1
|
Luo H, Zeng J, Xu M, Tang Q, Liu T, Wu S, Li S, Rong H. Thermo-responsive/anti-biofouling chitosan hydrogel beads in situ decorated with silver nanoparticles for water disinfection. Int J Biol Macromol 2025; 289:138872. [PMID: 39701223 DOI: 10.1016/j.ijbiomac.2024.138872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/01/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The development of a sustainable and eco-friendly silver-based hybrid nanocomposite for safe and efficient point-of-use (POU) water disinfection remains a challenge. Herein, a simple and facile approach was proposed for the in situ immobilization of silver nanoparticles (AgNPs) on chitosan-g-poly (sulfobetaine methacrylate) (CS-g-PSBMA) hydrogel beads, which have been achieved via graft copolymerization of sulfobetaine methacrylate along the chitosan chains followed by a drop method. The AgNPs-decorated CS-g-PSBMA hydrogel beads were characterized and their bactericidal efficacy towards Escherichia coli was evaluated concurrently with their anti-biofouling behaviors. The results indicated that the grafted PSBMA hydrogels on CS would not only enhance the immobilization of more AgNPs (122.63 mg/g material), but also restricted the silver release (only 0.015 % after the 14th day of incubation), which surpassed numerous other AgNPs-based nanocomposites for water disinfection. Moreover, the release of silver can be modulated by altering the temperature due to the thermosensitivity of PSBMA, and the maximum concentration of silver leaching in the effluent was 33.1-52.3 μg/L at 25-60 °C. Importantly, the synthesized AgNPs-based CS-g-PSBMA can exert both exceptional bactericidal and superior anti-biofouling capabilities as well as reusability features, indicating sustained antibacterial effectiveness and significant potential for practical applications in water disinfection.
Collapse
Affiliation(s)
- Huayong Luo
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China.
| | - Juexi Zeng
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
| | - Mingqi Xu
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
| | - Qiongfang Tang
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
| | - Tao Liu
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
| | - Shuhan Wu
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
| | - Shiyin Li
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
| | - Hongwei Rong
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
2
|
Wu S, Luo H, Li S, Zheng Z, Long Q, Wei C, Rong H. Polydopamine/chitosan hydrogels-functionalized polyurethane foams in situ decorated with silver nanoparticles for water disinfection. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121858. [PMID: 39018838 DOI: 10.1016/j.jenvman.2024.121858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
A new facile route to decorate polyurethane foams (PUF) with dense and uniform silver nanoparticles (AgNPs) to ensure efficient and long-term water disinfection is proposed. The antibacterial sponge was fabricated by sequential treatment with chitosan hydrogels grafting, polydopamine (PDA) coating, and finally in situ growth of AgNPs on the surface of substrate. The morphologies, chemical composition, crystalline nature, mechanical property, and swelling capacity of the composite were characterized. Its silver release behavior and bactericidal performances against Escherichia coli (E. coli) were evaluated. Results show that the composite demonstrated higher mechanical strength (compression strength, 51.34 kPa) and a rapid swelling rate with an equilibrium swelling ratio of 18.2 g/g. It possessed a higher loading amount of AgNPs (35.87 mg/g) than that of PUF@Ag (8.21 mg/g) and restricted the cumulative silver release of below 0.05% after 24-h immersion in water. Besides, it presented efficient bactericidal activity with complete reduction of E. coli with 10 min of contact time. The strong bactericidal action was probably governed by strengthening the contact between AgNPs immobilized on the substrate and bacteria cells. Furthermore, the composite demonstrated exceptional reusability for five cycles and exhibited a superior processing capacity in the flow test. Finally, the composite could effectively disinfect the natural water sample like a river in 30 min under real conditions.
Collapse
Affiliation(s)
- Shuhan Wu
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huayong Luo
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Shiyin Li
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zexin Zheng
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qingwu Long
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, 528333, China
| | - Chunhai Wei
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Ghaffari SB, Sarrafzadeh MH. Cationic cellulose filter papers modified with ZnO/Ag/GO nanocomposite as point of use gravity-driven filters for bacterial removal from water. Sci Rep 2023; 13:22604. [PMID: 38114628 PMCID: PMC10730911 DOI: 10.1038/s41598-023-50114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
The surface modification of filters with large pore sizes for the development of low-cost gravity-driven point-of-use (POU) technologies for water disinfection can be an effective strategy to empower people to access safe water instantly, especially in low- and middle-income countries. In this study, the surface of commercial cellulose filter papers, as cheap and bio-based filters, was modified with polydopamine (PDA), polyethyleneimine (PEI) and ZnO/Ag/GO nanocomposite (ZnO/Ag/GO@PDA/PEI papers) for bacterial removal from water. PDA/PEI incorporation introduced a cationic functional layer, which can entrap negative bacteria and make a stable chemical bond with the nanocomposite. ZnO/Ag/GO exhibited promising synergistic antibacterial activities (30 times stronger than ZnO). As a result, 3 sheets of ZnO/Ag/GO@PDA/PEI papers showed a 99.98% bacterial reduction (E. coli), which met the WHO standards. Moreover, the leached zinc and silver in the filtrate were far below the WHO's limits (380 and 10 ppb, respectively). The results showed that the modified papers could be reused multiple times. After six times of reuse, the flow rate dropped slightly (below 20%) and the bacterial removal efficiency was more than 99.9%. This study is valuable for developing filters for treating bacterial-contaminated water on-site with no need for energy, which is a demand in many countries.
Collapse
Affiliation(s)
- Seyed-Behnam Ghaffari
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
| | - Mohammad-Hossein Sarrafzadeh
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran.
| |
Collapse
|
4
|
Mallakpour S, Azadi E, Hussain CM. Emerging membrane technologies and disinfection methods for efficient removal of waterborne pathogens during the COVID-19 pandemic and post-pandemic. NEW J CHEM 2023; 47:17-40. [DOI: 10.1039/d2nj04017d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
We summarize the use of diverse materials like metals/metal oxides in the preparation of filtration systems for water treatment.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
5
|
Shad S, Lynch I, Shah SWH, Bashir N. Remediation of Water Using a Nanofabricated Cellulose Membrane Embedded with Silver Nanoparticles. MEMBRANES 2022; 12:1035. [PMID: 36363590 PMCID: PMC9699521 DOI: 10.3390/membranes12111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The removal of pesticide pollution is imperative, because of their high environmental load and persistence, and their potential for bioaccumulation in, and toxicity to the environment. Most pesticides are found to be toxic even at trace levels. AgNPs can be effectively used for the adsorption of pesticides, and the incorporation of the AgNPs onto a support polymeric membrane enhances their effectiveness and reduces the potential unwanted consequences of intentionally adding free nanoparticles to the environment. Here, silver nanoparticles (AgNPs) were synthesized using a reliable, eco-friendly, and one-step "green" method, by reacting Mentha Piperita (mint) extract with AgNO3 aqueous solution at 60 °C in a microwave. The resulting high surface area nanoparticles are both economic and effective environmental remediation agents, playing a promising role in the elimination of aquatic pesticide pollution. Embedding the nanoparticles into a cellulose membrane at a low concentration (0.1 g) of AgNPs was shown to result in effectively adsorption of representative pesticides (Cypermethrin, Paraquat, and Cartap) within 60 min, while increasing the concentration of nanoparticles incorporated into the membrane further enhanced the removal of the exemplar pesticides from water. The high adsorption capacity makes the cellulose-AgNPs membrane an excellent substrate for the remediation of pesticide-polluted water.
Collapse
Affiliation(s)
- Salma Shad
- Department of Chemistry, Faculty of Natural Science, The University of Haripur, Haripur 22620, Pakistan
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | - Nadia Bashir
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| |
Collapse
|
6
|
Li X, Shigemitsu H, Goto T, Kida T, Sekino T, Fujitsuka M, Osakada Y. Porphyrin covalent organic nanodisks synthesized using acid-assisted exfoliation for improved bactericidal efficacy. NANOSCALE ADVANCES 2022; 4:2992-2995. [PMID: 36133516 PMCID: PMC9417065 DOI: 10.1039/d2na00318j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/15/2022] [Indexed: 06/16/2023]
Abstract
Porphyrin covalent organic nanodisks (CONs) were synthesized by exfoliating covalent organic frameworks (COFs) in acidic aqueous solutions at pH 4. The synthesized CONs showed remarkable bactericidal activity against Escherichia coli owing to enhanced generation of singlet oxygen upon visible light irradiation.
Collapse
Affiliation(s)
- Xinxi Li
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan
| | - Hajime Shigemitsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita 565-0871 Japan
| | - Tomoyo Goto
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan
- Institute for Advanced Co-Creation Studies, Osaka University 1-1 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Toshiyuki Kida
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita 565-0871 Japan
| | - Tohru Sekino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan
| | - Mamoru Fujitsuka
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Suita Osaka 565-0871 Japan
| | - Yasuko Osakada
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan
- Institute for Advanced Co-Creation Studies, Osaka University 1-1 Yamadagaoka Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Suita Osaka 565-0871 Japan
| |
Collapse
|
7
|
Liang R, Yu R, Wang R, Zhou Z, Liu G. Engineering of a Commercial Polyamide Microfiltration Membrane via Robustly Immobilizing Gallic Acid-Modified Silver Nanoparticles for the Removal of Antibiotics and Antibiotic-Resistant Bacteria. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruifeng Liang
- The State Key Laboratory of Hydraulic and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Ruiquan Yu
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Wang
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhixuan Zhou
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Gongyan Liu
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Ye X, Yu D, Liao Y, Si Y, Yu J, Yin X, Ding B. Copper hydroxide nanosheets-assembled nanofibrous membranes for anti-biofouling water disinfection. J Colloid Interface Sci 2021; 611:1-8. [PMID: 34923292 DOI: 10.1016/j.jcis.2021.11.132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 01/24/2023]
Abstract
Copper hydroxide (Cu(OH)2) has been elected as a newly-emerging green disinfectant to deal with membrane biofouling in the treatment of bacteria-contaminated water; however, the decoration strategy of it with the granular form on membrane substrates limits the practical application. Here a novel surface-confined methodology was proposed for preparing freestanding Cu(OH)2 nanosheet-assembled nanofibrous membranes (CNNMs) with the anti-biofouling property via the in-suit coprecipitation and heat-induced growth method. The vertically aligned Cu(OH)2 nanosheets were in-suit rooted on the surface of the nanofiber scaffold with high binding fastness. The acquired CNNMs possess comprehensive performances of high porosity, prominent mechanical strength, fatigue resistance, and superior bactericidal efficiency of 99.999%, which endowed the CNNMs ultrahigh filtration fluxes (24000 L m-2 h-1) and durability to disinfect bacteria-containing water effectively. This facile strategy may throw light on manufacturing novel inorganic nanosheet-rooted nanofibrous membranes for water disinfection and public health.
Collapse
Affiliation(s)
- Xianhong Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Dingming Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yalong Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Xia Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
9
|
Kim MR, Heo J, Kim SS, Shin EC, Boo CG, Kwak HS. Effect of Filter Types on Physicochemical Properties, Volatile Compounds, and Sensory Evaluations of Purified Water by Point-of-Use Water Treatment. Foods 2021; 10:1958. [PMID: 34441735 PMCID: PMC8393615 DOI: 10.3390/foods10081958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigated purified water from four different filter types for removing minerals, anions, and volatile organic compounds (VOCs), and affecting sensory perception and consumer acceptability. Ultrafiltration (UF), CSM-ultrafiltration (CU), alumina nanofiber (AN), and reverse osmosis (RO) filters were used for a point-of-use water treatment system with a pre-carbon filter (PR) and post-carbon filter (PO). Filters efficiently removed VOCs, which could negatively affect the sensory perception of water. The total VOC concentration of tap water (TW) (14.97 µg/Kg) was reduced by 70% by the PR, 75.3-88.7% by the PR-main filter, and >97% by the PR-RO-PR. Using the polarized sensory position test, the subjects clearly discriminated TW from the samples; however, most of the purified water was not. The difference in the mean ratings of consumer acceptability among the purified samples was <1 except for PR-RO-PO in consumer testing. These results suggested that although there are differences in the capability of different filter types to eliminate minerals, anions, and VOCs, overall consumers did not identify sensory differences among them, and demonstrated similar consumer acceptability of the purified water produced. Simply applying a pre-carbon filter for TW treatment is enough to minimize VOCs, which negatively influence consumer acceptability.
Collapse
Affiliation(s)
- Mi-Ran Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun 55465, Korea; (M.-R.K.); (S.S.K.)
| | - JeongAe Heo
- Technical Assistance Center, Korea Food Research Institute, Wanju-gun 55465, Korea;
| | - Sang Sook Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun 55465, Korea; (M.-R.K.); (S.S.K.)
| | - Eui-Cheol Shin
- Department of Food Science, Gyeongsang National University, Jinju-si 52725, Korea; (E.-C.S.); (C.G.B.)
| | - Chang Guk Boo
- Department of Food Science, Gyeongsang National University, Jinju-si 52725, Korea; (E.-C.S.); (C.G.B.)
| | - Han Sub Kwak
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun 55465, Korea; (M.-R.K.); (S.S.K.)
- KFRI School, University of Science and Technology, Wanju-gun 55465, Korea
| |
Collapse
|