1
|
Mishra DR, Mishra NP. Recent breakthroughs in ring-opening annulation reactions of aziridines. Org Biomol Chem 2025; 23:2967-2996. [PMID: 39791905 DOI: 10.1039/d4ob01577k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Aziridines, characterized by their highly constrained three-membered nitrogen-containing heterocyclic ring system, serve as compelling synthetic intermediates for synthesizing numerous naturally occurring alkaloids and pharmaceuticals. The distinct ring strain arising from the geometric constraints of these sp3-rich trigonal rings imparts high reactivity, thereby offering a wealth of intriguing synthetic opportunities. Recent advances in the chemistry and reactivity of aziridines have unveiled significant progress in preparing more complex heterocycles. This review consolidates and examines recent publications on the ring-opening annulation reactions of aziridines, highlighting the latest breakthroughs, emerging trends, and future directions in this dynamic field.
Collapse
Affiliation(s)
- Deepak Ranjan Mishra
- Department of Chemistry, Kamala Nehru Women's College, Bhubaneswar, Odisha, 751001, India.
| | | |
Collapse
|
2
|
Yadav MK, Chowdhury S. Recent advances in the electrochemical functionalization of N-heterocycles. Org Biomol Chem 2025; 23:506-545. [PMID: 39564858 DOI: 10.1039/d4ob01187b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Nitrogen-containing heterocyclic cores are of immense importance due to their high abundance in naturally occurring or synthetic molecules having wide applications in different fields of basic and applied sciences. The functionalities introduced in an N-heterocyclic core play an important role in regulating the physiochemical behavior of the particular N-heterocycles to alter their chemical and biological reactivity. Suitably functionalized N-heterocycles demonstrate their widespread applications in pharmaceuticals, agronomy, materials sciences, synthetic chemistry, pigments, etc. During the last decade, electrochemistry has emerged as a sustainable alternative to conventional synthetic approaches by minimizing reagent uses and chemical waste. Synthetic chemists have extensively utilized the tool to functionalize N-heterocycles. This is evidenced by the appearance of more than a hundred methods on the topic over recent years, signifying the importance of the synthetic area. This review is focused on the accumulation of synthetic methods based on the electrochemical functionalization of N-heterocycles developed over the recent decade. Literature reports on the C-/N-H-functionalization and functional modifications of N-heterocycles that are accessible through the available search engines are included in the review. Relevant mechanistic details in support of the reported reactions are discussed to present a clear picture of the reaction pathways. The review aims to provide a clear picture of the possible pathways of electron transfer, the electrochemical behavior of different N-heterocyclic cores, functionalization reagents, and the chemical processes that occur during the electrochemical functionalization/modification of N-heterocycles.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Sushobhan Chowdhury
- University School of Automation and Robotics, Guru Gobind Singh Indraprastha University, East Delhi Campus, Patel Street, Vishwas Nagar Extension, Shahdara, Delhi-110032, India.
| |
Collapse
|
3
|
Das A, Ray D, Ashraf MW, Banik BK. Microwave-Induced Synthesis of Bioactive Nitrogen Heterocycles. Curr Top Med Chem 2025; 25:554-580. [PMID: 39162268 DOI: 10.2174/0115680266315936240807101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
There are many different applications of heterocyclic molecules in pharmaceutical and materials science, which make them an important family of compounds. Among these heterocyclic compounds, nitrogen-containing heterocyclic (N-heterocyclic) compounds have attracted a lot of interest among researchers due to their various applications across a wide variety of fields. Many studies have been performed over the past few years to study the synthesis of N-heterocycles under different reaction conditions, such as solvent-free, catalytic conditions, reactants immobilized on a solid support, one-pot synthesis, and microwave irradiation. Our research group has demonstrated that microwaves can be utilized for rapid and efficient synthesis of biologically active compounds. In this review, we provide an overview of the microwave-assisted non-catalytic and catalytic preparation of nitrogen-containing heterocycles, mostly polycyclic N-heterocycles, five-membered Nheterocycles, six-membered N-heterocycles, and fused N-heterocycles. In this review, we explore the microwave-assisted preparation of biologically important compounds, such as pyrimidines, thiazoles, imines, tetrazoles, steroidal derivatives, quinolines, indolizine, triazoles, beta-lactams, pyrroles, and quinoxalines.
Collapse
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar 31952, Kingdom of Saudi Arabia
| | - Devalina Ray
- Amity Institute of Biotechnology, Amity University, J3 Block AICCRS Sec 125 Noida Uttar Pradesh, 201313, India
- Amity Institute of Click Chemistry Research and Studies, Amity University, J1 Block AICCRS Sec 125 Noida Uttar Pradesh India 201313, India
| | - Muhammad Waqar Ashraf
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar 31952, Kingdom of Saudi Arabia
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Deanship of Research, Prince Mohammad Bin Fahd University, Al Khobar 31952, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Hefayathullah M, Singh S, Ganesan V, Maduraiveeran G. Metal-organic frameworks for biomedical applications: A review. Adv Colloid Interface Sci 2024; 331:103210. [PMID: 38865745 DOI: 10.1016/j.cis.2024.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Metal-organic frameworks (MOFs) are emergent materials in diverse prospective biomedical uses, owing to their inherent features such as adjustable pore dimension and volume, well-defined active sites, high surface area, and hybrid structures. The multifunctionality and unique chemical and biological characteristics of MOFs allow them as ideal platforms for sensing numerous emergent biomolecules with real-time monitoring towards the point-of-care applications. This review objects to deliver key insights on the topical developments of MOFs for biomedical applications. The rational design, preparation of stable MOF architectures, chemical and biological properties, biocompatibility, enzyme-mimicking materials, fabrication of biosensor platforms, and the exploration in diagnostic and therapeutic systems are compiled. The state-of-the-art, major challenges, and the imminent perspectives to improve the progressions convoluted outside the proof-of-concept, especially for biosensor platforms, imaging, and photodynamic therapy in biomedical research are also described. The present review may excite the interdisciplinary studies at the juncture of MOFs and biomedicine.
Collapse
Affiliation(s)
- Mohamed Hefayathullah
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Smita Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
5
|
Calcio Gaudino E, Manzoli M, Testa ML, La Parola V, Grillo G, Cravotto G, Acciardo E, Tabasso S. Batch and Flow Green Microwave-Assisted Catalytic Conversion Of Levulinic Acid to Pyrrolidones. CHEMSUSCHEM 2024; 17:e202301200. [PMID: 37672358 DOI: 10.1002/cssc.202301200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
This paper reports a new sustainable protocol for the microwave-assisted catalytic conversion of levulinic acid into N-substituted pyrrolidones over tailor-made mono (Pd, Au) or bimetallic (PdAu) catalysts supported on either highly mesoporous silica (HMS) or titania-doped HMS, exploiting the advantages of dielectric heating. MW-assisted reductive aminations of levulinic acid with several amines were first optimized in batch mode under hydrogen pressure (5 bar) in solvent-free conditions. Good-to-excellent yields were recorded at 150 °C in 90 min over the PdTiHMS and PdAuTiHMS, that proved recyclable and almost completely stable after six reaction cycles. Aiming to scale-up this protocol, a MW-assisted flow reactor was used in combination with different green solvents. Cyclopentyl methyl ether (CPME) provided a 99 % yield of N-(4-methoxyphenyl) pyrrolidin-2-one at 150 °C over PdTiHMS. The described MW-assisted flow synthesis proves to be a safe procedure suitable for further industrial applications, while averting the use of toxic organic solvents.
Collapse
Affiliation(s)
- Emanuela Calcio Gaudino
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Maela Manzoli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
- NIS - Centre for Nanomaterials for Industry and Sustainability, University of Turin, Italy
| | - Maria Luisa Testa
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN-CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy)
| | - Valeria La Parola
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN-CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy)
| | - Giorgio Grillo
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
- NIS - Centre for Nanomaterials for Industry and Sustainability, University of Turin, Italy
| | - Elisa Acciardo
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Silvia Tabasso
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| |
Collapse
|
6
|
Prakash C, Singh R. Microwave‐Assisted Synthesis of Fluorinated 5‐Membered Nitrogen Heterocycles. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202401376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/02/2024] [Indexed: 01/11/2025]
Abstract
AbstractThe fluorinated 5‐membered N‐containing heterocyclic compounds have wide utility in varied fields. The importance of these compounds has encouraged researchers to explore environment‐friendly synthetic techniques for their synthesis. In this context, microwave‐assisted synthesis has proved beneficial for the synthesis of fluorinated 5‐membered N‐heterocycles in an environmentally benign and energy‐efficient manner. Compared to conventional heating, it offers several advantages, including quick heating, short reaction times, higher yields, and fewer side reactions. This article highlights the microwave‐assisted fluorination of 5‐membered N‐heterocyclic compounds along with the synthesis of fluorinated 5‐membered N‐heterocyclic compounds using fluorinated starting materials.
Collapse
Affiliation(s)
- Chandra Prakash
- Department of Applied Chemistry Delhi Technological University Delhi India
- Centre for Fire, Explosive and Environment Safety, DRDO, Timarpur Delhi 110054 India
| | - Ram Singh
- Department of Applied Chemistry Delhi Technological University Delhi India
| |
Collapse
|
7
|
Bera SK, Behera S, De Luca L, Basoccu F, Mocci R, Porcheddu A. Unveiling the Untapped Potential of Bertagnini's Salts in Microwave-Assisted Synthesis of Quinazolinones. Molecules 2024; 29:1986. [PMID: 38731478 PMCID: PMC11085446 DOI: 10.3390/molecules29091986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Microwave-assisted organic synthesis (MAOS) has emerged as a transformative technique in organic chemistry, significantly enhancing the speed, efficiency, and selectivity of chemical reactions. In our research, we have employed microwave irradiation to expedite the synthesis of quinazolinones, using water as an eco-friendly solvent and thereby adhering to the principles of green chemistry. Notably, the purification of the product was achieved without the need for column chromatography, thus streamlining the process. A key innovation in our approach is using aldehyde bisulfite adducts (Bertagnini's salts) as solid surrogates of aldehydes. Bertagnini's salts offer several advantages over free aldehydes, including enhanced stability, easier purification, and improved reactivity. Green metrics and Eco-Scale score calculations confirmed the sustainability of this approach, indicating a reduction in waste generation and enhanced sustainability outcomes. This methodology facilitates the synthesis of a diverse array of compounds, offering substantial contributions to the field, with potential for widespread applications in pharmaceutical research and beyond.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy; (S.K.B.); (S.B.); (F.B.); (R.M.)
| | - Sourav Behera
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy; (S.K.B.); (S.B.); (F.B.); (R.M.)
| | - Lidia De Luca
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Francesco Basoccu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy; (S.K.B.); (S.B.); (F.B.); (R.M.)
| | - Rita Mocci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy; (S.K.B.); (S.B.); (F.B.); (R.M.)
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy; (S.K.B.); (S.B.); (F.B.); (R.M.)
| |
Collapse
|
8
|
Javahershenas R, Makarem A, Klika KD. Recent advances in microwave-assisted multicomponent synthesis of spiro heterocycles. RSC Adv 2024; 14:5547-5565. [PMID: 38357035 PMCID: PMC10866134 DOI: 10.1039/d4ra00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Spiro heterocycle frameworks are a class of organic compounds that possesses unique structural features making them highly sought-after targets in drug discovery due to their diverse biological and pharmacological activities. Microwave-assisted organic synthesis has emerged as a powerful tool for assembling complex molecular architectures. The use of microwave irradiation in synthetic chemistry is a promising method for accelerating reaction rates and improving yields. This review provides insights into the current state of the art and highlights the potential of microwave-assisted multicomponent reactions in the synthesis of novel spiro heterocyclic compounds that were reported between 2017 and 2023.
Collapse
Affiliation(s)
- Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Ata Makarem
- Institute of Pharmacy, University of Hamburg 20146 Hamburg Germany
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ) 69120 Heidelberg Germany
| |
Collapse
|
9
|
Shahedi M, Omidi N, Habibi Z, Yousefi M, Brask J, Notash B, Mohammadi M. Biocatalytic stereoselective synthesis of pyrrolidine-2,3-diones containing all-carbon quaternary stereocenters. Org Biomol Chem 2023; 21:2742-2747. [PMID: 36916669 DOI: 10.1039/d2ob02294j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Highly functionalized pyrrolidine-2,3-diones can be synthesized efficiently and stereoselectively under mild conditions using a biocatalytic approach. The reaction led to the formation of new all-carbon quaternary stereocenters from Myceliophthora thermophila laccase (Novozym 51003) catalyzed oxidation of catechols to ortho-quinones and subsequent 1,4-addition with 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones. The reaction was conducted with various substituents on both reactants, resulting in 13 products in moderate to good yields (42-91%). The same 15 reactions were also tested with K3Fe(CN)6 as a catalyst, but here only one reaction resulted in a product (60% yield).
Collapse
Affiliation(s)
- Mansour Shahedi
- Department of Organic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran.
| | - Niloofar Omidi
- Department of Organic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran.
| | - Zohreh Habibi
- Department of Organic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran.
| | - Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Jesper Brask
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Copenhagen, Denmark
| | - Behrouz Notash
- Department of Inorganic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Mehdi Mohammadi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
10
|
Alizadeh A, Hasanpour H, Rezaiyehraad R. Ultrasound‐Assisted Green Synthesis of Pyrrole‐Fused Pyrimidine and Imidazole Rings through a Tandem Pseudo‐Four‐Component Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202203889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdolali Alizadeh
- Department of Chemistry Tarbiat Modares University P.O. Box 14115–175 Tehran Iran 1411713116
| | - Hamidreza Hasanpour
- Department of Chemistry Tarbiat Modares University P.O. Box 14115–175 Tehran Iran 1411713116
| | - Reza Rezaiyehraad
- Department of Chemistry Tarbiat Modares University P.O. Box 14115–175 Tehran Iran 1411713116
| |
Collapse
|
11
|
Microwave Assisted Esterification of Aryl/Alkyl Acids Catalyzed by N-Fluorobenzenesulfonimide. Catalysts 2022. [DOI: 10.3390/catal12111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The susceptibility of the carbonyl group towards nucleophilic attack affords the construction of various organic compounds. Thus, investigations of carbonyl activation applying greener methodologies are highly important. In the present work, among the investigated N-halo compounds, N-fluorobenzenesulfonimide (NFSi) has been found as an efficient and selective catalyst in the reaction of direct esterification of aryl and alkyl carboxylic acids supported by microwave (MW) irradiation. The comprehensive esterification of different benzoic acids and mono-, di- and tri-carboxy alkyl derivatives was performed, whereby significant reaction time reductions were achieved. The presented method used NFSi as an easily manipulatable, non-metal, water- and air-tolerant catalyst, allowing simple synthetic and isolation procedures and energy saving, compared to conventional methodologies. Importantly, in contrast to esterification under thermal conditions, where N-halo compounds behave as pre-catalysts, in the MW-supported protocol, a distinct reaction mechanism has been proposed that assumes NFSi as a sustainable catalyst. Moreover, a scale-up of the industrially important derivative was performed.
Collapse
|
12
|
Kumar KS, Robert AR, Kerru N, Maddila S. A novel, swift, and effective green synthesis of morpholino-pyridine analogues in microwave irradiation conditions. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Jastrzębska A, Gralak Z, Brzuzy K, Kmieciak A, Krzemiński MP, Burdziński R, Kurzawa M, Szłyk E. Simple and Effective Derivatization of Amino Acids with 1-Fluoro-2-nitro-4-(trifluoromethyl)benzene in a Microwave Reactor for Determination of Free Amino Acids in Kombucha Beverages. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7365. [PMID: 36295430 PMCID: PMC9611567 DOI: 10.3390/ma15207365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Kombucha is a fermentation product of sweetened tea with a symbiotic culture of acetic acid and yeast bacteria, consumed worldwide for its health-promoting properties. Few reports can be found about free amino acids among the health-promoting compounds found and determined in kombucha. These compounds influence the sensory properties of kombucha, and they are precursors of bioactive compounds, which have a significant role as neurotransmitters and are involved in biological functions. The presented studies proposed a convenient, simple, and "more green" procedure of the synthesis of amino acid derivatives, assisted by microwave energy, followed by chromatographic determination. The structure of 1-Fluoro-2-nitro-4-(trifluoromethyl)benzene was used as a suitable reagent for the derivatization of free amino acids in fermented kombucha beverages prepared from selected dry fruit such as Crataegus L., Morus alba L., Sorbus aucuparia L., Berberis vulgaris L., Rosa canina L., and black tea. The obtained results were discussed regarding the tested beverages' application as a source of amino acids in one's daily diet. The obtained results point out that the proposed microwave-assisted derivatization procedure prior to HPLC analyses allows for a significant time reduction and the limitation of using organic reagents.
Collapse
Affiliation(s)
- Aneta Jastrzębska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Zuzanna Gralak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Kamil Brzuzy
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Anna Kmieciak
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Marek P. Krzemiński
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Rafał Burdziński
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Marzanna Kurzawa
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Edward Szłyk
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| |
Collapse
|
14
|
Recent Strategies in Nickel-Catalyzed C–H Bond Functionalization for Nitrogen-Containing Heterocycles. Catalysts 2022. [DOI: 10.3390/catal12101163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
N-heterocycles are ubiquitous in natural products, pharmaceuticals, organic materials, and numerous functional molecules. Among the current synthetic approaches, transition metal-catalyzed C–H functionalization has gained considerable attention in recent years due to its advantages of simplicity, high atomic economy, and the ready availability of starting materials. In the field of N-heterocycle synthesis via C–H functionalization, nickel has been recognized as one of the most important catalysts. In this review, we will introduce nickel-catalyzed intramolecular and intermolecular pathways for N-heterocycle synthesis from 2008 to 2021.
Collapse
|
15
|
Microwave assisted rapid synthesis of bicyclo aza-sulfone derivatives from aldehydes via aldoxime formation followed by Michael addition-1,3-dipolar cycloaddition with divinyl sulfone in one-pot. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Marques CS, Carreiro EP, Teixeira APS. Multicomponent Synthesis of Heterocycles. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
18
|
Banerjee M, Panjikar PC, Das D, Iyer S, Bhosle AA, Chatterjee A. Grindstone chemistry: A “green” approach for the synthesis and derivatization of heterocycles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Baharfar R, Verdian M, Mohajer S. New protocol for diastereoselective synthesis of spirodihydropyrrole-oxindole derivatives. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Cao L, Kim HW, Jeong YJ, Han SC, Park JK. Rapid Continuous-Flow Water-Free Synthesis of Ultrapure Ionic Liquids Assisted by Microwaves. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Cao
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Hong Won Kim
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Yu Jin Jeong
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Seung Chang Han
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Jin Kyoon Park
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
21
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
22
|
Ortiz PD, Castillo-Rodriguez J, Tapia J, Zarate X, Vallejos GA, Roa V, Molins E, Bustos C, Schott E. A novel series of pyrazole derivatives toward biological applications: experimental and conceptual DFT characterization. Mol Divers 2021; 26:2443-2457. [PMID: 34724138 DOI: 10.1007/s11030-021-10342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022]
Abstract
A new series of 13 pyrazole-derivative compounds with potential antifungal activity were synthetized with good yields. The series have the (E)-2-((1-(R)-3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)phenol general structure and were characterized by means of X-ray diffraction, UV-Vis, FTIR, 1H-NMR, 13C-NMR, and two-dimensional NMR experiments. This experimental characterization was complemented by DFT simulations. A deep insight regarding molecular reactivity was accomplished employing a conceptual DFT approach. In this sense, dual descriptors were calculated at HF and DFT level of theory and GGV spin-density Fukui functions. The main reactive region within the molecules was mapped through isosurface and condensed representations. Finally, chemical descriptors that have previously shown to be close related to biological activity were compared within the series. Thus, higher values of chemical potential ω and electrophilicity χ obtained for compounds 10, 9, 8, 6 and 7, in this order, suggest that these molecules are the better candidates as biological agents.
Collapse
Affiliation(s)
- Pedro D Ortiz
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux, 2801, Santiago, Chile
| | - Judith Castillo-Rodriguez
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile
| | - Jorge Tapia
- Departamento de Ciencias Quı́micas y Biológicas, Universidad Bernardo O'Higgins, Facultad de Salud, General Gana, 1702, Santiago, Chile
| | - Ximena Zarate
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux, 2801, Santiago, Chile.
| | - Gabriel A Vallejos
- Instituto de Ciencias Químicas, Universidad Austral de Chile, Las Encinas 220, Campus Isla Teja, Valdivia, Chile
| | - Vanesa Roa
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile
| | - Elies Molins
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Carlos Bustos
- Instituto de Ciencias Químicas, Universidad Austral de Chile, Las Encinas 220, Campus Isla Teja, Valdivia, Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
| |
Collapse
|
23
|
Rohit KR, Meera G, Anilkumar G. A
solvent‐free manganese(II) ‐catalyzed Clauson‐Kaas
protocol for the synthesis of
N‐aryl
pyrroles under microwave irradiation. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Gopinadh Meera
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Kottayam India
- Institute for Integrated programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam India
| |
Collapse
|
24
|
Fairoosa J, Shamna S, Neetha M, Anilkumar G. An overview of microwave assisted cyanation reactions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jaleel Fairoosa
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Salahudeen Shamna
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Mohan Neetha
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Kottayam India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam India
| |
Collapse
|
25
|
Wojtasik K, Danel A, Wojtasik M, Lukasiewicz M. Synthesis of 1
H
‐Pyrazolo[3,4‐
b
]quinoxaline Derivatives by Modification of the Regiospecific Reaction – the Influence of the Microwave Field. ChemistrySelect 2021. [DOI: 10.1002/slct.202100804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Katarzyna Wojtasik
- Department of Physics Cracow University of Technology, Kraków Podchorążych 1 30-084 Krakow Poland
| | - Andrzej Danel
- Department of Physics Cracow University of Technology, Kraków Podchorążych 1 30-084 Krakow Poland
| | - Michał Wojtasik
- Oil and Gas Institute – National Research Institute Lubicz 25 A 31-503 Krakow Poland
| | - Marcin Lukasiewicz
- Faculty of Food Technology University of Agriculture in Cracow Balicka Kraków, 122 30-149 Krakow Poland
| |
Collapse
|
26
|
Le Y, Zhang Y, Wang Q, Rao N, Li D, Liu L, Ouyang G, Yan L. Microwave-assisted synthesis of phenylpyrimidine derivatives via Suzuki-Miyaura reactions in water. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Li Y, Chen F, Zhu S, Chu L. Photoinduced triiodide-mediated [3 + 2] cycloaddition of N-tosyl aziridines and alkenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00102g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A photoinduced triiodide-mediated [3 + 2] cycloaddition of N-Ts aziridines and alkenes is described herein. This operationally simple protocol enables regioselective access to a wide range of substituted pyrrolidines under mild-free conditions.
Collapse
Affiliation(s)
- Yuanbo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Fan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| |
Collapse
|