1
|
Xu D, Xu W, Zheng D, Xu C, Lu X. Regulating the 3d-orbital occupancy on Ni sites enables high-rate and durable Ni(OH) 2 cathode for alkaline Zn batteries. J Colloid Interface Sci 2025; 679:686-693. [PMID: 39388954 DOI: 10.1016/j.jcis.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
The capacity and cycling stability of β-Ni(OH)2-based cathodes in aqueous alkaline Ni-Zn batteries are still unsatisfactory due to their undesirable OH- adsorption/desorption dynamics during the electrochemical redox process. To settle this issue, we introduce a new atomic-level strategy to finely modulate the OH- adsorption/desorption of β-Ni(OH)2 through tailoring the 3d-orbital occupancy of Ni center by Co/Cu co-doping (denoted as Co-Cu-Ni(OH)2). Both experimental outcomes and density functional theory calculations validate that the co-doping of Co and Cu endows the Ni species in Co-Cu-Ni(OH)2 with appropriate proportion of the unoccupied 3d-orbital, leading to optimized adsorption/desorption strength of OH-. As anticipated, the Co-Cu-Ni(OH)2 electrode demonstrates superior performance, achieving an areal capacity of 0.83 mAh cm-2 and a gravimetric capacity of 164.3 mAh g-1 at ∼50 mA cm-2 (10 A g-1). Furthermore, it sustains an impressive capacity of 170.8 mAh g-1 (2.3 mAh cm-2) at a high mass loading of 13.5 mg cm-2, alongside a long-term cycling performance over 1000 cycles. The assembled Co-Cu-Ni(OH)2//Zn cell is able to provide a peak energy density of 0.98 mWh cm-2 and excellent durability. This work highlights the potential of an orbital engineering strategy in the development of next-generation high-capacity and durable energy storage materials.
Collapse
Affiliation(s)
- Diyu Xu
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, PR China; MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wei Xu
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China
| | - Dezhou Zheng
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China
| | - Cuixia Xu
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, PR China.
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
2
|
Feyie EK, Tufa LT, Lee J, Tadesse A, Zereffa EA. Electrodeposited Copper Tin Sulfide/Reduced Graphene Oxide Nanospikes for a High-Performance Supercapacitor Electrode. ACS OMEGA 2024; 9:9452-9462. [PMID: 38434813 PMCID: PMC10905689 DOI: 10.1021/acsomega.3c09008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Copper tin sulfide, Cu4SnS4 (CTS), a ternary transition-metal chalcogenide with unique properties, including superior electrical conductivity, distinct crystal structure, and high theoretical capacity, is a potential candidate for supercapacitor (SC) electrode materials. However, there are few studies reporting the application of Cu4SnS4 or its composites as electrode materials for SCs. The reported performance of the Cu4SnS4 electrode is insufficient regarding cycle stability, rate capability, and specific capacity; probably resulting from poor electrical conductivity, restacking, and agglomeration of the active material during continued charge-discharge cycles. Such limitations can be overcome by incorporating graphene as a support material and employing a binder-free, facile, electrodeposition technique. This work reports the fabrication of a copper tin sulfide-reduced graphene oxide/nickel foam composite electrode (CTS-rGO/NF) through stepwise, facile electrodeposition of rGO and CTS on a NF substrate. Electrochemical evaluations confirmed the enhanced supercapacitive performance of the CTS-rGO/NF electrode compared to that of CTS/NF. A remarkably improved specific capacitance of 820.83 F g-1 was achieved for the CTS-rGO/NF composite electrode at a current density of 5 mA cm-2, which is higher than that of CTS/NF (516.67 F g-1). The CTS-rGO/NF composite electrode also exhibited a high-rate capability of 73.1% for galvanostatic charge-discharge (GCD) current densities, ranging from 5 to 12 mA cm-2, and improved cycling stability with over a 92% capacitance retention after 1000 continuous GCD cycles; demonstrating its excellent performance as an electrode material for energy storage applications, encompassing SCs. The enhanced performance of the CTS-rGO/NF electrode could be attributed to the synergetic effect of the enhanced conductivity and surface area introduced by the inclusion of rGO in the composite.
Collapse
Affiliation(s)
- Endale Kebede Feyie
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box: 1888, Adama 1888, Ethiopia
| | - Lemma Teshome Tufa
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box: 1888, Adama 1888, Ethiopia
- Research
Institute of Materials Chemistry, Chungnam
National University, Daejeon 34134, Republic
of Korea
| | - Jaebeom Lee
- Research
Institute of Materials Chemistry, Chungnam
National University, Daejeon 34134, Republic
of Korea
- Department
of Chemistry, Department of Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Aschalew Tadesse
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box: 1888, Adama 1888, Ethiopia
| | - Enyew Amare Zereffa
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box: 1888, Adama 1888, Ethiopia
| |
Collapse
|
3
|
Marimuthu G, Priyadharsini CI, Prabhu S, Viji A, Vignesh S, AlSalhi MS, Lee J, Palanisamy G. Silver-decorated SrTiO 3 nanoparticles for high-performance supercapacitors and effective remediation of hazardous pollutants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:96. [PMID: 38376605 DOI: 10.1007/s10653-024-01875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/14/2024] [Indexed: 02/21/2024]
Abstract
SrTiO3/Ag nanocomposites were synthesized using a facile wet impregnation method, employing rigorous experimental techniques for comprehensive characterization. XRD, FTIR, UV, PL, FESEM, and HRTEM were meticulously utilized to elucidate their structural, functional, morphological, and optical properties. The electrochemical performance of the SrTiO3/Ag nanocomposite was rigorously assessed, revealing an impressive specific capacitance of 850 F/g at a current density of 1 A. Furthermore, the photocatalytic activity of the SrTiO3/Ag nanocomposite was rigorously examined using methylene blue (MB) dye, and the results were outstanding. After 120 min of UV irradiation, the nanocomposite exhibited an exceptional MB dye degradation efficiency exceeding 88%. The SrTiO3/Ag nanocomposite represents an exemplary catalyst in terms of efficiency, cost-effectiveness, environmental compatibility, and reusability. The electron and superoxide radicals play a chief role in the MB dye degradation process. The inclusion of Ag within the SrTiO3 matrix facilitated the formation of a conductive nano-network, ultimately resulting in superior capacitive and photocatalytic performance.
Collapse
Affiliation(s)
- G Marimuthu
- Department of Physics, Mahendra College of Engineering, Salem, Tamil Nadu, 636106, India
| | - C Indira Priyadharsini
- Department of Physics, Muthayammal College of Arts & Science, Rasipuram, Namakkal, Tamil Nadu, 637408, India.
| | - S Prabhu
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, 52900, Ramat Gan, Israel
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602 105, India
| | - A Viji
- Department of Physics, Kongunadu College of Engineering and Technology, Thottiyam, Tamil Nadu, 621215, India
| | - S Vignesh
- Department of Applied Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, 114511, Riyadh, Saudi Arabia
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea
| | - Govindasamy Palanisamy
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
4
|
Diop M, Ndiaye BM, Dieng S, Ngom BD, Chaker M. High electrochemical performance of nickel cobaltite@biomass carbon composite (NiCoO@BC) derived from the bark of Anacardium occidentale for supercapacitor application. RSC Adv 2024; 14:5782-5796. [PMID: 38362084 PMCID: PMC10865185 DOI: 10.1039/d3ra08138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
Biomass carbon-based materials are highly promising for supercapacitor (SC) electrodes due to their availability, environment-friendliness, and low cost. Herein, an easy energy-saving hydrothermal process was used to produce NiCo2O4/NiOOH (NiCoO) composites with biomass carbon (BC) derived from the bark of Anacardium occidentale (AO) at different synthesis time durations (2 h, 4 h, 8 h, 16 h). The structural and morphological properties of the samples were analysed using XRD, Raman spectroscopy, XPS, SEM, TEM and BET, and the results exhibit the presence of carbon inserted into the nickel-cobalt hydroxide matrix. The NiCoO@BC composite synthesized in 4 h (NiCoO@BC(4 h)) displays a good specific capacitance of 475 F g-1 at 0.5 A g-1 and a low equivalent series resistance (ESR) value of 0.36 Ω. It shows a good coulombic efficiency of 98% and retains 86% of the capacitance after 4000 cycles. The asymmetric supercapacitor (ASC) device (NiCoO@BC(4 h)//AC) assembled using activated carbon (AC) as a negative electrode displays 20 W h kg-1 energy density and 900 W kg-1 power density at 1 A g-1. The stability test shows a good coulombic efficiency of 99% and 78% capacitance retention after 15 000 cycles. These findings imply that NiCoO@BC composites have outstanding electrochemical properties, making them suitable as SC electrode materials.
Collapse
Affiliation(s)
- Modou Diop
- Institut National de la Recherche Scientifique (INRS), Centre - Énergie Matériaux Télécommunications (EMT) 1650, Boul. Lionel Boulet, Varennes Québec J3X 1P7 Canada
- Laboratoire de Photonique Quantique, d'Énergie et de Nano-Fabrication (LPQEN), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar (UCAD) B.P. 5005 Dakar-Fann Dakar Senegal
| | - Baye Modou Ndiaye
- Institut National de la Recherche Scientifique (INRS), Centre - Énergie Matériaux Télécommunications (EMT) 1650, Boul. Lionel Boulet, Varennes Québec J3X 1P7 Canada
- Laboratoire de Photonique Quantique, d'Énergie et de Nano-Fabrication (LPQEN), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar (UCAD) B.P. 5005 Dakar-Fann Dakar Senegal
| | - Sokhna Dieng
- Laboratoire de Photonique Quantique, d'Énergie et de Nano-Fabrication (LPQEN), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar (UCAD) B.P. 5005 Dakar-Fann Dakar Senegal
| | - Balla D Ngom
- Laboratoire de Photonique Quantique, d'Énergie et de Nano-Fabrication (LPQEN), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar (UCAD) B.P. 5005 Dakar-Fann Dakar Senegal
| | - Mohamed Chaker
- Institut National de la Recherche Scientifique (INRS), Centre - Énergie Matériaux Télécommunications (EMT) 1650, Boul. Lionel Boulet, Varennes Québec J3X 1P7 Canada
| |
Collapse
|
5
|
Azimaee H, Mirjalili M, Vahdati Khaki J, Barati Darband G. Electrosynthesis of Superhydrophilic Nickel Nanosheets on a Three-Dimensional Microporous Template: Applicability toward MOR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14880-14890. [PMID: 37822300 DOI: 10.1021/acs.langmuir.3c01522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In this report, a nickel nanoscaled morphology was synthesized by two-step cathodic electrodeposition on a microporous copper template. The resulting morphology, nanosheets formed on 3D micropores, offers incredible cyclic stability of almost 100% and facilitates transport mechanisms while significantly preserving the active surface area. The origin of the nanosheets is assumed to be the presence of a small amount of iron cations in the electrolyte bath during the final deposition step. By altering the deposition current density of this step, three samples were prepared and compared in terms of the resulting morphology, chemical composition, surface area, wettability, and activation toward the methanol oxidation Reaction. Results show that an increase in the deposition current density in the range of this study produces finer and denser nanosheets, a higher content of reduced iron, a larger surface area, and greater activity toward MOR. The current density for methanol oxidation was exceptional among all other studies on nickel-containing electrocatalysts, yielding a steady-state current density of 135 mA cm-2 at 600 mV versus SCE. All samples offered superhydrophilicity.
Collapse
Affiliation(s)
- HamidReza Azimaee
- Ferdowsi University of Mashhad, Mashhad, Razavi-Khorasan 91775-1111, Iran
| | - Mostafa Mirjalili
- Ferdowsi University of Mashhad, Mashhad, Razavi-Khorasan 91775-1111, Iran
| | | | | |
Collapse
|
6
|
Mohapatra S, Das HT, Tripathy BC, Das N. Heterojunction assembled CoO/Ni(OH) 2/Cu(OH) 2 for effective photocatalytic degradation and supercapattery applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104489-104504. [PMID: 37704813 DOI: 10.1007/s11356-023-29697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
Mixed multimetallic-based nanocomposites have been considered a promising functional material giving a new dimension to environmental remediation and energy storage applications. On this concept, a hybrid ternary CoO/Ni(OH)2/Cu(OH)2 (CNC) composite showing sea-urchin-like morphology was synthesized via one-pot hydrothermal approach, and its photocatalytic and electrochemical performances were investigated. The photocatalytic performance was explored using Congo red (CR) as a dye pollutant under visible light illumination. The presence of mixed phases of ternary metal ions could minimize the recombination efficacy of photogenerated charge carriers on the basis of the heterojunction mechanism, resulting in 90% degradation of CR dye (40 mg L-1). The effect of scavengers coupled with electrochemical experiments revealed O2-. radical as the predominating species responsible for the degradation of CR. From the electrochemical analysis of CNC, the well-distinguished redox peaks indicated the redox-type nature with a specific capacity of 405 C g-1. For practical applications, an supercapattery (CNC( +)|KOH|AC( -)) was assembled furnishing an energy density of 42 W h kg-1 at a power density of 5160 W kg-1 at 5 A g-1 along with a high capacity retention and coulombic efficiency of 98.83% over 5000 cycles.
Collapse
Affiliation(s)
- Subhashree Mohapatra
- Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
| | - Himadri Tanaya Das
- Centre for Advanced Materials and Applications, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
| | - Bankim Chandra Tripathy
- Department of Hydro & Electrometallurgy, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Nigamananda Das
- Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar, 751004, India.
- Centre for Advanced Materials and Applications, Utkal University, Vani Vihar, Bhubaneswar, 751004, India.
| |
Collapse
|
7
|
Joshi A, Tomar AK, Kumar D, Kumar A, Singh G, Sharma RK. Synergistic Incorporation of Fe and Co into Nickel Boride/NiCoHydroxide Nanosheets to Tune Voltage Plateau and Charge Storage in Supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Simonenko TL, Simonenko NP, Gorobtsov PY, Grafov OY, Simonenko EP, Kuznetsov NT. Synthesis of ((CeO 2) 0.8(Sm 2O 3) 0.2)@NiO Core-Shell Type Nanostructures and Microextrusion Printing of a Composite Anode Based on Them. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8918. [PMID: 36556722 PMCID: PMC9781763 DOI: 10.3390/ma15248918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The process of the hydrothermal synthesis of hierarchically organized nanomaterials with the core-shell structure with the composition ((CeO2)0.8(Sm2O3)0.2)@NiO was studied, and the prospects for their application in the formation of planar composite structures using microextrusion printing were shown. The hydrothermal synthesis conditions of the (CeO2)0.8(Sm2O3)0.2 nanospheres were determined, and the approach to their surface modification by growing the NiO shell with the formation of core-shell structures equally distributed between the larger nickel(II) oxide nanosheets was developed. The resulting nanopowder was used as a functional ink component in the microextrusion printing of the corresponding composite coating. The microstructure of the powders and the oxide coating was studied by scanning (SEM) and transmission electron microscopy (TEM), the crystal structure was explored by X-ray diffraction analysis (XRD), the set of functional groups in the powders was studied by Fourier-transform infrared spectroscopy (FTIR) spectroscopy, and their thermal behavior in an air flow by synchronous thermal analysis (TGA/DSC). The electronic state of the chemical elements in the resulting coating was studied using X-ray photoelectron spectroscopy (XPS). The surface topography and local electrophysical properties of the composite coating were studied using atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). Using impedance spectroscopy, the temperature dependence of the specific electrical conductivity of the obtained composite coating was estimated.
Collapse
Affiliation(s)
- Tatiana L. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow 119991, Russia
| | - Nikolay P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow 119991, Russia
| | - Philipp Yu. Gorobtsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow 119991, Russia
| | - Oleg Yu. Grafov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, 31 Leninskiy pr., Moscow 119071, Russia
| | - Elizaveta P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow 119991, Russia
| | - Nikolay T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow 119991, Russia
| |
Collapse
|
9
|
Prasad AK, Park JY, Jung HY, Kang JW, Kang SH, Ahn KS. Electrochemical deposition of Ni-WO3 thin-film composites for electrochromic energy storage applications: novel approach toward quantum-dot-sensitized solar cell-assisted Ni-WO3 electrochromic device. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Simonenko TL, Simonenko NP, Simonenko EP, Vlasov IS, Volkov IA, Kuznetsov NT. Microplotter Printing of Hierarchically Organized Planar NiCo2O4 Nanostructures. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622601234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Seyed-Talebi SM, Cheraghizade M, Beheshtian J, Kuan CH, Diau EWG. Electrodeposition of Co xNiV yO z Ternary Nanopetals on Bare and rGO-Coated Nickel Foam for High-Performance Supercapacitor Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1894. [PMID: 35683749 PMCID: PMC9182510 DOI: 10.3390/nano12111894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 12/11/2022]
Abstract
We report a simple strategy to grow a novel cobalt nickel vanadium oxide (CoxNiVyOz) nanocomposite on bare and reduced-graphene-oxide (rGO)-coated nickel foam (Ni foam) substrates. In this way, the synthesized graphene oxide is coated on Ni foam, and reduced electrochemically with a negative voltage to prepare a more conductive rGO-coated Ni foam substrate. The fabricated electrodes were characterized with a field-emission scanning electron microscope (FESEM), energy-dispersive X-ray spectra (EDX), X-ray photoelectron spectra (XPS), and Fourier-transform infrared (FTIR) spectra. The electrochemical performance of these CoxNiVyOz-based electrode materials deposited on rGO-coated Ni foam substrate exhibited superior specific capacitance 701.08 F/g, which is more than twice that of a sample coated on bare Ni foam (300.31 F/g) under the same experimental conditions at current density 2 A/g. Our work highlights the effect of covering the Ni foam surface with a rGO film to expedite the specific capacity of the supercapacitors. Despite the slightly decreased stability of a CoxNiVyOz-based electrode coated on a Ni foam@rGO substrate, the facile synthesis, large specific capacitance, and preservation of 92% of the initial capacitance, even after running 5500 cyclic voltammetric (CV) scans, indicate that the CoxNiVyOz-based electrode is a promising candidate for high-performance energy-storage devices.
Collapse
Affiliation(s)
| | - Mohsen Cheraghizade
- Advanced Surface Engineering and Nano Materials Research Center, Department of Electrical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Javad Beheshtian
- Department of Chemistry, Shahid Rajaee Teacher Training University, Tehran, Iran;
| | - Chun-Hsiao Kuan
- Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Eric Wei-Guang Diau
- Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center of Emergent Functional Matter Science, National Yang-Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
12
|
Template and binder free 1D cobalt nickel hydrogen phosphate electrode materials for supercapacitor application. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Wang XL, Jin EM, Chen J, Bandyopadhyay P, Jin B, Jeong SM. Facile In Situ Synthesis of Co(OH) 2-Ni 3S 2 Nanowires on Ni Foam for Use in High-Energy-Density Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:34. [PMID: 35009986 PMCID: PMC8746589 DOI: 10.3390/nano12010034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 12/16/2022]
Abstract
Ni3S2 nanowires were synthesized in situ using a one-pot hydrothermal reaction on Ni foam (NF) for use in supercapacitors as a positive electrode, and various contents (0.3-0.6 mmol) of Co(OH)2 shells were coated onto the surfaces of the Ni3S2 nanowire cores to improve the electrochemical properties. The Ni3S2 nanowires were uniformly formed on the smooth NF surface, and the Co(OH)2 shell was formed on the Ni3S2 nanowire surface. By direct NF participation as a reactant without adding any other Ni source, Ni3S2 was formed more closely to the NF surface, and the Co(OH)2 shell suppressed the loss of active material during charging-discharging, yielding excellent electrochemical properties. The Co(OH)2-Ni3S2/Ni electrode produced using 0.5 mmol Co(OH)2 (Co0.5-Ni3S2/Ni) exhibited a high specific capacitance of 1837 F g-1 (16.07 F cm-2) at a current density of 5 mA cm-2, and maintained a capacitance of 583 F g-1 (16.07 F cm-2) at a much higher current density of 50 mA cm-2. An asymmetric supercapacitor (ASC) with Co(OH)2-Ni3S2 and active carbon displayed a high-power density of 1036 kW kg-1 at an energy density of 43 W h kg-1 with good cycling stability, indicating its suitability for use in energy storage applications. Thus, the newly developed core-shell structure, Co(OH)2-Ni3S2, was shown to be efficient at improving the electrochemical performance.
Collapse
Affiliation(s)
- Xuan Liang Wang
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Chungbuk, Korea; (X.L.W.); (E.M.J.); (J.C.); (P.B.)
| | - En Mei Jin
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Chungbuk, Korea; (X.L.W.); (E.M.J.); (J.C.); (P.B.)
| | - Jiasheng Chen
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Chungbuk, Korea; (X.L.W.); (E.M.J.); (J.C.); (P.B.)
| | - Parthasarathi Bandyopadhyay
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Chungbuk, Korea; (X.L.W.); (E.M.J.); (J.C.); (P.B.)
| | - Bo Jin
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China;
| | - Sang Mun Jeong
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Chungbuk, Korea; (X.L.W.); (E.M.J.); (J.C.); (P.B.)
| |
Collapse
|
14
|
Shen C, Guan X, Tang Y, Zhao X, Zuo Y. A zinc-cobalt–nickel heterostructure synthesized by ultrasonic pulse electrodeposition as a cathode for high performance supercapacitors. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
NiCo-mixed hydroxide nanosheets as a new electrochromic material with fast optical response. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Liu Y, Liu P, Men YL, Li Y, Peng C, Xi S, Pan YX. Incorporating MoO 3 Patches into a Ni Oxyhydroxide Nanosheet Boosts the Electrocatalytic Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26064-26073. [PMID: 34038083 DOI: 10.1021/acsami.1c05660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The electrocatalytic oxygen evolution reaction from H2O (OER) is essential in a number of areas like electrocatalytic hydrogen production from H2O. A Ni oxyhydroxide nanosheet (NiNS) is among the most widely studied OER catalysts but still suffers from low activity, sluggish kinetics, and poor stability. Herein, we incorporate MoO3 patches into NiNS to form a nanosheet with an intimate Ni-Mo interface (NiMoNS) for the OER. The overpotential at 10 mA cm-2 and Tafel slope on NiMoNS (260 mV, 54.7 mV dec-1) are lower than those on NiNS (296 mV, 89.3 mV dec-1), implying that higher activity and faster kinetics are achieved on NiMoNS. There is no change in electrocatalytic efficiency of NiMoNS after 18 h of OER, but the electrocatalytic efficiency of NiNS decreases by 56% after only 8 h of OER. Thus, NiMoNS has better stability. The intimate Ni-Mo interface promotes two-dimensional lateral growth of NiMoNS to form a surface area 1.5 times larger than that of NiNS, and facilitates electron transfer from Ni to Mo. This makes the Ni3+/Ni2+ ratio on the NiMoNS surface (1.32) higher than that on the NiNS surface (0.68). Moreover, the Ni3+/Ni2+ ratio on NiMoNS surface increases to 1.81 after 18 h of OER but the Ni3+/Ni2+ ratio on the NiNS surface decreases to 0.51 after 8 h of OER. Therefore, the NiMoNS surface has more abundant and stable Ni3+ sites which are catalytically active toward OER. This could be the reason for the enhanced activity, kinetics, and stability of NiMoNS. The results are very valuable for fabricating more efficient catalysts for electrocatalysis.
Collapse
Affiliation(s)
- Yi Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Long Men
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yibao Li
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Chong Peng
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116045, Liaoning, China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong Island, 627833 Singapore
| | - Yun-Xiang Pan
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Abdelrahim AM, El-Moghny MGA, El-Shakre ME, El-Deab MS. Tailor-designed Ni-Co binary hydroxide electrodes for boosted supercapacitor applications: Smart selection of additives. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|