1
|
Zheng S, Han J, Jin X, Ye Q, Zhou J, Duan P, Liu M. Halogen Bonded Chiral Emitters: Generation of Chiral Fractal Architecture with Amplified Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021; 60:22711-22716. [PMID: 34411386 DOI: 10.1002/anie.202108661] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Indexed: 01/05/2023]
Abstract
Self-assembled chiroptical materials have attracted considerable attention due to their great applications in wide fields. During the chiral self-assembly, it remains unknown how achiral molecules can affect the assembly process and their final chiroptical performance. Herein, we report an achiral molecule directed chiral self-assembly via halogen bonds, exhibiting not only an unprecedented chiral fractal architecture but also significantly amplified circularly polarized luminescence (CPL). Two axially chiral emitters with halogen bond sites co-assemble with an achiral 1,4-diiodotetrafluorobenzene (F4 DIB) and well-ordered chiral fractal structures with asymmetry amplification are obtained. The enhancement of the dissymmetry factors of the assemblies was up to 0.051 and 0.011, which was approximately 100 folds than those of the corresponding molecules. It was found that both the design of the chiral emitter and the highly directional halogen bond played an important role in hierarchically chirality transfer from chiral emitters to the micrometer scale chiral fractal morphology and amplified dissymmetry factors. We hope that this strategy can give a further insight into the fabrication of structurally unique featured highly efficient chiroptical materials.
Collapse
Affiliation(s)
- Shuyuan Zheng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, School of Chemistry, Xiangtan University, Xiangtan, 411105, Hunan Province, P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Xue Jin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Qiang Ye
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, School of Chemistry, Xiangtan University, Xiangtan, 411105, Hunan Province, P. R. China
| | - Jin Zhou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No.2, ZhongGuanCun BeiYiJie, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Zheng S, Han J, Jin X, Ye Q, Zhou J, Duan P, Liu M. Halogen Bonded Chiral Emitters: Generation of Chiral Fractal Architecture with Amplified Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shuyuan Zheng
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province School of Chemistry Xiangtan University Xiangtan 411105 Hunan Province P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Xue Jin
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Qiang Ye
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province School of Chemistry Xiangtan University Xiangtan 411105 Hunan Province P. R. China
| | - Jin Zhou
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences No.2, ZhongGuanCun BeiYiJie Beijing 100190 P. R. China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
3
|
Pignataro MF, Herrera MG, Dodero VI. Evaluation of Peptide/Protein Self-Assembly and Aggregation by Spectroscopic Methods. Molecules 2020; 25:E4854. [PMID: 33096797 PMCID: PMC7587993 DOI: 10.3390/molecules25204854] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
The self-assembly of proteins is an essential process for a variety of cellular functions including cell respiration, mobility and division. On the other hand, protein or peptide misfolding and aggregation is related to the development of Parkinson's disease and Alzheimer's disease, among other aggregopathies. As a consequence, significant research efforts are directed towards the understanding of this process. In this review, we are focused on the use of UV-Visible Absorption Spectroscopy, Fluorescence Spectroscopy and Circular Dichroism to evaluate the self-organization of proteins and peptides in solution. These spectroscopic techniques are commonly available in most chemistry and biochemistry research laboratories, and together they are a powerful approach for initial as well as routine evaluation of protein and peptide self-assembly and aggregation under different environmental stimulus. Furthermore, these spectroscopic techniques are even suitable for studying complex systems like those in the food industry or pharmaceutical formulations, providing an overall idea of the folding, self-assembly, and aggregation processes, which is challenging to obtain with high-resolution methods. Here, we compiled and discussed selected examples, together with our results and those that helped us better to understand the process of protein and peptide aggregation. We put particular emphasis on the basic description of the methods as well as on the experimental considerations needed to obtain meaningful information, to help those who are just getting into this exciting area of research. Moreover, this review is particularly useful to those out of the field who would like to improve reproducibility in their cellular and biomedical experiments, especially while working with peptide and protein systems as an external stimulus. Our final aim is to show the power of these low-resolution techniques to improve our understanding of the self-assembly of peptides and proteins and translate this fundamental knowledge in biomedical research or food applications.
Collapse
Affiliation(s)
- María Florencia Pignataro
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
| | - María Georgina Herrera
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Verónica Isabel Dodero
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|