1
|
Yang JY, Du YR, Cheng FQ, An K, Hu Y, Li ZY. Construction of Axially Chiral Dialdehydes via Rhodium-Catalyzed Enantioselective C-H Amidation. Angew Chem Int Ed Engl 2025; 64:e202421412. [PMID: 39853834 DOI: 10.1002/anie.202421412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/04/2025] [Accepted: 01/24/2025] [Indexed: 01/26/2025]
Abstract
Achieving axially chiral biaryl dialdehydes through asymmetric catalysis remains significantly challenging due to the lack of efficient strategies. In this report, we developed a rhodium-catalyzed enantioselective C-H amidation through chiral transient directing group strategy. With this new approach, a series of axially chiral amido dialdehydes were achieved in up to 86 % yields with 99.5 : 0.5 er. Furthermore, detailed mechanistic studies indicated that both the imine formation and C-H bond cleavage steps were reversible. More interestingly, the X-ray crystallographic analysis of Int-2 showed probable C-H/π interaction between biaryl group and chiral amine moiety. This process offered a convenient route to access axially chiral dialdehyde derivatives. More broadly, it demonstrated a new tool through transient and C-H/π synergistic interactions, which would stimulate further development of asymmetric catalytic system in enantioselective C-H functionalization.
Collapse
Affiliation(s)
- Jie-Ying Yang
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Ya-Ru Du
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Fu-Qiang Cheng
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Kun An
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yuefei Hu
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Zhong-Yuan Li
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
2
|
Harmata AS, Tatunashvili E, Chang A, Wang T, Stephenson CRJ. Bicyclo[2.1.1]hexanes via Intramolecular Formal (3+2)-Cycloaddition. Angew Chem Int Ed Engl 2025; 64:e202413695. [PMID: 39393006 DOI: 10.1002/anie.202413695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
We report a synthesis of bicyclo[2.1.1]hexanes via an intramolecular formal (3+2) cycloaddition of allylated cyclopropanes bearing a 4-nitrobenzimine substituent. Both activated and unactivated alkenes are tolerated in the transformation. The bicyclic imine products are prone to photo-induced ring opening, allowing for the epimerization of C5-stereogenic compounds.
Collapse
Affiliation(s)
- Alexander S Harmata
- Department of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, MI, 48109, United States
| | - Elene Tatunashvili
- Department of Chemistry, Department of Biochemistry and Molecular Biology, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada, V6T 1Z1
- Department of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, MI, 48109, United States
| | - Abigail Chang
- Department of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, MI, 48109, United States
| | - Tao Wang
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| | - Corey R J Stephenson
- Department of Chemistry, Department of Biochemistry and Molecular Biology, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada, V6T 1Z1
| |
Collapse
|
3
|
Guria S, Hassan MMM, Dey S, Singh KN, Chattopadhyay B. Sterically Controlled Lewis Acid-Base Interaction Toward para-Selective Borylation of Aromatic Aldimines and Benzylamines. Angew Chem Int Ed Engl 2024; 63:e202409010. [PMID: 39012678 DOI: 10.1002/anie.202409010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/17/2024]
Abstract
Site-selective C-H bond functionalization of arenes at the para position remains extremely challenging primarily due to its relative inaccessibility from the catalytic site. As a consequence, it is significantly restricted to limited molecular scaffolds. Herein, we report a method for the para-C-H borylation of aromatic aldimines and benzylamines using commercially available ligands under iridium catalysis. The established method displays excellent para selectivity for variously substituted aromatic aldimines, benzylamines and bioactive molecules. Based on several control experiments, it is proposed that a Lewis acid-base interaction between the nitrogen and boron functionality guides the para selectivity via a steric shield for the aromatic aldimines, where Bpin acts as a transient directing group. However, the steric shield of the in situ generated N-Bpin moiety controlled the overall selectivity for the para borylation of benzylamines.
Collapse
Affiliation(s)
- Saikat Guria
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Mirja Md Mahamudul Hassan
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Sayan Dey
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Buddhadeb Chattopadhyay
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| |
Collapse
|
4
|
Amano S, Hermans TM. Repurposing a Catalytic Cycle for Transient Self-Assembly. J Am Chem Soc 2024; 146:23289-23296. [PMID: 39127918 PMCID: PMC11345760 DOI: 10.1021/jacs.4c05871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
Life operates out of equilibrium to enable various sophisticated behaviors. Synthetic chemists have strived to mimic biological nonequilibrium systems in such fields as autonomous molecular machines and dissipative self-assembly. Central to these efforts has been the development of new chemical reaction cycles, which drive systems out of equilibrium by conversion of chemical fuel into waste species. However, the construction of reaction cycles has been challenging due to the difficulty of finding compatible reactions that constitute a cycle. Here, we realize an alternative approach by repurposing a known catalytic cycle as a chemical reaction cycle for driving dissipative self-assembly. This approach can overcome the compatibility problem because all steps involved in a catalytic cycle are already known to proceed concurrently under the same conditions. Our repurposing approach is applicable to diverse combinations of catalytic cycles and systems to drive out of equilibrium, which will substantially broaden the scope of out-of-equilibrium systems.
Collapse
Affiliation(s)
- Shuntaro Amano
- University
of Strasbourg, CNRS, Strasbourg 67083, France
| | | |
Collapse
|
5
|
Jain S, Ospina F, Hammer SC. A New Age of Biocatalysis Enabled by Generic Activation Modes. JACS AU 2024; 4:2068-2080. [PMID: 38938808 PMCID: PMC11200230 DOI: 10.1021/jacsau.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
Biocatalysis is currently undergoing a profound transformation. The field moves from relying on nature's chemical logic to a discipline that exploits generic activation modes, allowing for novel biocatalytic reactions and, in many instances, entirely new chemistry. Generic activation modes enable a wide range of reaction types and played a pivotal role in advancing the fields of organo- and photocatalysis. This perspective aims to summarize the principal activation modes harnessed in enzymes to develop new biocatalysts. Although extensively researched in the past, the highlighted activation modes, when applied within enzyme active sites, facilitate chemical transformations that have largely eluded efficient and selective catalysis. This advance is attributed to multiple tunable interactions in the substrate binding pocket that precisely control competing reaction pathways and transition states. We will highlight cases of new synthetic methodologies achieved by engineered enzymes and will provide insights into potential future developments in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | - Stephan C. Hammer
- Research Group for Organic Chemistry
and Biocatalysis, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
6
|
Ren Y, Qin Z, Li C, Yuan B, Yang Y, Qu G, Sun Z. Engineering the activity and thermostability of a carboxylic acid reductase in the conversion of vanillic acid to vanillin. J Biotechnol 2024; 386:19-27. [PMID: 38521166 DOI: 10.1016/j.jbiotec.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Vanillin is a valuable natural product that can be used as a fragrance and additive. Recent research in the biosynthesis of vanillin has brought attention to a key enzyme, carboxylic acid reductase (CAR), which catalyzes the reduction of vanillic acid to vanillin. Nevertheless, the biosynthesis of vanillin is hampered by the low activity and stability of CAR. As such, a rational design campaign was conducted on a well-documented carboxylic acid reductase from Segniliparus rugosus (SrCAR), using vanillic acid as the model substrate. After combined active site saturation and iterative site-specific mutagenesis, the best quadruple mutant N292H/K524S/A627L/E1121W (M3) was successfully obtained. In comparison to the wildtype SrCAR, M3 demonstrated a 4.2-fold increase in catalytic efficiency (kcat/Km), and its half-life (t1/2) was enhanced by 3.8 times up to 385.08 minutes at 40 °C. In silico docking and molecular dynamics simulation provided insights into the improved activity and stability. In the subsequent preparative-scale reaction with 100 mM (16.8 g L-1) vanillic acid, the whole cell catalysis utilizing M3 produced 10.15 g·L-1 of vanillin and 1.11 g·L-1 of vanillyl alcohol, respectively. This work demonstrates a dual improvement in the activity and thermal stability of SrCAR, thereby potentially facilitating the application of carboxylic acid reductase in the biosynthesis of vanillin.
Collapse
Affiliation(s)
- Yaoyao Ren
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zongmin Qin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Congcong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yang Yang
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
7
|
Orsi E, Schada von Borzyskowski L, Noack S, Nikel PI, Lindner SN. Automated in vivo enzyme engineering accelerates biocatalyst optimization. Nat Commun 2024; 15:3447. [PMID: 38658554 PMCID: PMC11043082 DOI: 10.1038/s41467-024-46574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Achieving cost-competitive bio-based processes requires development of stable and selective biocatalysts. Their realization through in vitro enzyme characterization and engineering is mostly low throughput and labor-intensive. Therefore, strategies for increasing throughput while diminishing manual labor are gaining momentum, such as in vivo screening and evolution campaigns. Computational tools like machine learning further support enzyme engineering efforts by widening the explorable design space. Here, we propose an integrated solution to enzyme engineering challenges whereby ML-guided, automated workflows (including library generation, implementation of hypermutation systems, adapted laboratory evolution, and in vivo growth-coupled selection) could be realized to accelerate pipelines towards superior biocatalysts.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, 10117, Berlin, Germany.
| |
Collapse
|
8
|
Zhang H, Wen W, Lu ZX, Wu ZL, Cai T, Guo QX. Core Structure-Oriented Asymmetric α-Allenylic Alkylation of Amino Acid Esters Enabled by Chiral Aldehyde/Palladium Catalysis. Org Lett 2024; 26:153-159. [PMID: 38133484 DOI: 10.1021/acs.orglett.3c03762] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Aiming at the reported chiral synthons leading to manzacidins A and D, here we report a highly efficient catalytic asymmetric α-allenylic alkylation reaction of NH2-unprotected amino acid esters that is promoted by combined chiral aldehyde/palladium catalysis. Fifty examples of unnatural α,α-disubstituted amino acid esters are reported with good-to-excellent yields and stereoselectivities. Based on this methodology, a key intermediate leading to manzacidin C and its other three stereoisomers is prepared accordingly.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ze-Xi Lu
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
9
|
Chen J, Yang X, Huang Y, Zheng Z, Li T. The Development of Aldehyde Catalytic System. Chem Asian J 2023; 18:e202300731. [PMID: 37755436 DOI: 10.1002/asia.202300731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
Aldehyde catalysts have proven to be highly effective in facilitating and accelerating a wide range of challenging transformations in organic chemistry. This article is structured into three main sections, focusing on the utilization of aldehydes as organocatalysts, the aldehydes/transition metals catalytic systems, and photochemical initiators. Finally, we provide a concise summary of the advancements in this fascinating research field, offering our perspectives and insights.
Collapse
Affiliation(s)
- Jinli Chen
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University. Huaxi District, Guiyang, 550025, China
| | - Xiaoqun Yang
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University. Huaxi District, Guiyang, 550025, China
| | - Yixian Huang
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University. Huaxi District, Guiyang, 550025, China
| | - Zhiguo Zheng
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University. Huaxi District, Guiyang, 550025, China
| | - Tingting Li
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University. Huaxi District, Guiyang, 550025, China
| |
Collapse
|
10
|
Shen HR, Li CX, Jiang X, Lin Y, Liu JH, Zhu F, Wu ZL, Cai T, Wen W, He RX, Guo QX. Chiral aldehyde catalysis enables direct asymmetric α-substitution reaction of N-unprotected amino acids with halohydrocarbons. Chem Sci 2023; 14:5665-5671. [PMID: 37265737 PMCID: PMC10231321 DOI: 10.1039/d3sc01294h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
The direct catalytic α-hydrocarbylation of readily available amino acids with halohydrocarbons is one of the most straightforward methods leading to α,α-disubstituted non-proteinogenic α-amino acid compounds. However, all the reported methodologies depend on N-protected amino acids as starting materials. Herein, we report on three highly efficient aldehyde-catalyzed direct α-hydrocarbylations of N-unprotected amino acid esters with aryl-, allyl-, and benzyl halides. By promoting a simple chiral BINOL-aldehyde catalyst or combining catalysts of a chiral aldehyde and Lewis acid ZnCl2, the asymmetric α-arylation, α-allylation, and α-benzylation of amino acid esters with the corresponding halohydrocarbons proceed smoothly, producing α,α-disubstituted α-amino acids in moderate-to-high yields and good-to-excellent enantioselectivities. The asymmetric α-arylation reaction can be applied in the formal synthesis of the clinical candidate compound (+)-AG-041R. Based on the results given by control experiments, three reaction models are proposed to illustrate the stereoselective-control outcomes.
Collapse
Affiliation(s)
- Hao-Ran Shen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Chao-Xing Li
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Xin Jiang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Yao Lin
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Jian-Hua Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Fang Zhu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Rong-Xing He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| |
Collapse
|
11
|
Paladhi S, Park SJ, Hwang IS, Park JH, Bae HY, Jadhav AP, Song CE. Biomimetic Catalytic Retro-Aldol Reaction Using a Cation-Binding Catalyst: A Promising Route to Axially Chiral Biaryl Aldehydes. Org Lett 2023; 25:2713-2717. [PMID: 37052359 DOI: 10.1021/acs.orglett.3c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Here we describe a biomimetic catalytic retro-aldol reaction of racemic α-substituted β-hydroxy ketones utilizing a chiral oligoEG cation-binding catalyst as a type-II aldolase mimic. Our investigation of various aldol substrates has demonstrated that our biomimetic retro-aldol protocol enables rapid access to highly enantiomerically enriched aldols with a selectivity factor (s) of up to 70. Additionally, we have demonstrated the synthetic strategy's feasibility for accessing diverse and valuable axially chiral aldehydes.
Collapse
Affiliation(s)
- Sushovan Paladhi
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
- Department of Chemistry, Thakur Prasad Singh (T.P.S.) College, Patna 800001, India
| | - Si Joon Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - In-Soo Hwang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jin Hyun Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Han Yong Bae
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Amol P Jadhav
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Choong Eui Song
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
12
|
Zhu F, Li CX, Wu ZL, Cai T, Wen W, Guo QX. Chiral aldehyde-nickel dual catalysis enables asymmetric α-propargylation of amino acids and stereodivergent synthesis of NP25302. Nat Commun 2022; 13:7290. [PMID: 36435942 PMCID: PMC9701212 DOI: 10.1038/s41467-022-35062-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022] Open
Abstract
The combined catalytic systems derived from organocatalysts and transition metals exhibit powerful activation and stereoselective-control abilities in asymmetric catalysis. This work describes a highly efficient chiral aldehyde-nickel dual catalytic system and its application for the direct asymmetric α-propargylation reaction of amino acid esters with propargylic alcohol derivatives. Various structural diversity α,α-disubstituted non-proteinogenic α-amino acid esters are produced in good-to-excellent yields and enantioselectivities. Furthermore, a stereodivergent synthesis of natural product NP25302 is achieved, and a reasonable reaction mechanism is proposed to illustrate the observed stereoselectivity based on the results of control experiments, nonlinear effect investigation, and HRMS detection.
Collapse
Affiliation(s)
- Fang Zhu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Chao-Xing Li
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Tang Y, Yao XQ. SYNTHESIS, CRYSTAL STRUCTURE, AND LUMINESCENT PROPERTY OF A NEW HETEROMETALLIC COMPOUND BASED ON A LARGE π-CONJUGATED DICARBOXYLATE LIGAND. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622110191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Wu Y, Li M, Sun J, Zheng G, Zhang Q. Synthesis of Axially Chiral Aldehydes by N-Heterocyclic-Carbene-Catalyzed Desymmetrization Followed by Kinetic Resolution. Angew Chem Int Ed Engl 2022; 61:e202117340. [PMID: 35100461 DOI: 10.1002/anie.202117340] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 12/23/2022]
Abstract
Axially chiral aldehydes have received increasing attention in enantioselective catalysis. However, only very few catalytic methods have been developed to construct structurally diverse axially chiral aldehydes. We herein describe an NHC-catalyzed atroposelective esterification of biaryl dialdehydes as a general and practical strategy for the construction of axially chiral aldehydes. Mechanistic studies indicate that coupling proceeds through a novel combination of NHC-catalyzed desymmetrization of the dialdehydes and kinetic resolution. This protocol features excellent enantioselectivity, mild conditions, good functional-group tolerance, and applicability to late-stage functionalization and provides a modular platform for the synthesis of axially chiral aldehydes and their derivatives.
Collapse
Affiliation(s)
- Yingtao Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Mingrui Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Guangfan Zheng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
15
|
Wu Y, Li M, Sun J, Zheng G, Zhang Q. Synthesis of Axially Chiral Aldehydes by N‐Heterocyclic‐Carbene‐Catalyzed Desymmetrization Followed by Kinetic Resolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yingtao Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Mingrui Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Jiaqiong Sun
- School of Environment Northeast Normal University Changchun 130117 China
| | - Guangfan Zheng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
16
|
Lv X, Xu J, Sun C, Su F, Cai Y, Jin Z, Chi YR. Access to Planar Chiral Ferrocenes via N-Heterocyclic Carbene-Catalyzed Enantioselective Desymmetrization Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaokang Lv
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jun Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China
| | - Cuiyun Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Fen Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuanlin Cai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhichao Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
17
|
Saha R, Mukherjee A, Bhattacharya S. Development of a ruthenium–aquo complex for utilization in synthesis and catalysis for selective hydration of nitriles and alkynes. NEW J CHEM 2022. [DOI: 10.1039/d1nj04736a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ruthenium(ii)–aquo complex serves as a precursor for the synthesis of new ternary complexes and also as an efficient catalyst for selective hydration of aryl nitriles to aryl amides and aryl alkynes to aryl aldehydes.
Collapse
Affiliation(s)
- Rumpa Saha
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata – 700 032, India
| | - Aparajita Mukherjee
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata – 700 032, India
| | - Samaresh Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata – 700 032, India
| |
Collapse
|
18
|
Wang WZ, Shen HR, Liao J, Wen W, Guo QX. Chiral aldehyde induced tandem conjugated addition-lactamization reaction for constructing full-substituted pyroglutamic acids. Org Chem Front 2022. [DOI: 10.1039/d1qo01923f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalytic asymmetric tandem reaction including a chiral aldehyde catalyzed conjugated addition and an intramolecular lactamization is reported in this work. Under the optimal reaction conditions, various full-substituted pyroglutamic acids...
Collapse
|