1
|
Akinyemi A, Agboola O, Alagbe E, Igbokwe E. The role of catalyst in the adsorption of dye: Homogeneous catalyst, heterogeneous catalyst, and advanced catalytic activated carbon, critical review. DESALINATION AND WATER TREATMENT 2024; 320:100780. [DOI: 10.1016/j.dwt.2024.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Alagarsamy P, Daniel S, Chinnapparaj MI, Kim SC, Manivasagam VR, Vanaraj R. Boosting Fenton's Oxidation Reaction by a Food Waste-Derived Catalyst for Oxidizing Organic Dyes: Synergistic Effect of Complex Iron Oxides and the Layer Carbon Structure. ACS APPLIED BIO MATERIALS 2023; 6:3291-3308. [PMID: 37543951 DOI: 10.1021/acsabm.3c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The constant increase in the human population drives the demand for food supply and thereby increasing the food wastage dramatically all over the world. Especially, around 60% of banana biomass has been generated as inedible domestic waste. Herein, we successfully employed banana waste as a catalyst for Fenton's oxidation reaction. The biomass-derived catalysts were subjected to various characterization techniques such as XRD, ATR-FTIR, confocal Raman spectroscopy, and XPS, XRF, BET, SEM, and TEM analyses. The XRD results revealed that, after carbonization of the dried banana bract material, a perloffite-like metal oxide phase was formed due to the aerial oxidation reaction. Characterization results of Raman and ATR-FTIR confirm that the carbonized catalyst possesses a layer-like structure with different types of functional groups. The calcium, magnesium, potassium, sodium, and iron are the dominating metal species in the resultant material, which was evident from the XRF and EDAX analyses. The carbonized banana bract catalyst is successfully utilized for the Fenton's oxidation reaction at neutral pH. The experimental results showed that the degradation efficiency of the fresh catalyst was 95% in 4 h of reaction time, and the stability of the catalyst was retained up to nine consecutive cycles. The high activity of MB, methylene blue, is mainly attributed to the strong interaction between oxy functional groups of the catalyst and MB molecule as compared to RhB. Further, the calculated efficiency of the hydrogen peroxide was found to be 99% and the self-decomposition of hydrogen peroxide by the formed metal oxides was highly limited.
Collapse
Affiliation(s)
| | - Santhanaraj Daniel
- Department of Chemistry, Loyola College, Chennai 600 034, Tamil Nadu, India
| | | | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Ramkumar Vanaraj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Alagarasan JK, Shasikala S, Rene ER, Bhatt P, Thangavelu P, Madheswaran P, Subramanian S, Nguyen DD, Chang SW, Lee M. Electro-oxidation of heavy metals contaminated water using banana waste-derived activated carbon and Fe 3O 4 nanocomposites. ENVIRONMENTAL RESEARCH 2022; 215:114293. [PMID: 36155152 DOI: 10.1016/j.envres.2022.114293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The main objective of this study was to banana waste-derived activated carbon (BWAC) make a high pore surface area was prepared and composited with Fe3O4 via a facile hydrothermal method. Various physiochemical characteristics of the prepared samples were evaluated using XRD, FTIR, FESEM, Raman Spectroscopy and XPS analysis. In addition, cyclic voltammetry and electrochemical impedance spectroscopy analyses were performed to determine the electrochemical properties of the prepared samples. The Fe3O4/BWAC sample showed a higher capacitance (285 F g-1) than BWAC at the same scan rate of 10 mV s-1. The capacitive deionization (CDI) cell configuration was varied, and its electro-sorption and defluoridization efficiencies were analyzed during the lead (Pb2+) removal 90%. An asymmetric combination of electrodes in the CDI cell exhibited better heavy metal removal performance, possibly due to the synergistic effect of the high surface area and the balance between the active adsorption site and the overlapping effect of the EDL. As a result, Fe3O4/BWAC could be a potential resource for supercapacitors and CDI electrodes, and the novel Fe3O4/BWAC nanocomposites outstanding performance suggests that they could be helpful for future energy storage and environmental applications.
Collapse
Affiliation(s)
| | - Siddharthy Shasikala
- Department of Electronics and Instrumentation, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Pazhanivel Thangavelu
- Smart Materials Interface Laboratory, Department of Physics, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Priyadharshini Madheswaran
- Smart Materials Interface Laboratory, Department of Physics, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Siva Subramanian
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Suwon-si, 16227, Republic of Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Soon Wong Chang
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Moonyong Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, 712-749, South Korea.
| |
Collapse
|