1
|
Vijayan A, Vishnu J, A R, Shankar B, Sambhudevan S. A review on hydroxyapatite fabrication: from powders to additive manufactured scaffolds. Biomater Sci 2025; 13:913-945. [PMID: 39808066 DOI: 10.1039/d4bm00972j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Hydroxyapatite (HA), the main inorganic bone component, is the most widely researched bioceramic for bone repair. This paper presents a comprehensive review of recent advancements in HA synthesis methods and their integration into additive manufacturing (AM) processes. Synthesis methodologies discussed include wet, dry, and biomimetic routes, emphasizing their impact on tailoring the physicochemical properties of HA for biomedical applications. The incorporation of dopants and additives during synthesis is explored for optimizing the mechanical, biological, and osteogenic characteristics of HA-based materials. Moreover, the evolution of AM technologies from conventional 3D printing to advanced 4D and 5D printing is detailed, covering material selection, process parameters, and post-processing strategies vital for fabricating intricate, patient-specific scaffolds, implants, and drug delivery systems utilizing HA. The review underscores the importance of achieving precise control over microstructure and porosity to mimic native tissue architectures accurately. Furthermore, emerging applications of HA-based constructs in tissue engineering, regenerative medicine, drug delivery, and orthopedic implants are discussed, highlighting their potential to address critical clinical needs. Despite the glimmer of hope provided by the advent and progress of such AM capabilities, several aspects need to be addressed to develop efficient HA-based bone substitutes, which are explored in detail in this review.
Collapse
Affiliation(s)
- Ananthika Vijayan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
| | - Jithin Vishnu
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Revathi A
- NextGen Precision Health, University of Missouri, Columbia, USA
| | - Balakrishnan Shankar
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Sreedha Sambhudevan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
| |
Collapse
|
2
|
Yang L, Gu H, Bashir Z. A New Processing Method for Laser Sintering Polymer Powders at Low Bed Temperatures. Polymers (Basel) 2024; 16:3301. [PMID: 39684046 DOI: 10.3390/polym16233301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Most current laser sintering (LS) machines for polymer powders operate with a maximum bed temperature of 200 °C, limiting the use of higher melting polymers like polyethylene terephthalate (PET), which melts at ~250 °C. Using bed temperatures of ≤200 °C leads to severe part-distortion due to curl and warpage during the sintering process. The paper presents a processing method for LS at low bed temperatures, using an in situ printed anchor film to conquer curl and warpage. With the use of the anchor film, PET parts were successfully printed without machine stoppage at bed temperatures as low as 150 °C, which is about 80 °C lower than the bed temperature for a regular process for PET without the anchor film. The anchor film acts as a frictional restraint, effectively preventing the curling and warping during printing that typically result from crystallization-induced shrinkage at low bed temperatures. Whereas previous studies have employed 13 mm thick anchoring sheets bolted to the machine to prevent curl and warpage at low bed temperatures, our method uses a flexible in situ printed ~70 μm thick film to which the built part naturally adheres. The in situ printed film is easily detachable from the part after the build. The standard LS material, polyamide 12 (PA12), was also printed with lowered bed temperaturewhere the benefit would be reduced thermal degradation of the powder and decreased energy consumption during the sintering process.
Collapse
Affiliation(s)
- Lanti Yang
- SABIC Analytical Science Europe, Corporate T&I, Plasticslaan 1, 4612 PX Bergen op Zoom, The Netherlands
| | - Hao Gu
- SABIC Global Application Technology Europe, Specialties, Plasticslaan 1, 4612 PX Bergen op Zoom, The Netherlands
| | - Zahir Bashir
- Catenated Carbon Consultancy Ltd., 192 Wake Green Road, Birmingham B13 9QE, UK
| |
Collapse
|
3
|
Sun M, Zhong H, Qin K, Xu T, Yang W, Zhang Y, Lu L. The Development of Processing Methods and Materials Used for Non-Pneumatic Tires: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5660. [PMID: 39597483 PMCID: PMC11595846 DOI: 10.3390/ma17225660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Non-pneumatic tires (NPTs) have garnered significant attention due to their advantages, such as energy efficiency, safety, versatile applications, and superior performance, compared to traditional rubber-based pneumatic tires (PTs). This mini review provides a concise overview of NPTs, beginning with their definition, structural design, and classification based on structural variations. The review then examines recent advancements in the materials used for NPTs, including those for the tread, elastic support structure, skeleton, and adhesives, with a focus on their specific properties. Furthermore, it summarizes various manufacturing techniques such as compression molding, centrifugal casting, injection molding, 3D printing, and mechanical assembly. Lastly, the review outlines the general manufacturing procedures of NPTs, discusses the challenges currently faced by the technology, and offers insights into future development directions. This mini review aims to support NPT researchers and practitioners, particularly in the fields of process and materials engineering, in advancing their work on NPTs.
Collapse
Affiliation(s)
- Meng Sun
- Ji Hua Laboratory, Foshan 528200, China; (M.S.); (H.Z.); (K.Q.)
| | - Haolong Zhong
- Ji Hua Laboratory, Foshan 528200, China; (M.S.); (H.Z.); (K.Q.)
| | - Kangpei Qin
- Ji Hua Laboratory, Foshan 528200, China; (M.S.); (H.Z.); (K.Q.)
| | - Ting Xu
- Ji Hua Laboratory, Foshan 528200, China; (M.S.); (H.Z.); (K.Q.)
| | - Wengang Yang
- Ji Hua Laboratory, Foshan 528200, China; (M.S.); (H.Z.); (K.Q.)
| | - Yu Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130024, China;
| | - Lei Lu
- China FAW Co., Ltd., Changchun 130011, China;
| |
Collapse
|
4
|
Liu G, Hu N, Huang J, Tu Q, Xu F. Experimental Investigation on the Mechanical and Dynamic Thermomechanical Properties of Polyether Ether Ketone Based on Fused Deposition Modeling. Polymers (Basel) 2024; 16:3007. [PMID: 39518217 PMCID: PMC11548497 DOI: 10.3390/polym16213007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
In this work, the mechanical and dynamic thermomechanical properties of PEEK based on FDM are experimentally investigated and evaluated comprehensively. The tensile failure mechanism of PEEK prepared by FDM and extrusion modeling (EM) was analyzed by fracture morphology observation. By conducting a differential scanning calorimetry (DSC) test, the crystallinity of PEEK prepared by FDM and EM was measured. The dynamic thermomechanical properties of PEEK were tested and analyzed by dynamic mechanical analysis (DMA). For FDM-prepared PEEK samples, the yield strength and elongation were 98.3 ± 0.49 MPa and 22.86 ± 2.12%, respectively. Compared with the yield strength of PEEK prepared by EM, the yield strength of PEEK prepared by FDM increased by 65.38%. The crystallinity of FDM-prepared and EM-prepared samples was calculated as 34.81% and 31.55%, respectively. Different processing methods resulted in differences in the microscopic morphology and crystallinity of two types of PEEK parts, leading to differences in mechanical properties. The internal micropores generated during the FDM processing of PEEK significantly reduced the elongation. Moreover, according to the DMA results, the glass transition activation energy of PEEK was obtained as ΔE = 685.07 kJ/mol based on the Arrhenius equation. Due to the excellent mechanical properties of PEEK prepared by FDM processing, it is promising for high-performance polymer applications in different fields.
Collapse
Affiliation(s)
- Guocheng Liu
- Hubei Key Laboratory of Advanced Technology of Automotive Components, Wuhan University of Technology, Wuhan 430070, China; (N.H.); (J.H.); (Q.T.)
- Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ning Hu
- Hubei Key Laboratory of Advanced Technology of Automotive Components, Wuhan University of Technology, Wuhan 430070, China; (N.H.); (J.H.); (Q.T.)
- Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China
| | - Junjie Huang
- Hubei Key Laboratory of Advanced Technology of Automotive Components, Wuhan University of Technology, Wuhan 430070, China; (N.H.); (J.H.); (Q.T.)
- Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China
| | - Qiyong Tu
- Hubei Key Laboratory of Advanced Technology of Automotive Components, Wuhan University of Technology, Wuhan 430070, China; (N.H.); (J.H.); (Q.T.)
- Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China
| | - Fengxiang Xu
- Hubei Key Laboratory of Advanced Technology of Automotive Components, Wuhan University of Technology, Wuhan 430070, China; (N.H.); (J.H.); (Q.T.)
- Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
5
|
Gkartzou E, Kontiza A, Zafeiris K, Mantzavinou E, Charitidis CA. A Methodological Framework for Assessing the Influence of Process Parameters on Strand Stability and Functional Performance in Fused Filament Fabrication. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7530. [PMID: 38138672 PMCID: PMC10744508 DOI: 10.3390/ma16247530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
With an ever-increasing material and design space available for Fused Filament Fabrication (FFF) technology, fabrication of complex three-dimensional structures with functional performance offers unique opportunities for product customization and performance-driven design. However, ensuring the quality and functionality of FFF-printed parts remains a significant challenge, as material-, process-, and system-level factors introduce variability and potentially hinder the translation of bulk material properties in the respective FFF counterparts. To this end, the present study presents a methodological framework for assessing the influence of process parameters on FFF strand stability and functional performance through a systematic analysis of FFF structural elements (1D stacks of FFF strands and 3D blocks), in terms of dimensional deviation from nominal geometry and resistivity, corresponding to the printability and functionality attributes, respectively. The influence of printing parameters on strand stability was investigated in terms of dimensional accuracy and surface morphology, employing optical microscopy and micro-computed tomography (mCT) for dimensional deviation analysis. In parallel, electrical resistance measurements were carried out to assess the effect of different process parameter combinations and toolpath patterns on functional performance. In low-level structural elements, strand height (H) was found to induce the greatest influence on FFF strand dimensional accuracy and resistivity, with higher H values leading to a reduction in resistivity of up to 38% in comparison with filament feedstock; however, this occurred at the cost of increased dimensional deviation. At higher structural levels, the overall effect of process parameters was found to be less pronounced, indicating that the translation of 1D strand properties to 3D blocks is subject to a trade-off due to competing mechanisms that facilitate/hinder current flow. Overall, the proposed framework enables the quantification of the influence of process parameters on the selected response variables, contributing to the development of standard operating procedures and recommendations for selecting optimal process parameters to achieve the desired process stability and functional performance in FFF.
Collapse
Affiliation(s)
| | | | | | | | - Costas A. Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou, GR 15780 Athens, Greece; (E.G.); (A.K.); (K.Z.)
| |
Collapse
|
6
|
Griffiths CA, Rees A, Morgan A, Korkees F. Optimisation of 3D Printing for Microcellular Polymers. Polymers (Basel) 2023; 15:3910. [PMID: 37835959 PMCID: PMC10575440 DOI: 10.3390/polym15193910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Polymers are extensively used in various industries due to their versatility, durability and cost-effectiveness. To ensure functionality and longevity, polymer parts must have sufficient strength to endure external forces without deformation or breakage. Traditional approaches to increasing part strength involve adding more material; however, balancing strength to weight relationships is challenging. This paper explorers the viability of manufacturing lightweight components using a microcellular foaming polymer. Microcellular foaming has emerged as a helpful tool to achieve an optimal strength-to-weight ratio; offering advantages such as lightweight, improved mechanical properties, reduced material usage, better insulation and improved cost-effectiveness. It can also contribute to improved fuel efficiency and reduced carbon emissions, making them environmentally favourable. The combination of additive manufacturing (AM) and microcellular foaming has opened new possibilities for design innovation. This text highlights the challenges and efforts in incorporating foaming techniques into 3D printing processes, specifically fused filament fabrication (FFF). This study reveals that microcellular polymers are a viable option when balancing part strength and weight. The experiments completed during the formulation of this paper demonstrated that lightweight LW-PLA parts were significantly lighter than standard PLA parts and that a design of experiments approach can be used to optimise strength properties and provide insights into optimising manufacturability. Microcellular polymers present an opportunity for lighter and stronger 3D printed parts, offering potential energy and material savings for sustainable manufacturing practices.
Collapse
|
7
|
Garnica-Bohórquez I, Güiza-Argüello VR, López-Gualdrón CI. Effect of Sterilization on the Dimensional and Mechanical Behavior of Polylactic Acid Pieces Produced by Fused Deposition Modeling. Polymers (Basel) 2023; 15:3317. [PMID: 37571211 PMCID: PMC10422276 DOI: 10.3390/polym15153317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
To successfully implement additive manufacturing (AM) techniques for custom medical device (MD) production with low-cost resources, it is imperative to understand the effect of common and affordable sterilization processes, such as formaldehyde or steam sterilization, on pieces manufactured by AM. In this way, the performance of low-risk MDs, such as biomodels and surgical guides, could be assessed for complying with safety, precision, and MD delivery requirements. In this context, the aim of the present work was to evaluate the effect of formaldehyde and steam sterilization on the dimensional and mechanical stability of standard polylactic acid (PLA) test pieces produced by fused deposition modeling (FDM). To achieve this, PLA samples were sterilized according to the sterilization protocol of a public hospital in the city of Bucaramanga, Colombia. Significant changes regarding mechanical and dimensional properties were found as a function of manufacturing parameters. This research attempts to contribute to the development of affordable approaches for the fabrication of functional and customized medical devices through AM technologies, an issue of particular interest for low- and middle-income countries.
Collapse
Affiliation(s)
- Israel Garnica-Bohórquez
- Industrial Design Department, Universidad Industrial de Santander, Bucaramanga 680002, Colombia;
| | - Viviana R. Güiza-Argüello
- Metallurgical Engineering and Materials Science Department, Universidad Industrial de Santander, Bucaramanga 680002, Colombia;
| | - Clara I. López-Gualdrón
- Industrial Design Department, Universidad Industrial de Santander, Bucaramanga 680002, Colombia;
| |
Collapse
|
8
|
Condruz MR, Paraschiv A, Badea TA, Useriu D, Frigioescu TF, Badea G, Cican G. A Study on Mechanical Properties of Low-Cost Thermoplastic-Based Materials for Material Extrusion Additive Manufacturing. Polymers (Basel) 2023; 15:2981. [PMID: 37514371 PMCID: PMC10384509 DOI: 10.3390/polym15142981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The present research focused on studying the mechanical properties of three commercially available thermoplastic-based materials used for the additive manufacturing (AM) fused filament deposition (FFD) method. The scientific motivation for the study was the limited information available in the literature regarding the materials' properties, the inconsistencies that were recorded by other scientists between the materials' properties and the technical datasheets and the anisotropic behavior of additively manufactured materials. Thereby, it was considered of great importance to perform an extensive study on several materials' mechanical properties, such as tensile properties and flexural properties. Three materials were tested, Tough PLA, nGen CF10 and UltraFuse PAHT CF15. The tests consisted of monotonic tensile tests, open-hole tensile tests and three-point bending tests. The tests were assisted also with the use of microscopical investigations. Framed specimens' configurations with two different raster orientations (90°/0° and -45°/+45°) were manufactured using an in-house-developed 3D printing equipment. The best mechanical performances were recorded for UltraFuse PAHT CF15. The 90°/0° raster orientations ensured the highest tensile, open-hole tensile and flexural strength, regardless of the material type, while the -45°/+45° raster orientations ensured the highest elongation values. The analysis showed the importance of the experimental validation of materials for AM.
Collapse
Affiliation(s)
- Mihaela-Raluca Condruz
- Romanian Research and Development Institute for Gas Turbines COMOTI, 220D Iuliu Maniu Av., 061126 Bucharest, Romania
| | - Alexandru Paraschiv
- Romanian Research and Development Institute for Gas Turbines COMOTI, 220D Iuliu Maniu Av., 061126 Bucharest, Romania
| | - Teodor-Adrian Badea
- Romanian Research and Development Institute for Gas Turbines COMOTI, 220D Iuliu Maniu Av., 061126 Bucharest, Romania
| | - Daniel Useriu
- Romanian Research and Development Institute for Gas Turbines COMOTI, 220D Iuliu Maniu Av., 061126 Bucharest, Romania
| | - Tiberius-Florian Frigioescu
- Romanian Research and Development Institute for Gas Turbines COMOTI, 220D Iuliu Maniu Av., 061126 Bucharest, Romania
| | - Gabriel Badea
- Romanian Research and Development Institute for Gas Turbines COMOTI, 220D Iuliu Maniu Av., 061126 Bucharest, Romania
| | - Grigore Cican
- Romanian Research and Development Institute for Gas Turbines COMOTI, 220D Iuliu Maniu Av., 061126 Bucharest, Romania
| |
Collapse
|
9
|
Lai J, Huang F, Huang A, Liu T, Peng X, Wu J, Geng L. Foaming behavior of polyamide 1212 elastomers/polyurethane composites with improved melt strength and interfacial compatibility via chain extension. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jun Lai
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering Fujian University of Technology Fuzhou China
| | - Feng Huang
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering Fujian University of Technology Fuzhou China
| | - An Huang
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering Fujian University of Technology Fuzhou China
| | - Tong Liu
- College of Material Science and Engineering Zhejiang University of Technology Hangzhou China
| | - Xiangfang Peng
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering Fujian University of Technology Fuzhou China
| | - Jianming Wu
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering Fujian University of Technology Fuzhou China
| | - Lihong Geng
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering Fujian University of Technology Fuzhou China
| |
Collapse
|
10
|
Shah M, Ullah A, Azher K, Rehman AU, Juan W, Aktürk N, Tüfekci CS, Salamci MU. Vat photopolymerization-based 3D printing of polymer nanocomposites: current trends and applications. RSC Adv 2023; 13:1456-1496. [PMID: 36686959 PMCID: PMC9817086 DOI: 10.1039/d2ra06522c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
The synthesis and manufacturing of polymer nanocomposites have garnered interest in recent research and development because of their superiority compared to traditionally employed industrial materials. Specifically, polymer nanocomposites offer higher strength, stronger resistance to corrosion or erosion, adaptable production techniques, and lower costs. The vat photopolymerization (VPP) process is a group of additive manufacturing (AM) techniques that provide the benefit of relatively low cost, maximum flexibility, high accuracy, and complexity of the printed parts. In the past few years, there has been a rapid increase in the understanding of VPP-based processes, such as high-resolution AM methods to print intricate polymer parts. The synergistic integration of nanocomposites and VPP-based 3D printing processes has opened a gateway to the future and is soon expected to surpass traditional manufacturing techniques. This review aims to provide a theoretical background and the engineering capabilities of VPP with a focus on the polymerization of nanocomposite polymer resins. Specifically, the configuration, classification, and factors affecting VPP are summarized in detail. Furthermore, different challenges in the preparation of polymer nanocomposites are discussed together with their pre- and post-processing, where several constraints and limitations that hinder their printability and photo curability are critically discussed. The main focus is the applications of printed polymer nanocomposites and the enhancement in their properties such as mechanical, biomedical, thermal, electrical, and magnetic properties. Recent literature, mainly in the past three years, is critically discussed and the main contributing results in terms of applications are summarized in the form of tables. The goal of this work is to provide researchers with a comprehensive and updated understanding of the underlying difficulties and potential benefits of VPP-based 3D printing of polymer nanocomposites. It will also help readers to systematically reveal the research problems, gaps, challenges, and promising future directions related to polymer nanocomposites and VPP processes.
Collapse
Affiliation(s)
- Mussadiq Shah
- Additive Manufacturing Technologies Application and Research Center-EKTAM Ankara Turkey
- Department of Mechanical Engineering, Faculty of Engineering, Gazi University Ankara Turkey
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University P. R. China
| | - Abid Ullah
- Additive Manufacturing Technologies Application and Research Center-EKTAM Ankara Turkey
- Department of Mechanical Engineering, Faculty of Engineering, Gazi University Ankara Turkey
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China P. R China
| | - Kashif Azher
- Additive Manufacturing Technologies Application and Research Center-EKTAM Ankara Turkey
- Department of Mechanical Engineering, Faculty of Engineering, Gazi University Ankara Turkey
| | - Asif Ur Rehman
- Additive Manufacturing Technologies Application and Research Center-EKTAM Ankara Turkey
- Department of Mechanical Engineering, Faculty of Engineering, Gazi University Ankara Turkey
- ERMAKSAN Bursa 16065 Turkey
| | - Wang Juan
- Department of Industrial Engineering, Nanchang Hangkong University Nanchang P. R China
| | - Nizami Aktürk
- Additive Manufacturing Technologies Application and Research Center-EKTAM Ankara Turkey
- Department of Mechanical Engineering, Faculty of Engineering, Gazi University Ankara Turkey
| | - Celal Sami Tüfekci
- Advanced Manufacturing Technologies Center of Excellence-URTEMM Ankara Turkey
| | - Metin U Salamci
- Additive Manufacturing Technologies Application and Research Center-EKTAM Ankara Turkey
- Department of Mechanical Engineering, Faculty of Engineering, Gazi University Ankara Turkey
- Advanced Manufacturing Technologies Center of Excellence-URTEMM Ankara Turkey
| |
Collapse
|
11
|
Mohd Sabee MMS, Itam Z, Beddu S, Zahari NM, Mohd Kamal NL, Mohamad D, Zulkepli NA, Shafiq MD, Abdul Hamid ZA. Flame Retardant Coatings: Additives, Binders, and Fillers. Polymers (Basel) 2022; 14:2911. [PMID: 35890685 PMCID: PMC9324192 DOI: 10.3390/polym14142911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
This review provides an intensive overview of flame retardant coating systems. The occurrence of flame due to thermal degradation of the polymer substrate as a result of overheating is one of the major concerns. Hence, coating is the best solution to this problem as it prevents the substrate from igniting the flame. In this review, the descriptions of several classifications of coating and their relation to thermal degradation and flammability were discussed. The details of flame retardants and flame retardant coatings in terms of principles, types, mechanisms, and properties were explained as well. This overview imparted the importance of intumescent flame retardant coatings in preventing the spread of flame via the formation of a multicellular charred layer. Thus, the intended intumescence can reduce the risk of flame from inherently flammable materials used to maintain a high standard of living.
Collapse
Affiliation(s)
- Mohd Meer Saddiq Mohd Sabee
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Zarina Itam
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Salmia Beddu
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Nazirul Mubin Zahari
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Nur Liyana Mohd Kamal
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Daud Mohamad
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Norzeity Amalin Zulkepli
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Mohamad Danial Shafiq
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Zuratul Ain Abdul Hamid
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| |
Collapse
|
12
|
Shaukat U, Rossegger E, Schlögl S. A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization. Polymers (Basel) 2022; 14:polym14122449. [PMID: 35746024 PMCID: PMC9227803 DOI: 10.3390/polym14122449] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Additive manufacturing or 3D printing of materials is a prominent process technology which involves the fabrication of materials layer-by-layer or point-by-point in a subsequent manner. With recent advancements in additive manufacturing, the technology has excited a great potential for extension of simple designs to complex multi-material geometries. Vat photopolymerization is a subdivision of additive manufacturing which possesses many attractive features, including excellent printing resolution, high dimensional accuracy, low-cost manufacturing, and the ability to spatially control the material properties. However, the technology is currently limited by design strategies, material chemistries, and equipment limitations. This review aims to provide readers with a comprehensive comparison of different additive manufacturing technologies along with detailed knowledge on advances in multi-material vat photopolymerization technologies. Furthermore, we describe popular material chemistries both from the past and more recently, along with future prospects to address the material-related limitations of vat photopolymerization. Examples of the impressive multi-material capabilities inspired by nature which are applicable today in multiple areas of life are briefly presented in the applications section. Finally, we describe our point of view on the future prospects of 3D printed multi-material structures as well as on the way forward towards promising further advancements in vat photopolymerization.
Collapse
|
13
|
Soliman SS, El-Haddad AE, Sedik GA, Elghobashy MR, Zaazaa HE, Saad AS. Experimentally designed chemometric models for the assay of toxic adulterants in turmeric powder. RSC Adv 2022; 12:9087-9094. [PMID: 35424884 PMCID: PMC8985183 DOI: 10.1039/d2ra00697a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Turmeric is an indispensable culinary spice in different cultures and a principal component in traditional remedies. Toxic metanil yellow (MY), acid orange 7 (AO) and lead chromate (LCM) are deliberately added to adulterate turmeric powder. This work compares the ability of multivariate chemometric models with those of artificial intelligent networks to enhance the selectivity of spectral data for the rapid assay of these three adulterants in turmeric powder. Using a custom experimental design, we provide a data-driven optimization for the sensitive parameters of the partial least squares model (PLS), artificial neural network (ANN) and genetic algorithm (GA). The optimized models are validated using sets of genuine turmeric samples from five different geographical regions spiked with standard adulterant concentrations. The optimized GA-PLS and GA-ANN models reduce the root mean square error of prediction by 18.4%, 31.1% and 55.3% and 25.0%, 69.9% and 88.4% for MY, AO and LCM, respectively.
Collapse
Affiliation(s)
- Shymaa S Soliman
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University PO Box 12858 6 October City Giza Egypt
| | - Alaadin E El-Haddad
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University PO Box 12858 6 October City Giza Egypt
| | - Ghada A Sedik
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University El-Kasr El-Aini Street Cairo 11562 Egypt
| | - Mohamed R Elghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University El-Kasr El-Aini Street Cairo 11562 Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University PO Box 12858 6 October City Giza Egypt
| | - Hala E Zaazaa
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University El-Kasr El-Aini Street Cairo 11562 Egypt
| | - Ahmed S Saad
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University El-Kasr El-Aini Street Cairo 11562 Egypt
- Medicinal Chemistry Department, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria 21934 Egypt
| |
Collapse
|
14
|
A framework for the sustainability implications of 3D bioprinting through nature-inspired materials and structures. Biodes Manuf 2022. [DOI: 10.1007/s42242-021-00168-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Li S, Jiang S, Gong S, Ma S, Yang H, Pan K, Deng J. Preparation Methods, Performance Improvement Strategies, and Typical Applications of Polyamide Foams. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Pal AK, Mohanty AK, Misra M. Additive manufacturing technology of polymeric materials for customized products: recent developments and future prospective. RSC Adv 2021; 11:36398-36438. [PMID: 35494368 PMCID: PMC9043570 DOI: 10.1039/d1ra04060j] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
The worldwide demand for additive manufacturing (AM) is increasing due to its ability to produce more challenging customized objects based on the process parameters for engineering applications. The processing of conventional materials by AM processes is a critically demanded research stream, which has generated a path-breaking scenario in the rapid manufacturing and upcycling of plastics. The exponential growth of AM in the worldwide polymer market is expected to exceed 20 billion US dollars by 2021 in areas of automotive, medical, aerospace, energy and customized consumer products. The development of functional polymers and composites by 3D printing-based technologies has been explored significantly due to its cost-effective, easier integration into customized geometries, higher efficacy, higher precision, freedom of material utilization as compared to traditional injection molding, and thermoforming techniques. Since polymers are the most explored class of materials in AM to overcome the limitations, this review describes the latest research conducted on petroleum-based polymers and their composites using various AM techniques such as fused filament fabrication (FFF), selective laser sintering (SLS), and stereolithography (SLA) related to 3D printing in engineering applications such as biomedical, automotive, aerospace and electronics.
Collapse
Affiliation(s)
- Akhilesh Kumar Pal
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph Crop Science Building, 50 Stone Road East Guelph Ontario N1G 2W1 Canada
| | - Amar K Mohanty
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph Crop Science Building, 50 Stone Road East Guelph Ontario N1G 2W1 Canada
- School of Engineering, University of Guelph Thornbrough Building, 50 Stone Road East Guelph Ontario N1G 2W1 Canada
| | - Manjusri Misra
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph Crop Science Building, 50 Stone Road East Guelph Ontario N1G 2W1 Canada
- School of Engineering, University of Guelph Thornbrough Building, 50 Stone Road East Guelph Ontario N1G 2W1 Canada
| |
Collapse
|
17
|
Luo Y, Zhang C, Wang J, Liu F, Chau KW, Qin L, Wang J. Clinical translation and challenges of biodegradable magnesium-based interference screws in ACL reconstruction. Bioact Mater 2021; 6:3231-3243. [PMID: 33778201 PMCID: PMC7966853 DOI: 10.1016/j.bioactmat.2021.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 12/27/2022] Open
Abstract
As one of the most promising fixators developed for anterior cruciate ligament (ACL) reconstruction, biodegradable magnesium (Mg)-based interference screws have gained increasing attention attributed to their appropriate modulus and favorable biological properties during degradation after surgical insertion. However, its fast degradation and insufficient mechanical strength have also been recognized as one of the major causes to limit their further application clinically. This review focused on the following four parts. Firstly, the advantages of Mg or its alloys over their counterparts as orthopaedic implants in the fixation of tendon grafts in ACL reconstruction were discussed. Subsequently, the underlying mechanisms behind the contributions of Mg ions to the tendon-bone healing were introduced. Thirdly, the technical challenges of Mg-based interference screws towards clinical trials were discussed, which was followed by the introduction of currently used modification methods for gaining improved corrosion resistance and mechanical properties. Finally, novel strategies including development of Mg/Titanium (Ti) hybrid fixators and Mg-based screws with innovative structure for achieving clinically customized therapies were proposed. Collectively, the advancements in the basic and translational research on the Mg-based interference screws may lay the foundation for exploring a new era in the treatment of the tendon-bone insertion (TBI) and related disorders.
Collapse
Affiliation(s)
- Ying Luo
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chao Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jue Wang
- Hanglok-Tech Co., Ltd., Hengqin New Area, China
| | - Fangfei Liu
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kelvin Wingho Chau
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
18
|
Al Nashar M, Sutradhar A. Design of Hierarchical Architected Lattices for Enhanced Energy Absorption. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5384. [PMID: 34576608 PMCID: PMC8470769 DOI: 10.3390/ma14185384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Hierarchical lattices are structures composed of self-similar or dissimilar architected metamaterials that span multiple length scales. Hierarchical lattices have superior and tunable properties when compared to conventional lattices, and thus, open the door for a wide range of material property manipulation and optimization. Using finite element analysis, we investigate the energy absorption capabilities of 3D hierarchical lattices for various unit cells under low strain rates and loads. In this study, we use fused deposition modeling (FDM) 3D printing to fabricate a dog bone specimen and extract the mechanical properties of thermoplastic polyurethane (TPU) 85A with a hundred percent infill printed along the direction of tensile loading. With the numerical results, we observed that the energy absorption performance of the octet lattice can be enhanced four to five times by introducing a hierarchy in the structure. Conventional energy absorption structures such as foams and lattices have demonstrated their effectiveness and strengths; this research aims at expanding the design domain of energy absorption structures by exploiting 3D hierarchical lattices. The result of introducing a hierarchy to a lattice on the energy absorption performance is investigated by varying the hierarchical order from a first-order octet to a second-order octet. In addition, the effect of relative density on the energy absorption is isolated by creating a comparison between a first-order octet lattice with an equivalent relative density as a second-order octet lattice. The compression behaviors for the second order octet, dodecahedron, and truncated octahedron are studied. The effect of changing the cross-sectional geometry of the lattice members with respect to the energy absorption performance is investigated. Changing the orientation of the second-order cells from 0 to 45 degrees has a considerable impact on the force-displacement curve, providing a 20% increase in energy absorption for the second-order octet. Analytical solutions of the effective elasticity modulus for the first- and second-order octet lattices are compared to validate the simulations. The findings of this paper and the provided understanding will aid future works in lattice design optimization for energy absorption.
Collapse
Affiliation(s)
| | - Alok Sutradhar
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
19
|
Diederichs E, Picard M, Chang BP, Misra M, Mohanty A. Extrusion Based 3D Printing of Sustainable Biocomposites from Biocarbon and Poly(trimethylene terephthalate). Molecules 2021; 26:4164. [PMID: 34299439 PMCID: PMC8305183 DOI: 10.3390/molecules26144164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional (3D) printing manufactures intricate computer aided designs without time and resource spent for mold creation. The rapid growth of this industry has led to its extensive use in the automotive, biomedical, and electrical industries. In this work, biobased poly(trimethylene terephthalate) (PTT) blends were combined with pyrolyzed biomass to create sustainable and novel printing materials. The Miscanthus biocarbon (BC), generated from pyrolysis at 650 °C, was combined with an optimized PTT blend at 5 and 10 wt % to generate filaments for extrusion 3D printing. Samples were printed and analyzed according to their thermal, mechanical, and morphological properties. Although there were no significant differences seen in the mechanical properties between the two BC composites, the optimal quantity of BC was 5 wt % based upon dimensional stability, ease of printing, and surface finish. These printable materials show great promise for implementation into customizable, non-structural components in the electrical and automotive industries.
Collapse
Affiliation(s)
- Elizabeth Diederichs
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph, Crop Science Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (E.D.); (M.P.); (B.P.C.)
- School of Engineering, University of Guelph, Thornbrough Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Maisyn Picard
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph, Crop Science Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (E.D.); (M.P.); (B.P.C.)
- School of Engineering, University of Guelph, Thornbrough Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Boon Peng Chang
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph, Crop Science Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (E.D.); (M.P.); (B.P.C.)
| | - Manjusri Misra
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph, Crop Science Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (E.D.); (M.P.); (B.P.C.)
- School of Engineering, University of Guelph, Thornbrough Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Amar Mohanty
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph, Crop Science Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (E.D.); (M.P.); (B.P.C.)
- School of Engineering, University of Guelph, Thornbrough Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|