1
|
He D, Liu Q, Wang L, Han Q, Zhang J, Li C, Song Y. A colorimetric sandwich assay based on magnetic separation of Brevinin-1BW-functionalized magnetic beads and porcine IgG for the detection of Staphylococcus aureus. Anal Bioanal Chem 2025:10.1007/s00216-025-05862-8. [PMID: 40220072 DOI: 10.1007/s00216-025-05862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
A novel strategy integrating Brevinin-1BW (BW)-functionalized magnetic bead-based separation with a colorimetric immunoassay was developed to concentrate and enrich Staphylococcus aureus (S. aureus) from sample matrices using magnetic beads functionalized with antimicrobial peptide BW (MBs-BW) as carriers. To ensure the selectivity of the method, horseradish peroxidase (HRP)-labeled porcine IgG (HRP-porcine IgG) was used as a molecular recognition reagent and signal amplification probe. MBs-BW/S. aureus/HRP-porcine IgG probe sandwich complex was successfully obtained. HRP chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) was used to realize the chromogenic reaction. Finally, S. aureus was quantitatively analyzed based on the color signal generated. Under the optimal conditions, the assay showed a response in the concentration range of 1.0 × 102-1.0 × 107 CFU/mL of S. aureus, and the detection limit was as low as 60 CFU/mL. This method does not require complicated sample pretreatment, and the operation process is fast and simple, which can directly complete the whole process of bacterial enrichment and detection. The recovery of this strategy in different types of spiked samples reached 86.8-97.8%, and the analytical results of this strategy were highly consistent with those of the conventional plate counting method. This strategy provides a new way for the rapid detection of S. aureus in complex samples.
Collapse
Affiliation(s)
- Dongxia He
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No.727, Jingming South Road, Chenggong District, Kunming City, 650500, China
| | - Qi Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No.727, Jingming South Road, Chenggong District, Kunming City, 650500, China
| | - Lei Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No.727, Jingming South Road, Chenggong District, Kunming City, 650500, China
| | - Qinqin Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No.727, Jingming South Road, Chenggong District, Kunming City, 650500, China
| | - Jinyang Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No.727, Jingming South Road, Chenggong District, Kunming City, 650500, China
| | - Chao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No.727, Jingming South Road, Chenggong District, Kunming City, 650500, China
| | - Yuzhu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No.727, Jingming South Road, Chenggong District, Kunming City, 650500, China.
| |
Collapse
|
2
|
Haq IU, Rahim K, Maryam S, Paker NP. Bacteriophage-based biosensors technology: Materials, fabrications, efficiencies and shortcomings. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00872. [PMID: 39811401 PMCID: PMC11732128 DOI: 10.1016/j.btre.2024.e00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/11/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Ongoing research in biosensor technologies has led to advanced functional materials for healthcare diagnostics, and bacteriophages (phages), demonstrating exceptional utility due to their high specificity, accuracy, rapid, label-free, and wireless detection capabilities with minimal false-positive results. Phage-based-pathogen-detecting biosensors (PBPDBs) include surface plasmon resonance (SPR) biosensors, magnetoelastic (ME), electrochemical, and quartz crystal microbalance (QCM) biosensors. Commonly used substrates for PBPDBs are gold, silicon, glass, carbon-based materials, magnetic particles, and quantum dots. These substrates are chemically and physically modified to optimize phage orientation on sensor surfaces, enhancing bacterial capture. To address typical stability and issues encountered in traditional biosensor applications, phage particles and genetically modified phages are utilized to improve biosensor stability and increase detection efficacy while reducing assay time. Genetic modification in phages facilitated by CRISPR/Cas9 enables the tailoring of phages to target specific bacterial strains. This approach helps overcome the inherent specificity of phages and enables the detection of multiple pathogens in a single assay. Multiple pathogens can be detected through a single phage-based assay. This manuscript elucidates the fabrication methodologies and detection efficiencies of PBPDBs providing valuable insights into the development of practical, precise, and efficient biosensors for pathogen detection. Summary PBPDBs are emerging diagnostic tools for the detection of bacterial pathogens.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Department of Bioscience, COMSATS University Islamabad, Pakistan
| | - Kashif Rahim
- Beijing University of Chemical Technology, Beijing China
| | - Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Najeeba Parre Paker
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- Department of Plant Sciences, Quaid-e-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
3
|
Panhwar S, Keerio HA, Ilhan H, Boyacı IH, Tamer U. Principles, Methods, and Real-Time Applications of Bacteriophage-Based Pathogen Detection. Mol Biotechnol 2024; 66:3059-3076. [PMID: 37914863 DOI: 10.1007/s12033-023-00926-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Bacterial pathogens in water, food, and the environment are spreading diseases around the world. According to a World Health Organization (WHO) report, waterborne pathogens pose the most significant global health risks to living organisms, including humans and animals. Conventional bacterial detection approaches such as colony counting, microscopic analysis, biochemical analysis, and molecular analysis are expensive, time-consuming, less sensitive, and require a pre-enrichment step. However, the bacteriophage-based detection of pathogenic bacteria is a robust approach that utilizes bacteriophages, which are viruses that specifically target and infect bacteria, for rapid and accurate detection of targets. This review shed light on cutting-edge technologies about the novel structure of phages and the immobilization process on the surface of electrodes to detect targeted bacterial cells. Similarly, the purpose of this study was to provide a comprehensive assessment of bacteriophage-based biosensors utilized for pathogen detection, as well as their trends, outcomes, and problems. This review article summaries current phage-based pathogen detection strategies for the development of low-cost lab-on-chip (LOC) and point-of-care (POC) devices using electrochemical and optical methods such as surface-enhanced Raman spectroscopy (SERS).
Collapse
Affiliation(s)
- Sallahuddin Panhwar
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Department of Civil Engineering, National University of Sciences and Technology, Quetta, 24090, Balochistan, Pakistan.
| | - Hareef Ahmed Keerio
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hasan Ilhan
- Department of Chemistry, Faculty of Science, Ordu University, Altinordu, 52200, Ordu, Turkey
| | - Ismail Hakkı Boyacı
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Metu MEMS Center, Ankara, Turkey.
| |
Collapse
|
4
|
Wang J, Zheng Y, Huang H, Ma Y, Zhao X. An overview of signal amplification strategies and construction methods on phage-based biosensors. Food Res Int 2024; 191:114727. [PMID: 39059923 DOI: 10.1016/j.foodres.2024.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Phages are a class of viruses that specifically infect host bacteria. Compared to other recognition elements, phages offer several advantages such as high specificity, easy to obtain and good environmental tolerance, etc. These advantages underscore the potential of phages as recognition elements in the construction of biosensors. Therefore, the phage-based biosensors are currently garnering widespread attention for detecting pathogens in recent years. However, the test performance such as detection limit, sensitivity and stability of exicting phage-based biosensors require enhancement. In the design of sensors, the selection of various materials and construction methods significantly influences the test performance of the sensor, and employing appropriate signal amplification strategies and construction methods to devise biosensors based on different principles is an effective strategy to enhance sensor performance. The manuscript primarily focuses on the signal amplification strategies and construction methods employed in phage-based biosensors recent ten years, and summarizes the advantages and disadvantages of different signal amplification strategies and construction methods. Meanwhile, the manuscript discusses the relationship between sensor performance and various materials and construction methods, and reviews the application progress of phage-based electrochemical biosensors in the detection of foodborne bacteria. Furthermore, the manuscript points out the present limitations and the future research direction for the field of phage-based biosensors, so as to provide the reference for developing high-performance phage-based biosensors.
Collapse
Affiliation(s)
- Jiahao Wang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Yuqing Zheng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Hongkai Huang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Ya Ma
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Xiaojuan Zhao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
5
|
Nasrollahpour H, Mirzaie A, Sharifi M, Rezabakhsh A, Khalilzadeh B, Rahbarghazi R, Yousefi H, Klionsky DJ. Biosensors; a novel concept in real-time detection of autophagy. Biosens Bioelectron 2024; 254:116204. [PMID: 38507929 PMCID: PMC11907300 DOI: 10.1016/j.bios.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Autophagy is an early-stage response with self-degradation properties against several insulting conditions. To date, the critical role of autophagy has been well-documented in physiological and pathological conditions. This process involves various signaling and functional biomolecules, which are involved in different steps of the autophagic response. During recent decades, a range of biochemical analyses, chemical assays, and varied imaging techniques have been used for monitoring this pathway. Due to the complexity and dynamic aspects of autophagy, the application of the conventional methodology for following autophagic progression is frequently associated with a mistake in discrimination between a complete and incomplete autophagic response. Biosensors provide a de novo platform for precise and accurate analysis of target molecules in different biological settings. It has been suggested that these devices are applicable for real-time monitoring and highly sensitive detection of autophagy effectors. In this review article, we focus on cutting-edge biosensing technologies associated with autophagy detection.
Collapse
Affiliation(s)
| | - Arezoo Mirzaie
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Sharifi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Yousefi
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
Zhuang L, Gong J, Zhao Y, Yang J, Liu G, Zhao B, Song C, Zhang Y, Shen Q. Progress in methods for the detection of viable Escherichia coli. Analyst 2024; 149:1022-1049. [PMID: 38273740 DOI: 10.1039/d3an01750h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Escherichia coli (E. coli) is a prevalent enteric bacterium and a necessary organism to monitor for food safety and environmental purposes. Developing efficient and specific methods is critical for detecting and monitoring viable E. coli due to its high prevalence. Conventional culture methods are often laborious and time-consuming, and they offer limited capability in detecting potentially harmful viable but non-culturable E. coli in the tested sample, which highlights the need for improved approaches. Hence, there is a growing demand for accurate and sensitive methods to determine the presence of viable E. coli. This paper scrutinizes various methods for detecting viable E. coli, including culture-based methods, molecular methods that target DNAs and RNAs, bacteriophage-based methods, biosensors, and other emerging technologies. The review serves as a guide for researchers seeking additional methodological options and aiding in the development of rapid and precise assays. Moving forward, it is anticipated that methods for detecting E. coli will become more stable and robust, ultimately contributing significantly to the improvement of food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, P. R. China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Guofang Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Bin Zhao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Chunlei Song
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| |
Collapse
|
7
|
Quintela IA, Vasse T, Lin CS, Wu VCH. Advances, applications, and limitations of portable and rapid detection technologies for routinely encountered foodborne pathogens. Front Microbiol 2022; 13:1054782. [PMID: 36545205 PMCID: PMC9760820 DOI: 10.3389/fmicb.2022.1054782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 12/08/2022] Open
Abstract
Traditional foodborne pathogen detection methods are highly dependent on pre-treatment of samples and selective microbiological plating to reliably screen target microorganisms. Inherent limitations of conventional methods include longer turnaround time and high costs, use of bulky equipment, and the need for trained staff in centralized laboratory settings. Researchers have developed stable, reliable, sensitive, and selective, rapid foodborne pathogens detection assays to work around these limitations. Recent advances in rapid diagnostic technologies have shifted to on-site testing, which offers flexibility and ease-of-use, a significant improvement from traditional methods' rigid and cumbersome steps. This comprehensive review aims to thoroughly discuss the recent advances, applications, and limitations of portable and rapid biosensors for routinely encountered foodborne pathogens. It discusses the major differences between biosensing systems based on the molecular interactions of target analytes and biorecognition agents. Though detection limits and costs still need further improvement, reviewed technologies have high potential to assist the food industry in the on-site detection of biological hazards such as foodborne pathogens and toxins to maintain safe and healthy foods. Finally, this review offers targeted recommendations for future development and commercialization of diagnostic technologies specifically for emerging and re-emerging foodborne pathogens.
Collapse
Affiliation(s)
- Irwin A. Quintela
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Tyler Vasse
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States,*Correspondence: Vivian C. H. Wu,
| |
Collapse
|
8
|
Ma Z, Meliana C, Munawaroh HSH, Karaman C, Karimi-Maleh H, Low SS, Show PL. Recent advances in the analytical strategies of microbial biosensor for detection of pollutants. CHEMOSPHERE 2022; 306:135515. [PMID: 35772520 DOI: 10.1016/j.chemosphere.2022.135515] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/10/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Microbial biosensor which integrates different types of microorganisms, such as bacteria, microalgae, fungi, and virus have become suitable technologies to address limitations of conventional analytical methods. The main applications of biosensors include the detection of environmental pollutants, pathogenic bacteria and compounds related to illness, and food quality. Each type of microorganisms possesses advantages and disadvantages with different mechanisms to detect the analytes of interest. Furthermore, there is an increasing trend in genetic modifications for the development of microbial biosensors due to potential for high-throughput analysis and portability. Many review articles have discussed the applications of microbial biosensor, but many of them focusing only about bacterial-based biosensor although other microbes also possess many advantages. Additionally, reviews on the applications of all microbes as biosensor especially viral and microbial fuel cell biosensors are also still limited. Therefore, this review summarizes all the current applications of bacterial-, microalgal-, fungal-, viral-based biosensor in regard to environmental, food, and medical-related applications. The underlying mechanism of each microbes to detect the analytes are also discussed. Additionally, microbial fuel cell biosensors which have great potential in the future are also discussed. Although many advantageous microbial-based biosensors have been discovered, other areas such as forensic detection, early detection of bacteria or virus species that can lead to pandemics, and others still need further investigation. With that said, microbial-based biosensors have promising potential for vast applications where the biosensing performance of various microorganisms are presented in this review along with future perspectives to resolve problems related on microbial biosensors.
Collapse
Affiliation(s)
- Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| | - Catarina Meliana
- Department of Food Science and Nutrition, Faculty of Life Science, Indonesia International Institute of Life Sciences, Jakarta, 13210, Indonesia
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Sze Shin Low
- Research Centre of Life Science and Healthcare, China Beacons Institute, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 315100, Zhejiang, China.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
9
|
Al-Hindi RR, Teklemariam AD, Alharbi MG, Alotibi I, Azhari SA, Qadri I, Alamri T, Harakeh S, Applegate BM, Bhunia AK. Bacteriophage-Based Biosensors: A Platform for Detection of Foodborne Bacterial Pathogens from Food and Environment. BIOSENSORS 2022; 12:905. [PMID: 36291042 PMCID: PMC9599427 DOI: 10.3390/bios12100905] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
Foodborne microorganisms are an important cause of human illness worldwide. Two-thirds of human foodborne diseases are caused by bacterial pathogens throughout the globe, especially in developing nations. Despite enormous developments in conventional foodborne pathogen detection methods, progress is limited by the assay complexity and a prolonged time-to-result. The specificity and sensitivity of assays for live pathogen detection may also depend on the nature of the samples being analyzed and the immunological or molecular reagents used. Bacteriophage-based biosensors offer several benefits, including specificity to their host organism, the detection of only live pathogens, and resistance to extreme environmental factors such as organic solvents, high temperatures, and a wide pH range. Phage-based biosensors are receiving increasing attention owing to their high degree of accuracy, specificity, and reduced assay times. These characteristics, coupled with their abundant supply, make phages a novel bio-recognition molecule in assay development, including biosensors for the detection of foodborne bacterial pathogens to ensure food safety. This review provides comprehensive information about the different types of phage-based biosensor platforms, such as magnetoelastic sensors, quartz crystal microbalance, and electrochemical and surface plasmon resonance for the detection of several foodborne bacterial pathogens from various representative food matrices and environmental samples.
Collapse
Affiliation(s)
- Rashad R. Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Addisu D. Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona G. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim Alotibi
- Health Information Technology Department, Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sheren A. Azhari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bruce M. Applegate
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Sandwich-Based Immunosensor for Dual-Mode Detection of Pathogenic F17-Positive Escherichia coli Strains. Int J Mol Sci 2022; 23:ijms23116028. [PMID: 35682707 PMCID: PMC9181454 DOI: 10.3390/ijms23116028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial diseases cause tremendous economic losses due to high morbidity and mortality in livestock animals. F17A protein, the major subunit of F17 fimbriae, is one of the most prevalent and crucial virulence factors among the pathogenic Escherichia coli (E. coli) isolated from diarrheic and septicemic animals of various species. Purification and detection of this protein is regarded as an interesting field of investigation due to its important role as a therapeutic target, such as vaccines, and as a diagnostic tool. In this context, polyclonal rabbit antibodies recognizing F17A protein (anti−F17A antibody) were developed and used for its detection. In fact, sandwich biosensor using anti−F17A/gold nanoparticles conjugates as capture probe and anti−F17A antibody labelled with horseradish peroxidase as signal amplification probe was developed for electrochemical and fluorescent detection of purified F17A protein and live F17–positive E. coli bacteria. Good specificity and sensitivity for detection of F17–positive E. coli strains were obtained. The dynamic range for the biosensor varies from 1 × 102 to 1 × 109 CFU·mL−1 (R2 = 0.998) and the detection limit (LOD) and the IC50 value were estimated to be 37 CFU·mL−1 and 75 CFU·mL−1, respectively.
Collapse
|
11
|
Mobed A, Hasanzadeh M. Sensitive recognition of Shiga toxin using biosensor technology: An efficient platform towards bioanalysis of pathogenic bacterial. Microchem J 2022; 172:106900. [DOI: 10.1016/j.microc.2021.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|