1
|
Yaremenko IA, Fomenkov DI, Budekhin RA, Radulov PS, Medvedev MG, Krivoshchapov NV, He LN, Alabugin IV, Terent'ev AO. Interrupted Dance of Five Heteroatoms: Reinventing Ozonolysis to Make Geminal Alkoxyhydroperoxides from C═N Bonds. J Org Chem 2024; 89:5699-5714. [PMID: 38564503 DOI: 10.1021/acs.joc.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Four heteroatoms dance in the cascade of four pericyclic reactions initiated by ozonolysis of C═N bonds. Switching from imines to semicarbazones introduces the fifth heteroatom that slows this dance, delays reaching the thermodynamically favorable escape path, and allows efficient interception of carbonyl oxides (Criegee intermediates, CIs) by an external nucleophile. The new three-component reaction of alcohols, ozone, and oximes/semicarbazones greatly facilitates synthetic access to monoperoxyacetals (alkoxyhydroperoxides).
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Dmitri I Fomenkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Roman A Budekhin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| |
Collapse
|
2
|
Medvedev AG, Medved'ko AV, Vener MV, Churakov AV, Prikhodchenko PV, Vatsadze SZ. Dioxygen-halogen bonding exemplified by crystalline peroxosolvates of N, N'-bis(haloacetyl) bispidines. Phys Chem Chem Phys 2024; 26:5195-5206. [PMID: 38261463 DOI: 10.1039/d3cp05834d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The halogen bonding in molecular crystals and supramolecular assemblies has been widely investigated. Special attention is given to the molecular structures capable of simultaneously exhibiting different types of non-covalent interactions, including conventional hydrogen bonds and halogen bonds. This paper systematically analyzes crystalline peroxosolvates of bispidine-based bis-amide derivatives, containing haloacetic acid residues, namely previously reported 1,1'-(1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-iodooethanone) peroxosolvate C13H20I2N2O2·H2O2 (1) and four new crystalline compounds, 1,1'-(1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-bromoethanone) peroxosolvate C13H20Br2N2O2·H2O2 (2), 1,1'-(9-hydroperoxy-9-hydroxy-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-iodoethanone) peroxosolvate C13H20I2N2O5·0.5H2O2 (3), 1,1'-(9-hydroperoxy-9-hydroxy-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-bromoethanone) peroxosolvate C13H20Br2N2O5·H2O2 (4), and 1,1'-(9-hydroperoxy-9-hydroxy-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-chloroethanone) peroxosolvate C13H20Cl2N2O5·H2O2 (5). Compounds 2-5 were synthesized for the first time and their crystal structures were determined by single-crystal X-ray diffractometry (SCXRD). To the best of our knowledge, 3-5 are unprecedented crystalline hydrogen peroxide adducts of organic hydroperoxides (R-OOH). Short intermolecular contacts between halogen and hydroperoxo oxygen atoms were found in 1-3. The halogen bonding of C-I(Br) fragments with dioxygen species in compounds 1-3 as well as in the previously reported cocrystal of diacetone diperoxide with triodotrinitrobenzene (6) was identified through reduced density gradient analysis, Hirshfeld surface analysis, and Bader analysis of crystalline electron density. The interactions were quantified using the electron density topological properties acquired from the periodic DFT calculations and evaluated to lie in the range of 9-19 kJ mol-1. A distinctive spectral feature was revealed for this type of interaction, involving a red shift of the characteristic O-O stretching vibration by about 6 cm-1, which appeared in IR spectra as a narrow low-intensity band in the region 837-872 cm-1.
Collapse
Affiliation(s)
- Alexander G Medvedev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| | - Aleksei V Medved'ko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| | - Mikhail V Vener
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| | - Andrei V Churakov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| | - Petr V Prikhodchenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| | - Sergey Z Vatsadze
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| |
Collapse
|
3
|
Dinda TK, Kabir SR, Mal P. Stereoselective Synthesis of Z-Styryl Sulfides from Nucleophilic Addition of Arylacetylenes and Benzyl Thiols. J Org Chem 2023; 88:10070-10085. [PMID: 37406245 DOI: 10.1021/acs.joc.3c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The stereoselective synthesis of Z-anti-Markovnikov styryl sulfides via an anionic thiolate-alkyne addition reaction was achieved when the terminal alkynes and benzyl mercaptans were reacted using tBuOLi (0.5 equiv) in EtOH under ambient conditions. Exclusive stereoselectivity (ca. 100%) was achieved by stereoelectronic control via anti-periplanar and anti-Markovnikov addition of benzylthiolates to phenylacetylenes. Solvolysis of lithium thiolate ion pairs in ethanol significantly suppresses the competing formation of the E-isomer. A remarkable enhancement of the Z-selectivity under a longer reaction time was observed.
Collapse
Affiliation(s)
- Tarun Kumar Dinda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Syed Ramizul Kabir
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
4
|
Radulov PS, Yaremenko IA, Keiser J, Terent'ev AO. Bridged 1,2,4-Trioxolanes: SnCl 4-Catalyzed Synthesis and an In Vitro Study against S. mansoni. Molecules 2023; 28:4913. [PMID: 37446575 DOI: 10.3390/molecules28134913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
A synthesis of bridged 1,2,4-trioxolanes (bridged ozonides) from 1,5-diketones and hydrogen peroxide catalyzed by SnCl4 was developed. It was shown that the ratio of target ozonides can be affected by the application of SnCl4 as a catalyst and varying the solvent. A wide range of bridged 1,2,4-trioxolanes (ozonides) was obtained in yields from 50 to 84%. The ozonide cycle was moderately resistant to the reduction of the ester group near the peroxide cycle to alcohol with LiAlH4. The bridged ozonides were evaluated for their antischistosomal activity. These ozonides exhibited a very high activity against newly transformed schistosomula and adult Schistosoma mansoni.
Collapse
Affiliation(s)
- Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, CH-4123 Allschwil, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
5
|
Vil’ VA, Barsegyan YA, Kuhn L, Terent’ev AO, Alabugin IV. Creating, Preserving, and Directing Carboxylate Radicals in Ni-Catalyzed C(sp 3)–H Acyloxylation of Ethers, Ketones, and Alkanes with Diacyl Peroxides. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Vera A. Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Yana A. Barsegyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Fl 32306, United States
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Fl 32306, United States
| |
Collapse
|
6
|
Yaremenko IA, Belyakova YY, Radulov PS, Novikov RA, Medvedev MG, Krivoshchapov NV, Korlyukov AA, Alabugin IV, Terent Ev AO. Inverse α-Effect as the Ariadne's Thread on the Way to Tricyclic Aminoperoxides: Avoiding Thermodynamic Traps in the Labyrinth of Possibilities. J Am Chem Soc 2022; 144:7264-7282. [PMID: 35418230 DOI: 10.1021/jacs.2c00406] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stable tricyclic aminoperoxides can be selectively assembled via a catalyst-free three-component condensation of β,δ'-triketones, H2O2, and an NH-group source such as aqueous ammonia or ammonium salts. This procedure is scalable and can produce gram quantities of tricyclic heterocycles, containing peroxide, nitrogen, and oxygen cycles in one molecule. Amazingly, such complex tricyclic molecules are selectively formed despite the multitude of alternative reaction routes, via equilibration of peroxide, hemiaminal, monoperoxyacetal, and peroxyhemiaminal functionalities! The reaction is initiated by the "stereoelectronic frustration" of H2O2 and combines elements of thermodynamic and kinetic control with a variety of mono-, bi-, and tricyclic structures evolving under the conditions of thermodynamic control until they reach a kinetic wall created by the inverse α-effect, that is, the stereoelectronic penalty for the formation of peroxycarbenium ions and related transition states. Under these conditions, the reaction stops before reaching the most thermodynamically stable products at a stage where three different heterocycles are assembled and fused at the acyclic precursor frame.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Yulia Yu Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation.,Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow 119991, Russian Federation
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Street, Moscow 119991, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Fl 32306, United States
| | - Alexander O Terent Ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| |
Collapse
|
7
|
Yaremenko IA, Radulov PS, Belyakova YY, Fomenkov DI, Tsogoeva SB, Terent’ev AO. Lewis Acids and Heteropoly Acids in the Synthesis of Organic Peroxides. Pharmaceuticals (Basel) 2022; 15:ph15040472. [PMID: 35455469 PMCID: PMC9025639 DOI: 10.3390/ph15040472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
Organic peroxides are an important class of compounds for organic synthesis, pharmacological chemistry, materials science, and the polymer industry. Here, for the first time, we summarize the main achievements in the synthesis of organic peroxides by the action of Lewis acids and heteropoly acids. This review consists of three parts: (1) metal-based Lewis acids in the synthesis of organic peroxides; (2) the synthesis of organic peroxides promoted by non-metal-based Lewis acids; and (3) the application of heteropoly acids in the synthesis of organic peroxides. The information covered in this review will be useful for specialists in the field of organic synthesis, reactions and processes of oxygen-containing compounds, catalysis, pharmaceuticals, and materials engineering.
Collapse
Affiliation(s)
- Ivan A. Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
- Correspondence: (I.A.Y.); (A.O.T.)
| | - Peter S. Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
| | - Yulia Yu. Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
| | - Dmitriy I. Fomenkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
| | - Svetlana B. Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen–Nürnberg, Nikolaus Fiebiger-Straße 10, 91058 Erlangen, Germany;
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
- Correspondence: (I.A.Y.); (A.O.T.)
| |
Collapse
|
8
|
Hamid S, Mouradzadegun A. 3D-Network porous polymer bonded metalloporphyrin: An efficient and reusable catalyst for the Baeyer-Villiger oxidation. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621501273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A new, green catalyst was prepared through immobilization of metalloporphyrin on the surface of 3D-network polymer based on calix[4]resorcinarene (PC4RA), which efficiently catalyze B-V oxidation reaction using O2/benzaldehyde. The catalyst demonstrated excellent activity, which is highly potential for cyclic aliphatic ketones oxidation under mild conditions. IR spectroscopy, UV-Vis spectroscopy, thermal gravimetric analysis, energy dispersive spectroscopy and scanning electron microscopy are some of the spectroscopic methods used to characterize the new synthesized solid support.
Collapse
Affiliation(s)
- Sheida Hamid
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz-Iran
| | - Arash Mouradzadegun
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz-Iran
| |
Collapse
|
9
|
Alabugin IV, Kuhn L, Krivoshchapov NV, Mehaffy P, Medvedev MG. Anomeric effect, hyperconjugation and electrostatics: lessons from complexity in a classic stereoelectronic phenomenon. Chem Soc Rev 2021; 50:10212-10252. [PMID: 34542133 DOI: 10.1039/d1cs00564b] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the interplay of multiple components (steric, electrostatic, stereoelectronic, dispersive, etc.) that define the overall energy, structure, and reactivity of organic molecules can be a daunting task. The task becomes even more difficult when multiple approaches based on different physical premises disagree in their analysis of a multicomponent molecular system. Herein, we will use a classic conformational "oddity", the anomeric effect, to discuss the value of identifying the key contributors to reactivity that can guide chemical predictions. After providing the background related to the relevant types of hyperconjugation and a brief historic outline of the origins of the anomeric effect, we outline variations of its patterns and provide illustrative examples for the role of the anomeric effect in structure, stability, and spectroscopic properties. We show that the complete hyperconjugative model remains superior in explaining the interplay between structure and reactivity. We will use recent controversies regarding the origin of the anomeric effect to start a deeper discussion relevant to any electronic effect. Why are such questions inherently controversial? How to describe a complex quantum system using a model that is "as simple as possible, but no simpler"? What is a fair test for such a model? Perhaps, instead of asking "who is right and who is wrong?" one should ask "why do we disagree?". Stereoelectronic thinking can reconcile quantum complexity with chemical intuition and build the conceptual bridge between structure and reactivity. Even when many factors contribute to the observed structural and conformational trends, electron delocalization is a dominating force when the electronic demand is high (i.e., bonds are breaking as molecules distort from their equilibrium geometries). In these situations, the role of orbital interactions increases to the extent where they can define reactivity. For example, negative hyperconjugation can unleash the "underutilized" stereoelectronic power of unshared electrons (i.e., the lone pairs) to stabilize a developing positive charge at an anomeric carbon. This analysis paves the way for the broader discussion of the omnipresent importance of negative hyperconjugation in oxygen-containing functional groups. From that point of view, the stereoelectronic component of the anomeric effect plays a unique role in guiding reaction design.
Collapse
Affiliation(s)
- Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, USA.
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, USA.
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. .,Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow, 119991, Russian Federation
| | - Patricia Mehaffy
- Department of Chemistry and Biochemistry, Florida State University, USA.
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. .,A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St., 119991 Moscow, Russian Federation
| |
Collapse
|
10
|
Alabugin IV, Kuhn L, Medvedev MG, Krivoshchapov NV, Vil' VA, Yaremenko IA, Mehaffy P, Yarie M, Terent'ev AO, Zolfigol MA. Stereoelectronic power of oxygen in control of chemical reactivity: the anomeric effect is not alone. Chem Soc Rev 2021; 50:10253-10345. [PMID: 34263287 DOI: 10.1039/d1cs00386k] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although carbon is the central element of organic chemistry, oxygen is the central element of stereoelectronic control in organic chemistry. Generally, a molecule with a C-O bond has both a strong donor (a lone pair) and a strong acceptor (e.g., a σ*C-O orbital), a combination that provides opportunities to influence chemical transformations at both ends of the electron demand spectrum. Oxygen is a stereoelectronic chameleon that adapts to the varying situations in radical, cationic, anionic, and metal-mediated transformations. Arguably, the most historically important stereoelectronic effect is the anomeric effect (AE), i.e., the axial preference of acceptor groups at the anomeric position of sugars. Although AE is generally attributed to hyperconjugative interactions of σ-acceptors with a lone pair at oxygen (negative hyperconjugation), recent literature reports suggested alternative explanations. In this context, it is timely to evaluate the fundamental connections between the AE and a broad variety of O-functional groups. Such connections illustrate the general role of hyperconjugation with oxygen lone pairs in reactivity. Lessons from the AE can be used as the conceptual framework for organizing disjointed observations into a logical body of knowledge. In contrast, neglect of hyperconjugation can be deeply misleading as it removes the stereoelectronic cornerstone on which, as we show in this review, the chemistry of organic oxygen functionalities is largely based. As negative hyperconjugation releases the "underutilized" stereoelectronic power of unshared electrons (the lone pairs) for the stabilization of a developing positive charge, the role of orbital interactions increases when the electronic demand is high and molecules distort from their equilibrium geometries. From this perspective, hyperconjugative anomeric interactions play a unique role in guiding reaction design. In this manuscript, we discuss the reactivity of organic O-functionalities, outline variations in the possible hyperconjugative patterns, and showcase the vast implications of AE for the structure and reactivity. On our journey through a variety of O-containing organic functional groups, from textbook to exotic, we will illustrate how this knowledge can predict chemical reactivity and unlock new useful synthetic transformations.
Collapse
Affiliation(s)
- Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.,A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St., 119991 Moscow, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.,Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow, 119991, Russian Federation
| | - Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Patricia Mehaffy
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| |
Collapse
|
11
|
Hassan Z, Stahlberger M, Rosenbaum N, Bräse S. Criegee‐Intermediate über die Ozonolyse hinaus: Ein Einblick in Synthesen und Mechanismen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zahid Hassan
- Institut für Organische Chemie (IOC) Karlsruher Institut für Technologie (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
- 3DMM2O – Exzellenzcluster (EXC-2082/1-390761711) Karlsruher Institut für Technologie (KIT) Karlsruhe Deutschland
| | - Mareen Stahlberger
- Institut für Organische Chemie (IOC) Karlsruher Institut für Technologie (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| | - Nicolai Rosenbaum
- Institut für Organische Chemie (IOC) Karlsruher Institut für Technologie (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| | - Stefan Bräse
- Institut für Organische Chemie (IOC) Karlsruher Institut für Technologie (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
- 3DMM2O – Exzellenzcluster (EXC-2082/1-390761711) Karlsruher Institut für Technologie (KIT) Karlsruhe Deutschland
- Institut für Biologische und Chemische Systeme –, Funktionelle molekulare Systeme (IBCS-FMS) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
12
|
Hassan Z, Stahlberger M, Rosenbaum N, Bräse S. Criegee Intermediates Beyond Ozonolysis: Synthetic and Mechanistic Insights. Angew Chem Int Ed Engl 2021; 60:15138-15152. [PMID: 33283439 PMCID: PMC8359312 DOI: 10.1002/anie.202014974] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 12/20/2022]
Abstract
After more than 70 years since their discovery, Criegee intermediates (CIs) are back at the forefront of modern chemistry of short-lived reactive intermediates. They play an important role in the mechanistic context of chemical synthesis, total synthesis, pharmaceuticals, and, most importantly, climate-controlling aerosol formation as well as atmospheric chemistry. This Minireview summarizes key aspects of CIs (from the mechanism of formation, for example, by ozonolysis of alkenes and photolysis methods employing diiodo and diazo compounds, to their electronic structures and chemical reactivity), highlights the most recent findings and some landmark results of gas-phase kinetics, and detection/measurements. The recent progress in synthetic and mechanistic studies in the chemistry of CIs provides a guide to illustrate the possibilities for further investigations in this exciting field.
Collapse
Affiliation(s)
- Zahid Hassan
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyFritz-Haber-Weg 676131KarlsruheGermany
- 3DMM2O—Cluster of Excellence (EXC-2082/1–390761711)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Mareen Stahlberger
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyFritz-Haber-Weg 676131KarlsruheGermany
| | - Nicolai Rosenbaum
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyFritz-Haber-Weg 676131KarlsruheGermany
| | - Stefan Bräse
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyFritz-Haber-Weg 676131KarlsruheGermany
- 3DMM2O—Cluster of Excellence (EXC-2082/1–390761711)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
- Institute of Biological and Chemical Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
13
|
Bityukov OV, Vil’ VA, Terent’ev AO. Synthesis of Acyclic Geminal Bis-peroxides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021060014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Yaremenko IA, Belyakova YY, Radulov PS, Novikov RA, Medvedev MG, Krivoshchapov NV, Korlyukov AA, Alabugin IV, Terent'ev AO. Marriage of Peroxides and Nitrogen Heterocycles: Selective Three-Component Assembly, Peroxide-Preserving Rearrangement, and Stereoelectronic Source of Unusual Stability of Bridged Azaozonides. J Am Chem Soc 2021; 143:6634-6648. [PMID: 33877842 DOI: 10.1021/jacs.1c02249] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stable bridged azaozonides can be selectively assembled via a catalyst-free three-component condensation of 1,5-diketones, hydrogen peroxide, and an NH-group source such as aqueous ammonia or ammonium salts. This procedure is scalable and can produce gram quantities of bicyclic stereochemically rich heterocycles. The new azaozonides are thermally stable and can be stored at room temperature for several months without decomposition and for at least 1 year at -10 °C. The chemical stability of azaozonides was explored for their subsequent selective transformations including the first example of an aminoperoxide rearrangement that preserves the peroxide group. The amino group in aminoperoxides has remarkably low nucleophilicity and does not participate in the usual amine alkylation and acylation reactions. These observations and the 15 pKa units decrease in basicity in comparison with a typical dialkyl amine are attributed to the strong hyperconjugative nN→σ*C-O interaction with the two antiperiplanar C-O bonds. Due to the weakness of the complementary nO→σ*C-N donation from the peroxide oxygens (a consequence of "inverse α-effect"), this interaction depletes electron density from the NH moiety, protects it from oxidation, and makes it similar in properties to an amide.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Yulia Yu Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Street, 119991 Moscow, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| |
Collapse
|
15
|
Auhim HS, Grigorenko BL, Harris TK, Aksakal OE, Polyakov IV, Berry C, Gomes GDP, Alabugin IV, Rizkallah PJ, Nemukhin AV, Jones DD. Stalling chromophore synthesis of the fluorescent protein Venus reveals the molecular basis of the final oxidation step. Chem Sci 2021; 12:7735-7745. [PMID: 34168826 PMCID: PMC8188506 DOI: 10.1039/d0sc06693a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/26/2021] [Indexed: 11/24/2022] Open
Abstract
Fluorescent proteins (FPs) have revolutionised the life sciences, but the mechanism of chromophore maturation is still not fully understood. Here we show that incorporation of a photo-responsive non-canonical amino acid within the chromophore stalls maturation of Venus, a yellow FP, at an intermediate stage; a crystal structure indicates the presence of O2 located above a dehydrated enolate form of the imidazolone ring, close to the strictly conserved Gly67 that occupies a twisted conformation. His148 adopts an "open" conformation so forming a channel that allows O2 access to the immature chromophore. Absorbance spectroscopy supported by QM/MM simulations suggests that the first oxidation step involves formation of a hydroperoxyl intermediate in conjunction with dehydrogenation of the methylene bridge. A fully conjugated mature chromophore is formed through release of H2O2, both in vitro and in vivo. The possibility of interrupting and photochemically restarting chromophore maturation and the mechanistic insights open up new approaches for engineering optically controlled fluorescent proteins.
Collapse
Affiliation(s)
- Husam Sabah Auhim
- School of Biosciences, Molecular Biosciences Division, Cardiff University Sir Martin Evans Building Cardiff CF10 3AX UK +44 (0)29 2087 4290
- Department of Biology, College of Science, University of Baghdad Baghdad Iraq
| | - Bella L Grigorenko
- Chemistry Department, Lomonosov Moscow State University Leninskie Gory, 1-3 Moscow Russian Federation +7 495 939 1096
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences Moscow Russian Federation
| | - Tessa K Harris
- School of Biosciences, Molecular Biosciences Division, Cardiff University Sir Martin Evans Building Cardiff CF10 3AX UK +44 (0)29 2087 4290
| | - Ozan E Aksakal
- School of Biosciences, Molecular Biosciences Division, Cardiff University Sir Martin Evans Building Cardiff CF10 3AX UK +44 (0)29 2087 4290
| | - Igor V Polyakov
- Chemistry Department, Lomonosov Moscow State University Leninskie Gory, 1-3 Moscow Russian Federation +7 495 939 1096
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences Moscow Russian Federation
| | - Colin Berry
- School of Biosciences, Molecular Biosciences Division, Cardiff University Sir Martin Evans Building Cardiff CF10 3AX UK +44 (0)29 2087 4290
| | - Gabriel Dos Passos Gomes
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
- Department of Computer Science, University of Toronto 214 College St. Toronto Ontario M5T 3A1 Canada
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Fl 32306 USA +1 850 644 5795
| | | | - Alexander V Nemukhin
- Chemistry Department, Lomonosov Moscow State University Leninskie Gory, 1-3 Moscow Russian Federation +7 495 939 1096
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences Moscow Russian Federation
| | - D Dafydd Jones
- School of Biosciences, Molecular Biosciences Division, Cardiff University Sir Martin Evans Building Cardiff CF10 3AX UK +44 (0)29 2087 4290
| |
Collapse
|
16
|
|
17
|
Radulov PS, Yaremenko IA. Application of BF 3·Et 2O in the synthesis of cyclic organic peroxides (microreview). Chem Heterocycl Compd (N Y) 2020; 56:1146-1148. [PMID: 33144737 PMCID: PMC7595082 DOI: 10.1007/s10593-020-02785-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 10/28/2022]
Abstract
A summary of recent applications of Lewis acid BF3·Et2O as a catalyst in the synthesis of cyclic organic peroxides is presented.
Collapse
Affiliation(s)
- Peter S. Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave, Moscow, 119991 Russia
| | - Ivan A. Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave, Moscow, 119991 Russia
| |
Collapse
|
18
|
Yaremenko IA, Radulov PS, Medvedev MG, Krivoshchapov NV, Belyakova YY, Korlyukov AA, Ilovaisky AI, Terent Ev AO, Alabugin IV. How to Build Rigid Oxygen-Rich Tricyclic Heterocycles from Triketones and Hydrogen Peroxide: Control of Dynamic Covalent Chemistry with Inverse α-Effect. J Am Chem Soc 2020; 142:14588-14607. [PMID: 32787239 DOI: 10.1021/jacs.0c06294] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We describe an efficient one-pot procedure that "folds" acyclic triketones into structurally complex, pharmaceutically relevant tricyclic systems that combine high oxygen content with unusual stability. In particular, β,γ'-triketones are converted into three-dimensional polycyclic peroxides in the presence of H2O2 under acid catalysis. These transformations are fueled by stereoelectronic frustration of H2O2, the parent peroxide, where the lone pairs of oxygen are not involved in strongly stabilizing orbital interactions. Computational analysis reveals how this frustration is relieved in the tricyclic peroxide products, where strongly stabilizing anomeric nO→σC-O* interactions are activated. The calculated potential energy surfaces for these transformations combine labile, dynamically formed cationic species with deeply stabilized intermediate structures that correspond to the introduction of one, two, or three peroxide moieties. Paradoxically, as the thermodynamic stability of the peroxide products increases along this reaction cascade, the kinetic barriers for their formation increase as well. This feature of the reaction potential energy surface, which allows separation of mono- and bis-peroxide tricyclic products, also explains why formation of the most stable tris-peroxide is the least kinetically viable and is not observed experimentally. Such unique behavior can be explained through the "inverse α-effect", a new stereoelectronic phenomenon with many conceptual implications for the development of organic functional group chemistry.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation.,Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow 119991, Russia
| | - Yulia Yu Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova st, Moscow 119991, Russian Federation
| | - Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Alexander O Terent Ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|