1
|
Meléndez-González PC, Fuentez-Torres MO, Sánchez-Castro ME, Alonso-Lemus IL, Escobar-Morales B, Pech-Rodríguez WJ, Napporn TW, Rodríguez-Varela FJ. Enhancing the Catalytic Activity of Pd Nanocatalysts for Anion Exchange Membrane Direct Ethanol Fuel Cells by Functionalizing Vulcan XC-72 with Cu Organometallic Compounds. ACS APPLIED NANO MATERIALS 2024; 7:20071-20084. [PMID: 39296863 PMCID: PMC11406490 DOI: 10.1021/acsanm.4c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024]
Abstract
The most widely used support in low-temperature fuel cell applications is the commercially available Vulcan XC-72. Herein, we report its functionalization with the home-obtained mesityl copper (Cu-mes) and Cu coordinate (Cu(dmpz)L2) organometallic compounds. Pd nanoparticles are anchored on the supports obtaining Pd/CCu-mes, Pd/CCu(dmpz)L2, and Pd/C (on nonfunctionalized support). The polarization curves of the ethanol oxidation reaction (EOR) show that Pd/CCu-mes and Pd/CCu(dmpz)L2 promote the reaction at a more negative onset potential, i.e., E onset = 0.38 V/reversible hydrogen electrode (RHE), compared to 0.41 V/RHE of Pd/C. The mass current density (j m) delivered by Pd/CCu-mes is considerably higher (1231.3 mA mgPd -1), followed by Pd/CCu(dmpz)L2 (1001.8 mA mgPd -1), and Pd/C (808.3 mA mgPd -1). The enhanced performance of Pd/CCu-mes and Pd/CCu(dmpz)L2 for the EOR (and tolerance to CO poisoning) is attributed to a shift of their d-band center toward more negative values, compared to Pd/C, because of the formation of PdCu alloyed phases arising from the functionalization. In addition, laboratory-scale tests of the anion exchange membrane-direct ethanol fuel cell assembled with Pd/CCu-mes show the highest open circuit voltage (OCV = 0.60 V) and cell power density (P cell = 0.14 mW cm-2). As a result of its high catalytic activity, Pd/CCu-mes can find application as an anode nanocatalyst in AEM-DEFCs.
Collapse
Affiliation(s)
- P C Meléndez-González
- Nanociencias y Nanotecnología, Cinvestav Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe, Coahuila C.P 25900, México
| | - M O Fuentez-Torres
- Nanociencias y Nanotecnología, Cinvestav Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe, Coahuila C.P 25900, México
| | - M E Sánchez-Castro
- Nanociencias y Nanotecnología, Cinvestav Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe, Coahuila C.P 25900, México
- Sustentabilidad de Los Recursos Naturales y Energía, Cinvestav Unidad Saltillo, Ramos Arizpe, Coahuila C.P 25900, México
| | - I L Alonso-Lemus
- CONAHCYT-Cinvestav Saltillo, Sustentabilidad de Los Recursos Naturales y Energía, Cinvestav Unidad Saltillo. Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe. Ramos Arizpe, Coahuila C.P 25900, México
| | - B Escobar-Morales
- CONAHCyT, Centro de Investigación Científica de Yucatán, Unidad de Energía Renovable, Calle 43, No. 130 Col. Chuburná de Hidalgo, Mérida, Yucatán C.P. 97200, México
| | - W J Pech-Rodríguez
- Universidad Politécnica de Victoria, Parque Científico y Tecnológico de Tamaulipas, Av. Nuevas Tecnologías 5902, Cd Victoria, Tamaulipas C.P. 87138, México
| | - Teko W Napporn
- Université de Poitiers, IC2MP UMR 7285 CNRS, ⟨⟨Equipe SAMCat⟩⟩, 4, Rue Michel Brunet, B27, TSA 51106, Poitiers Cedex 09 86073, France
| | - F J Rodríguez-Varela
- Nanociencias y Nanotecnología, Cinvestav Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe, Coahuila C.P 25900, México
- Sustentabilidad de Los Recursos Naturales y Energía, Cinvestav Unidad Saltillo, Ramos Arizpe, Coahuila C.P 25900, México
| |
Collapse
|
2
|
Liu C, Tang Q, Fan P, Wei Y, Yu Y, Wen X, Li X, Li L, Qu Q. Interface Engineering of PdPt Ultrafine Ethanol Electro-Oxidation Nanocatalysts by Bacterial Soluble Extracellular Polymeric Substances (s-EPS) to Break through Sabatier Principle. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308283. [PMID: 38412406 DOI: 10.1002/smll.202308283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/14/2023] [Indexed: 02/29/2024]
Abstract
Unsatisfactory performance of ethanol oxidation reaction (EOR) catalysts hinders the application of direct ethanol fuel cells (DEFCs), while traditional alloy catalysts (like PdPt) is cursed by Sabatier principle due to countable active site types. However, bacterial soluble extracellular polymeric substances (s-EPS) owning abundent functional groups may help breacking through it by contrusting different active sites on PdPt and inducing them to play synergy effect, which is called interface engineering. Using s-EPS to engineer catalysts is more green and consumes lower energy compared to chemical reagents. Herein, PdPt alloy nanoparticles (≈2.1 nm) are successfully in situ synthesized by/on s-EPS of Bacillus megaterium, an ex-holotype. Tryptophan residuals are proved as the main reductant. In EOR, PdPt@s-EPS shows higher activity (3.89 mA cm-2) than Pd@s-EPS, Pt@s-EPS, Pt/C and most reported akin catalysts. Its stability and durability are excellent, too. DFT modelling further demonstrates that, interface engineering by s-EPS breaks through Sabatier principle, by the synergy of diverse sites owning different degrees of d-p orbital hybridization. This work not only makes DEFCs closer to practice, but provides a facile and green strategy to design more catalysts.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Qinyuan Tang
- School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Puyang Fan
- School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Yuhui Wei
- School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Yang Yu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Xinwei Wen
- School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Xianghong Li
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China & College of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Lei Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Qing Qu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| |
Collapse
|
3
|
High-selective and effective carbon nanotubes supported ultrasmall PtPdRh electrocatalysts for ethanol oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Moreira TFM, Kokoh KB, Napporn TW, Olivi P, Morais C. Insights on the C2 and C3 electroconversion in alkaline medium on Rh/C catalyst: in situ FTIR spectroscopic and chromatographic studies. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Rodrigues MP, Dourado AH, Krischer K, Torresi SIC. Gold–rhodium nanoflowers for the plasmon enhanced ethanol electrooxidation under visible light for tuning the activity and selectivity. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Moreira TFM, Andrade AR, Kokoh KB, Morais C, Napporn TW, Olivi P. An FTIR study of the electrooxidation of C2 and C3 alcohols on carbon‐supported PdxRhy in alkaline medium. ChemElectroChem 2022. [DOI: 10.1002/celc.202200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Claudia Morais
- University of Poitiers: Universite de Poitiers Chemistry FRANCE
| | - Teko Wilhelmin Napporn
- Universite de Poitiers Chemistry IC2MP UMR 7285 CNRSUniversite de Poitiers4, rue Michel Brunet B27 TSA 51106 86073 Poitiers FRANCE
| | - Paulo Olivi
- University of Sao Paulo: Universidade de Sao Paulo FFCLRP BRAZIL
| |
Collapse
|
7
|
Wang H, Sun S, Mohamedi M. Synthesis of free-standing ternary Rh-Pt-SnO 2-carbon nanotube nanostructures as a highly active and robust catalyst for ethanol oxidation. RSC Adv 2020; 10:45149-45158. [PMID: 35516282 PMCID: PMC9058560 DOI: 10.1039/d0ra10030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
The rational design of durable materials is an important issue for improving the performance of electrocatalysts towards the ethanol oxidation reaction (EOR). In this work, binderless thin nanostructured layers of SnO2, Pt, Rh, bilayers of Pt/SnO2, Rh/Pt and tri-layers of Rh (ca. 10 nm thickness)/PtSnO2 are directly grown by pulsed laser deposition onto carbon nanotubes (CNTs). SEM analysis shows that CNTs are perfectly coated with the catalysts. The onset potentials of the CO stripping and EOR indicate that Rh/Pt/SnO2 is the most active for the CO and the EOR. The incorporation of the CNTs in the catalyst layer is outstandingly beneficial to both the catalytic current activity and the durability. Indeed Rh/Pt/SnO2/CNT delivers mass activity as high as 213.42 mA mg-1 Pt. Moreover, Rh/Pt/SnO2/CNT demonstrates not only the lowest poisoning rate (by intermediate species, such as adsorbed CO) but also the highest durability current of 132.17 mA mg-1 Pt far superior to CNT-free Rh/Pt/SnO2/CP (58.33 mA mg-1 Pt). XPS shows that SnO2, Pt and Rh are all present at the surface of Rh/Pt/SnO2/CNT, the presence of two oxophilic materials like SnO2 and Rh, implies an earlier source of OHads-species, which facilitates the oxidation of CO and assuming a second contribution from Rh is to enhance the cleavage of the C-C bond for the complete oxidation of ethanol. The 3D porous and binderless structure, the low amount of the noble catalyst, the excellent electroactivity and durability of the Rh5/PtSnO2/CNT/CP composite represents an important step in advancing its use as an anode in commercial applications in DEFC.
Collapse
Affiliation(s)
- Haixia Wang
- Énergie, Matériaux et Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS) 1650 Boulevard Lionel Boulet, Varennes Quebec J3X 1S2 Canada
| | - Shuhui Sun
- Énergie, Matériaux et Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS) 1650 Boulevard Lionel Boulet, Varennes Quebec J3X 1S2 Canada
| | - Mohamed Mohamedi
- Énergie, Matériaux et Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS) 1650 Boulevard Lionel Boulet, Varennes Quebec J3X 1S2 Canada
| |
Collapse
|