1
|
Dos Santos ID, Zomer P, Pizzutti IR, Wagner R, Mol H. Multi-residue determination of biocides in dairy products and slurry feed using QuEChERS extraction and liquid chromatography combined with high resolution mass spectrometry (LC-ESI-QOrbitrap™-MS). Food Chem 2024; 457:140117. [PMID: 38905841 DOI: 10.1016/j.foodchem.2024.140117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Given that the determination of biocides in food and feed is currently not routinely done, more information on these compounds is useful for consumer's safety. This work describes a sensitive and reliable method for quantitative analysis of a wide range of biocides in dairy products and slurry feed. The method comprises acetate-buffered QuEChERS extraction without clean-up. Analyses were performed by LC-Q-Orbitrap™-MS and a full-scan acquisition event without fragmentation was followed by five fragmentation events (data-independent acquisition-DIA). The quantitative validation was performed according to SANTE/11312/2021 at 10, 50 and 200 ng g-1 spiking levels, and the results showed that the vast majority of the compounds met the criteria for trueness and precision. The LOQ was 10 ng g-1 for the majority of biocides depending on the matrix. The method was successfully applied to quantify biocides in dairy products and feed.
Collapse
Affiliation(s)
- Ingrid D Dos Santos
- Wageningen Food Safety Research, part of Wageningen University & Research, Wageningen, the Netherlands; Department of Food Technology and Science, Federal University of Santa Maria, Roraima Avenue 1000, Camobi, Rio Grande do Sul state, Santa Maria 97105-900, RS, Brazil.
| | - Paul Zomer
- Wageningen Food Safety Research, part of Wageningen University & Research, Wageningen, the Netherlands
| | - Ionara R Pizzutti
- Center of Research and Analysis of Contaminants (CEPARC), Department of Chemistry, Roraima Avenue 1000, Camobi, Rio Grande do Sul state, Santa Maria 97105-900, RS, Brazil
| | - Roger Wagner
- Department of Food Technology and Science, Federal University of Santa Maria, Roraima Avenue 1000, Camobi, Rio Grande do Sul state, Santa Maria 97105-900, RS, Brazil
| | - Hans Mol
- Wageningen Food Safety Research, part of Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
2
|
Manikanta P, Mounesh, Nikam RR, Mohanty J, Balakrishna RG, Sandeep S, Nagaraja BM. CdO Decorated with Polypyrrole Nanotube Heterostructure: Potent Electrocatalyst for the Detection of Antihistamine Drug Promethazine Hydrochloride in Environmental Samples. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11099-11107. [PMID: 37490749 DOI: 10.1021/acs.langmuir.3c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
In the realm of electrochemical sensor application, the development and fabrication of semiconducting metal oxides with the integration of conducting polymers for the trace-level detection of pharmaceutical medicines garnered considerable interest. Herein, we reported facile cadmium oxide decorated with polypyrrole nanotubes fabricated on a glassy carbon electrode (CdO@PPy/GCE) for efficient determination of antihistamine drug promethazine hydrochloride (PMH). The as-synthesized CdO@PPy composite was characterized by various analytical tools like X-ray powder diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. Furthermore, the electrocatalytic activity of the modified electrode for PMH detection was examined by voltammetry and amperometric methods, and the modified electrode exhibited lower charge transfer resistance compared to the bare GCE. Under the optimized condition, the fabricated electrode shows a wide linear range (50-550 μM), better sensitivity (0.13 μAμM-1 cm-2), low detection limit (10.83 nM) (S/N = 3), and excellent selectivity and reproducibility toward PMH detection. Moreover, the modified GCE depicted eminent practical ability for PMH detection in lake water and pharmaceutical tablets.
Collapse
Affiliation(s)
- P Manikanta
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - Mounesh
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - Rohit Rangnath Nikam
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - Jubate Mohanty
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - S Sandeep
- Department of Chemistry, S J College of Engineering, JSS Science and Technology University, Mysuru 570008, India
| | - Bhari Mallanna Nagaraja
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| |
Collapse
|
3
|
Mare R, Mare C, Hadarean A, Hotupan A, Rus T. COVID-19 and Water Variables: Review and Scientometric Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:957. [PMID: 36673718 PMCID: PMC9859563 DOI: 10.3390/ijerph20020957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
COVID-19 has changed the world since 2020, and the field of water specifically, boosting scientific productivity (in terms of published articles). This paper focuses on the influence of COVID-19 on scientific productivity with respect to four water variables: (i) wastewater, (ii) renewable water resources, (iii) freshwater withdrawal, and (iv) access to improved and safe drinking water. The field's literature was firstly reviewed, and then the maps were built, emphasizing the strong connections between COVID-19 and water-related variables. A total of 94 countries with publications that assess COVID-19 vs. water were considered and evaluated for how they clustered. The final step of the research shows that, on average, scientific productivity on the water topic was mostly conducted in countries with lower COVID-19 infection rates but higher development levels as represented by gross domestic product (GDP) per capita and the human development index (HDI). According to the statistical analysis, the water-related variables are highly significant, with positive coefficients. This validates that countries with higher water-related values conducted more research on the relationship with COVID-19. Wastewater and freshwater withdrawal had the highest impact on the scientific productivity with respect to COVID-19. Access to safe drinking water becomes insignificant in the presence of the development parameters.
Collapse
Affiliation(s)
- Roxana Mare
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Codruța Mare
- Department of Statistics-Forecasts-Mathematics, Faculty of Economics and Business Administration, Babes-Bolyai University, 58-60 Teodor Mihali Str., 400591 Cluj-Napoca, Romania
- Interdisciplinary Centre for Data Science, Babes-Bolyai University, 68 Avram Iancu Str., 4th Floor, 400083 Cluj-Napoca, Romania
| | - Adriana Hadarean
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Anca Hotupan
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Tania Rus
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Ekanayake A, Rajapaksha AU, Hewawasam C, Anand U, Bontempi E, Kurwadkar S, Biswas JK, Vithanage M. Environmental challenges of COVID-19 pandemic: resilience and sustainability - A review. ENVIRONMENTAL RESEARCH 2023; 216:114496. [PMID: 36257453 PMCID: PMC9576205 DOI: 10.1016/j.envres.2022.114496] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 05/05/2023]
Abstract
The emergence of novel respiratory disease (COVID-19) caused by SARS-CoV-2 has become a public health emergency worldwide and perturbed the global economy and ecosystem services. Many studies have reported the presence of SARS-CoV-2 in different environmental compartments, its transmission via environmental routes, and potential environmental challenges posed by the COVID-19 pandemic. None of these studies have comprehensively reviewed the bidirectional relationship between the COVID-19 pandemic and the environment. For the first time, we explored the relationship between the environment and the SARS-CoV-2 virus/COVID-19 and how they affect each other. Supporting evidence presented here clearly demonstrates the presence of SARS-CoV-2 in soil and water, denoting the role of the environment in the COVID-19 transmission process. However, most studies fail to determine if the viral genomes they have discovered are infectious, which could be affected by the environmental factors in which they are found.The potential environmental impact of the pandemic, including water pollution, chemical contamination, increased generation of non-biodegradable waste, and single-use plastics have received the most attention. For the most part, efficient measures have been used to address the current environmental challenges from COVID-19, including using environmentally friendly disinfection technologies and employing measures to reduce the production of plastic wastes, such as the reuse and recycling of plastics. Developing sustainable solutions to counter the environmental challenges posed by the COVID-19 pandemic should be included in national preparedness strategies. In conclusion, combating the pandemic and accomplishing public health goals should be balanced with environmentally sustainable measures, as the two are closely intertwined.
Collapse
Affiliation(s)
- Anusha Ekanayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | - Choolaka Hewawasam
- Faculty of Technology, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, 25123 Brescia, Italy
| | - Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Jayanta Kumar Biswas
- Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
5
|
Liu X, Song R, Wei R. Rapid Determination of Vitamin D 3 in Aquatic Products by Polypyrrole-Coated Magnetic Nanoparticles Extraction Coupled with High-Performance Liquid Chromatography Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1226. [PMID: 35407344 PMCID: PMC9002580 DOI: 10.3390/nano12071226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023]
Abstract
A method using polypyrrole-coated Fe3O4 (Fe3O4@PPy composites) based extraction coupled with high performance liquid chromatography was developed for adsorption and detection of trace vitamin D3 (VD3) in aquatic products. The fabricated Fe3O4@PPy composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Fe3O4@PPy composites showed efficient adsorption of VD3 at pH 9.0 and 25 °C with a dose of 25 mg per 10 mL of sample solution and an adsorption time of 11 min. Methanol was selected as the desorption solvent to recover VD3 from Fe3O4@PPy composites after 3 min of static treatment. Fe3O4@PPy composites can be used for VD3 adsorption at least two times. The developed method showed a good linearity for VD3 determination in the range of 0.1-10 μg/mL with a correlation coefficient of 0.9989. The limits of detection and quantification were 10 ng/mL and 33 ng/mL, respectively. The recovery of VD3 in a spiking test was 97.72% with a relative standard deviation value of 1.78%. The content of VD3 in nine aquatic products was determined with this method. Our results show that Fe3O4@PPy composites provide a convenient method for the adsorption and determination of VD3 from the complex matrix of aquatic products.
Collapse
Affiliation(s)
- Xinyan Liu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Rongbian Wei
- School of Chemistry and Bioengineering, Guangxi Normal University for Nationalities, Chongzuo 532200, China
| |
Collapse
|
6
|
Guo J, Liao M, He B, Liu J, Hu X, Yan D, Wang J. Impact of the COVID-19 pandemic on household disinfectant consumption behaviors and related environmental concerns: A questionnaire-based survey in China. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106168. [PMID: 34395190 PMCID: PMC8349428 DOI: 10.1016/j.jece.2021.106168] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 05/04/2023]
Abstract
Considering the potential hazardous effects of disinfectant residues on environment, organisms and biodiversity, the sharp rise in use of disinfectants during COVID-19 pandemic has been considered highly likely to cause worldwide secondary disasters in ecosystems and human health. This questionnaire-based survey investigated the impact of COVID-19 outbreak on household disinfectant product consumption levels and behavior of 3667 Chinese residents. In particular, in the context that no strategy is currently available to minimize the disinfectant pollution, based on the similarities between disinfectants and pharmaceuticals, we proposed a perspective of ecopharmacovigilance (EPV), which is an effective measure to minimize the environmental risks posed by pharmaceuticals using drug administration protocols, for disinfectant environmental risk management. The public's environmental perceptions, attitudes and the related practices regarding household disinfectant consumption from an EPV perspective were also included in the study. The results showed that the COVID-19 outbreak caused a tremendous rise in the public's household disinfectant consumption and usage levels in China. After the COVID-19 outbreak, the chlorine-based and alcohol-based disinfectants were considered as the most preferred products for household disinfection and hand sanitization, respectively. Importantly, the Chinese public's environmental perceptions and practice on disinfectants were poor. Less than half respondents had positive attitudes toward the source control of disinfectant pollution. The population groups including females, the middle aged adults, those having healthcare professional background, as well as the higher-educated could be focused on to develop targeted efforts for the future control of disinfectant pollution in environment.
Collapse
Affiliation(s)
- Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bingshu He
- Hubei Province Woman and Child Hospital, Wuhan 430070, China
| | - Juan Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xianmin Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Dan Yan
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
7
|
Santana ER, Martins EC, Spinelli A. Electrode modified with nitrogen-doped graphene quantum dots supported in chitosan for triclocarban monitoring. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106297] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|