sichuan Science City Hospital, Mianyang 621000, China
| | - Jianjun Wei
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Yuanyu Zhao
- Sichuan Science City Hospital, Mianyang 621000, China
| | - Peili Xue
- Sichuan Science City Hospital, Mianyang 621000, China
| |
Collapse
|
3
|
Huynh PT, Le Tran KT, Nguyen TTH, Lam VQ, Phan NTK, Ngo TVK. Preparation and characterization of spiked gold nanobipyramids and its antibacterial effect on methicillin-resistant Staphylococcus aureus and methicillin-sensitive Staphylococcus aureus. J Genet Eng Biotechnol 2023; 21:121. [PMID: 37966622 PMCID: PMC10651629 DOI: 10.1186/s43141-023-00589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND This paper reports the preparation of a new family of spiked gold nanoparticles, spiked gold nanobipyramids (SNBPs). This protocol includes the process to synthesize gold nanobipyramids (NBPs) using combined seed-mediated and microwave-assisted method and procedure to form spikes on whole surface of gold nanobipyramid. We also evaluated the antibacterial activity against both methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) in various concentrations of SNBPs and NBPs by well diffusion assay, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) determination. The effect of SNBPs on exposed bacteria was observed by scanning electron microscopy. RESULTS The UV-Vis of purified NBPs exhibited two absorption bands located at 550 nm and 849 nm with yield of bipyramidal particles more than 90%. The average size of NBPs was 76.33 ± 10.11 nm in length and 26.57 ± 2.25 nm in diameter, respectively, while SNBPs were prolongated in length and achieved 182.37 ± 21.74 nm with multi-branches protruding whole surface areas. In antibacterial evaluations, SNBPs and NBPs showed antibacterial activity with MIC of 6.25 μl/ml and 12.5 μl/ml, respectively, for MSSA while 12.5 μl/ml and 25 μl/ml, respectively, for MRSA. Besides, MBC values of SNBPs and NBPs were found to be 12.5 μl/ml and 25 μl/ml, respectively, against MSSA while 25 μl/ml and 50 μl/ml, respectively, against MRSA. Furthermore, scanning electron microscopy observation showed the mechanism that SNBPs damaged the outer membrane, released cytoplasm, and altered the normal morphology of MRSA and MSSA, leading to bacterial death. CONCLUSIONS This report suggests that these SNBPs are potential antibacterial agents that can be applied as antibacterial materials to inhibit the growth of human bacterial pathogen infections related to antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Phat Trong Huynh
- Research Laboratories of Saigon Hi-Tech Park, Ho Chi Minh City, 700000, Vietnam.
- Faculty of Physics and Engineering Physics, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.
| | - Khanh Thi Le Tran
- Research Laboratories of Saigon Hi-Tech Park, Ho Chi Minh City, 700000, Vietnam
| | | | - Vinh Quang Lam
- Faculty of Physics and Engineering Physics, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Ngan Thi Kim Phan
- Research Laboratories of Saigon Hi-Tech Park, Ho Chi Minh City, 700000, Vietnam
| | - Thanh Vo Ke Ngo
- Research Laboratories of Saigon Hi-Tech Park, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
4
|
Nambiar S, Mohan M, Rosin Jose A. Voltammetric Sensors: A Versatile Tool in COVID‐19 Diagnosis and Prognosis. ChemistrySelect 2023. [DOI: 10.1002/slct.202204506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Souparnika Nambiar
- PG and Research Dept. of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala INDIA 682013
| | - Malavika Mohan
- PG and Research Dept. of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala INDIA 682013
| | - Ammu Rosin Jose
- PG and Research Dept. of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala INDIA 682013
| |
Collapse
|
5
|
Yu X, Wang Z, Cui H, Wu X, Chai W, Wei J, Chen Y, Zhang Z. A Review on Gold Nanotriangles: Synthesis, Self-Assembly and Their Applications. Molecules 2022; 27:8766. [PMID: 36557899 PMCID: PMC9783914 DOI: 10.3390/molecules27248766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Gold nanoparticles (AuNPs) with interesting optical properties have attracted much attention in recent years. The synthesis and plasmonic properties of AuNPs with a controllable size and shape have been extensively investigated. Among these AuNPs, gold nanotriangles (AuNTs) exhibited unique optical and plasmonic properties due to their special triangular anisotropy. Indeed, AuNTs showed promising applications in optoelectronics, optical sensing, imaging and other fields. However, only few reviews about these applications have been reported. Herein, we comprehensively reviewed the synthesis and self-assembly of AuNTs and their applications in recent years. The preparation protocols of AuNTs are mainly categorized into chemical synthesis, biosynthesis and physical-stimulus-induced synthesis. The comparison between the advantages and disadvantages of various synthetic strategies are discussed. Furthermore, the specific surface modification of AuNTs and their self-assembly into different dimensional nano- or microstructures by various interparticle interactions are introduced. Based on the unique physical properties of AuNTs and their assemblies, the applications towards chemical biology and sensing were developed. Finally, the future development of AuNTs is prospected.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinjian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yuqin Chen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Zhide Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
6
|
Synthesis of PVDF membrane loaded with wrinkled Au NPs for sensitive detection of R6G. Talanta 2022; 249:123676. [PMID: 35738206 DOI: 10.1016/j.talanta.2022.123676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022]
Abstract
A novel SERS membrane is synthesized by combining metal lattice and surface enhanced Raman scattering (SERS) technology. Since R6G is a carcinogenic and harmful pollutant, and traditional detection methods have many drawbacks and have research value, this paper selects R6G as the detection target. The SERS substrates are synthesized by loading Au nanoparticles (Au NPs) on the surface of polyvinylidene fluoride (PVDF) membrane. The Au NPs are synthesized through a controllable hydrothermal method. The synthesized AuNPs are covered by some gold particles, forming a fold pattern. Finally, the synthesized structure is immobilized on the surface of the PVDF membrane by the phase inversion method. It is suggested that the prepared Au NPs@PVDF membrane exhibits adjustable cavity structure, strong plasmon coupling, tunable magnetic plasmon resonance, prominent SERS performances. The prepared Au NPs@PVDF membrane showed sensitive SERS activity, good mechanical strength and reusability, expanding the application field of SERS detection. Overall, this study establishes a novel technique for the synthesis of SERS membrane with excellent SERS property and expands the application field of SERS detection.
Collapse
|
7
|
Poghosyan A, Mamasakhlisov YS. The mechanism of flip-flops in a AOT lamella: A molecular dynamics study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Del Caño R, García-Mendiola T, García-Nieto D, Álvaro R, Luna M, Iniesta HA, Coloma R, Diaz CR, Milán-Rois P, Castellanos M, Abreu M, Cantón R, Galán JC, Pineda T, Pariente F, Miranda R, Somoza Á, Lorenzo E. Amplification-free detection of SARS-CoV-2 using gold nanotriangles functionalized with oligonucleotides. Mikrochim Acta 2022; 189:171. [PMID: 35364748 PMCID: PMC8974806 DOI: 10.1007/s00604-022-05272-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022]
Abstract
Gold nanotriangles (AuNTs) functionalized with dithiolated oligonucleotides have been employed to develop an amplification-free electrochemical biosensor for SARS-CoV-2 in patient samples. Gold nanotriangles, prepared through a seed-mediated growth method and exhaustively characterized by different techniques, serve as an improved electrochemical platform and for DNA probe immobilization. Azure A is used as an electrochemical indicator of the hybridization event. The biosensor detects either single stranded DNA or RNA sequences of SARS-CoV-2 of different lengths, with a low detection limit of 22.2 fM. In addition, it allows to detect point mutations in SARS-CoV-2 genome with the aim to detect more infective SARS-CoV-2 variants such as Alpha, Beta, Gamma, Delta, and Omicron. Results obtained with the biosensor in nasopharyngeal swab samples from COVID-19 patients show the possibility to clearly discriminate between non-infected and infected patient samples as well as patient samples with different viral load. Furthermore, the results correlate well with those obtained by the gold standard technique RT-qPCR, with the advantage of avoiding the amplification process and the need of sophisticated equipment.
Collapse
Affiliation(s)
- Rafael Del Caño
- Departamento de Química Analítica, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Departamento de Química Física Y Termodinámica Aplicada e Instituto Universitario de Nanoquímica, Universidad de Córdoba, 14014, Córdoba, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica, Universidad Autónoma de Madrid, 28049, Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| | - Daniel García-Nieto
- Instituto de Micro Y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, 28760, Madrid, Spain
| | - Raquel Álvaro
- Instituto de Micro Y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, 28760, Madrid, Spain
| | - Mónica Luna
- Instituto de Micro Y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, 28760, Madrid, Spain
| | | | - Rocío Coloma
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Ciro Rodríguez Diaz
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Paula Milán-Rois
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | | | - Melanie Abreu
- Servicio de Microbiología, Hospital Universitario Ramón Y Cajal and Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón Y Cajal and Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos Galán
- Servicio de Microbiología, Hospital Universitario Ramón Y Cajal and Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) en Epidemiología Y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Pineda
- Departamento de Química Física Y Termodinámica Aplicada e Instituto Universitario de Nanoquímica, Universidad de Córdoba, 14014, Córdoba, Spain
| | - Félix Pariente
- Departamento de Química Analítica, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Rodolfo Miranda
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Álvaro Somoza
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica, Universidad Autónoma de Madrid, 28049, Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain. .,IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
9
|
Xu M, den Hartog T, Cheng L, Wolfs M, Habets R, Rohlfs J, van den Ham J, Meulendijks N, Sastre F, Buskens P. Using Fiber Bragg Grating Sensors to Quantify Temperature Non‐Uniformities in Plasmonic Catalyst Beds under Illumination. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Man Xu
- TNO Optics Stieltjesweg 1 2628 CK Delft NETHERLANDS
| | - Tim den Hartog
- Zuyd University of Applied Sciences: Zuyd Hogeschool Material Sciences NETHERLANDS
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gharabekyan HH, Koetz J, Poghosyan AH. A protonated L-cysteine adsorption on gold surface: A molecular dynamics study. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Electrosynthesis of silver metal nanocomposites in a copolymer matrix of 1-vinyl-1,2,4-triazole and acrylic acid. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Koetz J. The Effect of Surface Modification of Gold Nanotriangles for Surface-Enhanced Raman Scattering Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2187. [PMID: 33147806 PMCID: PMC7694140 DOI: 10.3390/nano10112187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
A surface modification of ultraflat gold nanotriangles (AuNTs) with different shaped nanoparticles is of special relevance for surface-enhanced Raman scattering (SERS) and the photo-catalytic activity of plasmonic substrates. Therefore, different approaches are used to verify the flat platelet morphology of the AuNTs by oriented overgrowth with metal nanoparticles. The most important part for the morphological transformation of the AuNTs is the coating layer, containing surfactants or polymers. By using well established AuNTs stabilized by a dioctyl sodium sulfosuccinate (AOT) bilayer, different strategies of surface modification with noble metal nanoparticles are possible. On the one hand undulated superstructures were synthesized by in situ growth of hemispherical gold nanoparticles in the polyethyleneimine (PEI)-coated AOT bilayer of the AuNTs. On the other hand spiked AuNTs were obtained by a direct reduction of Au3+ ions in the AOT double layer in presence of silver ions and ascorbic acid as reducing agent. Additionally, crumble topping of the smooth AuNTs can be realized after an exchange of the AOT bilayer by hyaluronic acid, followed by a silver-ion mediated reduction with ascorbic acid. Furthermore, a decoration with silver nanoparticles after coating the AOT bilayer with the cationic surfactant benzylhexadecyldimethylammonium chloride (BDAC) can be realized. In that case the ultraviolet (UV)-absorption of the undulated Au@Ag nanoplatelets can be tuned depending on the degree of decoration with silver nanoparticles. Comparing the Raman scattering data for the plasmon driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4'-dimercaptoazobenzene (DMAB) one can conclude that the most important effect of surface modification with a 75 times higher enhancement factor in SERS experiments becomes available by decoration with gold spikes.
Collapse
Affiliation(s)
- Joachim Koetz
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 25, 14476 Potsdam, Germany
| |
Collapse
|
13
|
Wallace GQ, Masson JF. From single cells to complex tissues in applications of surface-enhanced Raman scattering. Analyst 2020; 145:7162-7185. [DOI: 10.1039/d0an01274b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This tutorial review explores how three of the most common methods for introducing nanoparticles to single cells for surface-enhanced Raman scattering measurements can be adapted for experiments with complex tissues.
Collapse
Affiliation(s)
- Gregory Q. Wallace
- Département de Chimie
- Centre Québécois des Matériaux Fonctionnels (CQMF)
- and Regroupement Québécois des Matériaux de Pointe (RQMP)
- Université de Montréal
- Montréal
| | - Jean-François Masson
- Département de Chimie
- Centre Québécois des Matériaux Fonctionnels (CQMF)
- and Regroupement Québécois des Matériaux de Pointe (RQMP)
- Université de Montréal
- Montréal
| |
Collapse
|