1
|
Song S, Xu JT, Zhou H, Manners I, Winnik MA. Focal Point Association of Core-Crystalline Micelles with an Amphiphilic Corona Block. J Am Chem Soc 2025; 147:9919-9930. [PMID: 40052526 DOI: 10.1021/jacs.5c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
We report the preparation of star-like supermicelles by the secondary association of triblock comicelles or scarf-like micelles driven by a change in solvency. These building blocks were synthesized by seeded growth in which crystallites of a triblock terpolymer, either PFS27-b-PTDMA81-b-POEGMA45 (to form triblock comicelles) or PFS66-b-PTDMA81-b-POEGMA45 (to form scarf-like micelles), served as seeds for crystallization-driven self-assembly (CDSA). PFS-b-PTDMA unimers were added in the seeded growth step. The corona-forming block PTDMA-POEGMA is amphiphilic and sensitive to polarity changes of the solvents. We sought solvents in which the upper critical solution temperature (UCST, TUCST) of POEGMA was slightly above room temperature (RT). Examples included 1-decanol and 1-decanol/decane mixtures. Seeded growth proceeded normally in solvents above the UCST of POEGMA. When the solution temperature was lowered below TUCST, or when the triblock comicelles or scarf-like micelles were transferred to a solvent (e.g., 1-decanol) below its TUCST, the center blocks associated to form star-like supermicelles. The addition of small amounts of THF to the medium to increase the solvency for POEGMA led to dissociation of the supermicelles. Transfer of the triblock comicelles to 1-pentanol at RT, below the UCST of PTDMA, also led to controlled secondary association to form supermicelles with a different morphology. Seeded growth with PFS25-b-PDMAEMA184 unimers led to supermicelles in which the poly(dimethylaminoethyl methacrylate) corona chains could serve as carriers for gold nanoparticles (AuNPs). These AuNP@supermicelle complexes could serve as recoverable catalysts, for example to catalyze the condensation polymerization of bis(dimethylsilyl)benzene and pentanediol. They were highly active catalysts and showed excellent mechanical robustness for recovery and reuse.
Collapse
Affiliation(s)
- Shaofei Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jun-Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hang Zhou
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
2
|
Chen L, Wang Z, Fang E, Fan Z, Song S. Cationic polymerization of vinyl ethers using trifluoromethyl sulfonate/solvent/ligand to access well-controlled poly(vinyl ether)s. Chem Sci 2025; 16:1250-1264. [PMID: 39677930 PMCID: PMC11638848 DOI: 10.1039/d4sc06181k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Indexed: 12/17/2024] Open
Abstract
Cationic polymerization of vinyl ethers to access poly(vinyl ether) polymeric materials has been challenging due to stringent polymerization conditions and inevitable chain transfer. Herein we introduce a protocol using trifluoromethyl sulfonates to catalyze the polymerization of a series of vinyl ethers. These trifluoromethyl sulfonates are fully commercially available and can be stored under ambient conditions. Solvents and ligands have profound influences on the polymerization process, and poly(vinyl ether)s with different molecular weights, molecular weight distributions, and tacticities were obtained. A few combinations of trifluoromethyl sulfonate/solvents/O^O type ligands were explored. They showed high activities and afforded poly(vinyl ether)s with well-controlled tacticity, of which the isotacticity can be up to 81% m. Poly(vinyl ether)s with high tacticities exhibit crystallization behaviors with melting points. We also probed the cationic reversible addition-fragmentation chain transfer (RAFT) polymerization of ethyl vinyl ether employing a RAFT chain transfer agent. Low molecular weight distributions (Đs) around 1.1 can be realized. Since trifluoromethyl sulfonates can be fed at a remarkably low catalyst loading and other chemicals are cheap and easily available, the poly(vinyl ether) polymeric materials are promisingly prepared on a large scale.
Collapse
Affiliation(s)
- Liangyu Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Zhihao Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - En Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Zhiqiang Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Shaofei Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
3
|
Si X, Jiang C, Hu Y, Mu J. Two-dimensional (2D) quasi-living crystallization-driven self-assembly of polyethylene- b-hyperbranched polyglycidol diblock copolymers in solution. SOFT MATTER 2024; 20:7258-7269. [PMID: 39238360 DOI: 10.1039/d4sm00845f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
This paper presents a systematic investigation of the crystalline nucleation, micellization, two-dimensional (2D) growth of polyethylene-b-hyperbranched polyglycidol (PE-b-hbPG) copolymers in solutions during cooling and isothermal crystallization. As a result, lozenge-shaped monolayer or multilayer lamellar crystals were prepared by optimizing the "self-nucleation" conditions. The effect of crystallization temperatures (Tc), critical micelle temperature (CMT), selective solvents, and the topology of block copolymers (BCPs) on the growth of 2D lozenge-shaped crystals is extensively explored using TEM, AFM and in situ DLS techniques. The results demonstrate that the formation of a perfect lozenge-shaped monolayer crystal is contingent upon the relationship between CMT and Tc of the BCPs (CMT < Tc), as well as the isothermal crystallization temperature Tiso (CMT < Tiso < Tc). This significant finding provides a feasibility programme for the preparation of 2D lamellar crystals using the "self-nucleation" approach from an alternative viewpoint of the corona topology.
Collapse
Affiliation(s)
- Xiaowen Si
- Department of Polymer Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Chenxi Jiang
- Department of Polymer Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Yu Hu
- Department of Polymer Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Jingshan Mu
- Department of Polymer Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| |
Collapse
|
4
|
Park S, Kang SY, Yang S, Choi TL. Independent Control of the Width and Length of Semiconducting 2D Nanorectangles via Accelerated Living Crystallization-Driven Self-Assembly. J Am Chem Soc 2024; 146:19369-19376. [PMID: 38965837 DOI: 10.1021/jacs.4c05351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Self-assembly of conjugated polymers offers a powerful method to prepare semiconducting two-dimensional (2D) nanosheets for optoelectronic applications. However, due to the typical biaxial growth behavior of the polymer self-assembly, independent control of the width and length of 2D sheets has been challenging. Herein, we present a greatly accelerated crystallization-driven self-assembly (CDSA) system of polyacetylene-based conjugated polymer to produce 2D semiconducting nanorectangles with precisely controllable dimensions. In detail, rectangular 2D seeds with tunable widths of 0.2-1.3 μm were produced by changing the cosolvent% and grown in the length direction by uniaxial living CDSA up to 11.8 μm. The growth rate was effectively enhanced by tuning the cosolvent%, seed concentration, and temperature, achieving up to 27-fold increase. Additionally, systematic kinetic investigation yielded empirical rate equations, elucidating the relationship between growth rate constant, cosolvent%, seed concentration, and seed width. Finally, the living CDSA allowed us to prepare penta-block comicelles with tunable width, length, and height.
Collapse
Affiliation(s)
- Songyee Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sung-Yun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sanghee Yang
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
5
|
El-Nablaway M, Rashed F, Taher ES, Foda T, Abdeen A, Abdo M, Fericean L, Ioan BD, Mihaela O, Dinu S, Alexandru CC, Taymour N, Mohammed NA, El-Sherbiny M, Ibrahim AM, Zaghamir DE, Atia GA. Prospectives and challenges of nano-tailored biomaterials-assisted biological molecules delivery for tissue engineering purposes. Life Sci 2024; 349:122671. [PMID: 38697279 DOI: 10.1016/j.lfs.2024.122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
Nano carriers have gained more attention for their possible medical and technological applications. Tailored nanomaterials can transport medications efficiently to targeted areas and allow for sustained medication discharge, reducing undesirable toxicities while boosting curative effectiveness. Nonetheless, transitioning nanomedicines from experimental to therapeutic applications has proven difficult, so different pharmaceutical incorporation approaches in nano scaffolds are discussed. Then numerous types of nanobiomaterials implemented as carriers and their manufacturing techniques are explored. This article is also supported by various applications of nanobiomaterials in the biomedical field.
Collapse
Affiliation(s)
- Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah 13713, Riyadh, Saudi Arabia
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Tarek Foda
- Oral Health Sciences Department, Temple University's Kornberg School of Dentistry, USA
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt; Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences "King Michael I" from Timișoara, Calea Aradului 119, CUI, Romania
| | - Bănățean-Dunea Ioan
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences "King Michael I" from Timișoara, Calea Aradului 119, CUI, Romania.
| | - Ostan Mihaela
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences "King Michael I" from Timișoara, Calea Aradului 119, CUI, Romania
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy Timisoara, Revolutiei Bv., 300041 Timisoara, Romania; Pediatric Dentistry Research Center, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy Timisoara, Revolutiei Bv., 300041 Timisoara, Romania
| | - Cucui-Cozma Alexandru
- Tenth Department of Surgery Victor Babeș, University of Medicine and Pharmacy Timisoara, Revolutiei Bv., 300041 Timisoara, Romania
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Nourelhuda A Mohammed
- Department of Physiology and Biochemistry, Faculty of Medicine, Mutah University, Mutah 61710, Al-Karak, Jordan
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah 13713, Riyadh, Saudi Arabia
| | - Ateya M Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said 42526, Egypt
| | - Donia E Zaghamir
- Department of Pediatric and Obstetrics Nursing, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pediatric Nursing, Faculty of Nursing, Port Said University, Port Said 42526, Egypt
| | - Gamal A Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
6
|
Farmer MH, Musa OM, Armes SP. Combining Crystallization-Driven Self-Assembly with Reverse Sequence Polymerization-Induced Self-Assembly Enables the Efficient Synthesis of Hydrolytically Degradable Anisotropic Block Copolymer Nano-objects Directly in Concentrated Aqueous Media. J Am Chem Soc 2024; 146:16926-16934. [PMID: 38842535 PMCID: PMC11191691 DOI: 10.1021/jacs.4c06299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Herein we combine the well-known processing advantages conferred by polymerization-induced self-assembly (PISA) with crystallization-driven self-assembly (CDSA) to achieve the efficient synthesis of hydrolytically degradable, highly anisotropic block copolymer nano-objects directly in aqueous solution at 30% w/w solids. This new strategy involves a so-called reverse sequence PISA protocol that employs poly(l-lactide) (PLLA) as the crystallizable core-forming block and poly(N,N'-dimethylacrylamide) (PDMAC) as the water-soluble non-ionic coronal block. Such syntheses result in PDMAC-rich anisotropic nanoparticles. Depending on the target diblock copolymer composition, either rod-like nanoparticles or diamond-like platelets can be obtained. Furthermore, N-Acryloylmorpholine is briefly evaluated as an alternative hydrophilic vinyl monomer to DMAC. Given that the PLLA block can undergo either hydrolytic or enzymatic degradation, such nanoparticles are expected to offer potential applications in various fields, including next-generation sustainable Pickering emulsifiers.
Collapse
Affiliation(s)
- Matthew
A. H. Farmer
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Osama M. Musa
- Ashland
Specialty Ingredients, 1005 US 202/206, Bridgewater, New Jersey 08807, United States
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
7
|
Liu L, Meng X, Li M, Chu Z, Tong Z. Regulation of Two-Dimensional Platelet Micelles with Tunable Core Composition Distribution via Coassembly Seeded Growth Approach. ACS Macro Lett 2024; 13:542-549. [PMID: 38629823 DOI: 10.1021/acsmacrolett.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Seeded growth termed "living" crystallization-driven self-assembly (CDSA) has been identified as a powerful method to create one- or two-dimensional nanoparticles. Epitaxial crystallization is usually regarded as the growth mechanism for the formation of uniform micelles. From this perspective, the unimer depositing rate is largely related to the crystallization temperature, which is a key factor to determine the crystallization rate and regulate the core composition distribution among nanoparticles. In the present work, the coassembly of two distinct crystallizable polymers is explored in detail in a one-pot seeded growth protocol. Results have shown that polylactone containing a larger number of methylene groups (-CH2-) in their repeating units such as poly(η-octalactone) (POL) has a faster crystallization rate compared to poly(ε-caprolactone) (PCL) with a smaller number of -CH2- at ambient temperature (25 °C), thus a block or blocky platelet structure with heterogeneous composition distribution is formed. In contrast, when the crystallization temperature decreases to 4 °C, the difference of crystallization rate between both cores become negligible. Consequently, a completely random component distribution within 2D platelets is observed. Moreover, we also reveal that the core component of seed micelles is also paramount for the coassembly seeded growth, and a unique structure of flower-like platelet micelle is created from the coassembly of PCL/POL using POL core-forming seeds. This study on the formation of platelet micelles by one-pot seeded growth using two crystallizable components offers a considerable scope for the design of 2D polymer nanomaterials with a controlled core component distribution.
Collapse
Affiliation(s)
- Liping Liu
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiancheng Meng
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Meili Li
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Zhenyan Chu
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Zaizai Tong
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
8
|
Kotha S, Sahu R, Yadav AC, Sharma P, Kumar BVVSP, Reddy SK, Rao KV. Noncovalent synthesis of homo and hetero-architectures of supramolecular polymers via secondary nucleation. Nat Commun 2024; 15:3672. [PMID: 38693145 PMCID: PMC11063220 DOI: 10.1038/s41467-024-47874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
The synthesis of supramolecular polymers with controlled architecture is a grand challenge in supramolecular chemistry. Although living supramolecular polymerization via primary nucleation has been extensively studied for controlling the supramolecular polymerization of small molecules, the resulting supramolecular polymers have typically exhibited one-dimensional morphology. In this report, we present the synthesis of intriguing supramolecular polymer architectures through a secondary nucleation event, a mechanism well-established in protein aggregation and the crystallization of small molecules. To achieve this, we choose perylene diimide with 2-ethylhexyl chains at the imide position as they are capable of forming dormant monomers in solution. Activating these dormant monomers via mechanical stimuli and hetero-seeding using propoxyethyl perylene diimide seeds, secondary nucleation event takes over, leading to the formation of three-dimensional spherical spherulites and scarf-like supramolecular polymer heterostructures, respectively. Therefore, the results presented in this study propose a simple molecular design for synthesizing well-defined supramolecular polymer architectures via secondary nucleation.
Collapse
Affiliation(s)
- Srinu Kotha
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Rahul Sahu
- Centre for Computational and Data Science, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Aditya Chandrakant Yadav
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Preeti Sharma
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - B V V S Pavan Kumar
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - Sandeep K Reddy
- Centre for Computational and Data Science, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Kotagiri Venkata Rao
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
9
|
Liu F, Liu X, Abdiryim T, Gu H, Astruc D. Heterometallic macromolecules: Synthesis, properties and multiple nanomaterial applications. Coord Chem Rev 2024; 500:215544. [DOI: 10.1016/j.ccr.2023.215544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Teng F, Xiang B, Liu L, Varlas S, Tong Z. Precise Control of Two-Dimensional Hexagonal Platelets via Scalable, One-Pot Assembly Pathways Using Block Copolymers with Crystalline Side Chains. J Am Chem Soc 2023; 145:28049-28060. [PMID: 38088129 DOI: 10.1021/jacs.3c09370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Crystallization-driven self-assembly (CDSA) of block copolymers (BCPs) in selective solvents provides a promising route for direct access to two-dimensional (2D) platelet micelles with excellent uniformity, although significant limitations also exist for this robust approach, such as tedious, multistep procedures, and low yield of assembled materials. Herein, we report a facile strategy for massively preparing 2D, highly symmetric hexagonal platelets with precise control over their dimensions based on BCPs with crystalline side chains. Mechanistic studies unveiled that the formation of hexagonal platelets was subjected to a hierarchical self-assembly process, involving an initial stage of formation of kinetically trapped spheres upon cooling driven by solvophobic interactions, and a second stage of fusion of such spheres to the 2D nuclei to initiate the lateral growth of hexagonal platelets via sequential particle attachments driven by thermodynamically ordered reorganization of the BCP upon aging. Moreover, the size of the developed 2D hexagonal platelets could be finely regulated by altering the copolymer concentration over a broad concentration range, enabling scale-up to a total solids concentration of at least 6% w/w. Our work reveals a new mechanism to create uniform 2D core-shell nanoparticles dictated by crystallization and particle fusion, while it also provides an alternative facile strategy for the design of soft materials with precise control of their dimensions, as well as for the scalability of the derived nanostructures.
Collapse
Affiliation(s)
- Feiyang Teng
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bingbing Xiang
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liping Liu
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Spyridon Varlas
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill S3 7HF, Sheffield, U.K
| | - Zaizai Tong
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
11
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
12
|
Wang M, Chen G, Hou X, Luo Y, Jin B, Li X. Assembly of Supramolecular Nanoplatelets with Tailorable Geometrical Shapes and Dimensions. Polymers (Basel) 2023; 15:polym15112547. [PMID: 37299347 DOI: 10.3390/polym15112547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The craving for controllable assembly of geometrical nanostructures from artificial building motifs, which is routinely achieved in naturally occurring systems, has been a perpetual and outstanding challenge in the field of chemistry and materials science. In particular, the assembly of nanostructures with different geometries and controllable dimensions is crucial for their functionalities and is usually achieved with distinct assembling subunits via convoluted assembly strategies. Herein, we report that with the same building subunits of α-cyclodextrin (α-CD)/block copolymer inclusion complex (IC), geometrical nanoplatelets with hexagonal, square, and circular shapes could be produced by simply controlling the solvent conditions via one-step assembly procedure, driven by the crystallization of IC. Interestingly, these nanoplatelets with different shapes shared the same crystalline lattice and could therefore be interconverted to each other by merely tuning the solvent compositions. Moreover, the dimensions of these platelets could be decently controlled by tuning the overall concentrations.
Collapse
Affiliation(s)
- Moyan Wang
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Gangfeng Chen
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Xiaojian Hou
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Yunjun Luo
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
- Key Laboratory of High Energy Density Materials, MOE, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Bixin Jin
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Xiaoyu Li
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
- Key Laboratory of High Energy Density Materials, MOE, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| |
Collapse
|
13
|
Yun N, Kang C, Yang S, Hwang SH, Park JM, Choi TL. Size-Tunable Semiconducting 2D Nanorectangles from Conjugated Polyenyne Homopolymer Synthesized via Cascade Metathesis and Metallotropy Polymerization. J Am Chem Soc 2023; 145:9029-9038. [PMID: 37040606 DOI: 10.1021/jacs.3c00357] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Size-tunable semiconducting two-dimensional (2D) nanosheets from conjugated homopolymers are promising materials for easy access to optoelectronic applications, but it has been challenging due to the low solubility of conjugated homopolymers. Herein, we report size-tunable and uniform semiconducting 2D nanorectangles via living crystallization-driven self-assembly (CDSA) of a fully conjugated polyenyne homopolymer prepared by cascade metathesis and metallotropy (M&M) polymerization. The resulting polyenyne with enhanced solubility successfully underwent living CDSA via biaxial growth mechanism, thereby producing 2D nanorectangles with sizes precisely tuned from 0.1 to 3.0 μm2 with narrow dispersity mostly less than 1.1 and low aspect ratios less than 3.1. Furthermore, living CDSA produced complex 2D block comicelles with different heights from various degrees of polymerization (DPs) of unimers. Based on diffraction analyses and DFT calculations, we proposed an interdigitating packing model with an orthorhombic crystal lattice of semiconducting 2D nanorectangles.
Collapse
Affiliation(s)
- Namkyu Yun
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Cheol Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sanghee Yang
- Department of Chemistry, Inha University, Incheon 22212, Korea
| | - Soon-Hyeok Hwang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jun-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
14
|
Eivgi O, Ravenscroft AC, Blum SA. Imaging Block-Selective Copolymer Solvation. J Am Chem Soc 2023; 145:2058-2063. [PMID: 36689735 DOI: 10.1021/jacs.2c12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Understanding individual-block solvation in self-assembled block copolymer systems is experimentally difficult, but this solvation underpins the assembly and disassembly observed at the bulk scale. Here, covalently attached viscosity-sensitive molecular rotors for fluorescence lifetime imaging microscopy uncover and quantitatively elucidate previously undisclosed differential block-selective responses toward solvation changes upon addition of DMSO and THF to self-assembled ROMP-based amphiphilic block copolymers. The sensitivity of this method provides unique information on block-selective solvent-triggered assembly and disassembly mechanisms, revealing behaviors invisible to or with superior sensitivity to traditional 1H NMR spectroscopy. These experiments demonstrate an analytical method and provide a granular mechanistic understanding, both suitable for fine tuning block copolymer assembly and disassembly processes.
Collapse
Affiliation(s)
- Or Eivgi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Alexis C Ravenscroft
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
15
|
Chen M, Wang H, Li E, Li X, Shi T. Hierarchically supramolecular polymerization of anthraquinone dye to chiral aggregates via 2D-monolayered nanosheets: the unanticipated role of pathway complexity. NANOSCALE 2022; 14:14052-14056. [PMID: 36134624 DOI: 10.1039/d2nr04404h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An anthraquinone dye underwent supramolecular polymerization, affording 2D-monolayered nanosheets in a kinetically controlled state. The nanosheets then transformed into hierarchically chiral aggregates in a thermodynamically controlled step. The unanticipated role played by pathway complexity was clearly unravelled in this work, highlighting the diversified pathways in the supramolecular polymerization of various building blocks.
Collapse
Affiliation(s)
- Mingyue Chen
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong Prov., China.
| | - Houchen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong Prov., China.
| | - Enhui Li
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong Prov., China.
| | - Xueru Li
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong Prov., China.
| | - Tiesheng Shi
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong Prov., China.
| |
Collapse
|
16
|
Yue B, Jia X, Baryshnikov GV, Jin X, Feng X, Lu Y, Luo M, Zhang M, Shen S, Ågren H, Zhu L. Photoexcitation‐Based Supramolecular Access to Full‐Scale Phase‐Diagram Structures through in situ Phase‐Volume Ratio Phototuning. Angew Chem Int Ed Engl 2022; 61:e202209777. [DOI: 10.1002/anie.202209777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Bingbing Yue
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Xiaoyong Jia
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
- Henan Center for Outstanding Overseas Scientists College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475004 China
| | - Glib V. Baryshnikov
- Laboratory of Organic Electronics Department of Science and Technology Linköping University 60174 Norrköping Sweden
| | - Xin Jin
- Institute of Lasers and Biophotonics School of Biomedical Engineering Wenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Xicheng Feng
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yunle Lu
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Mengkai Luo
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Hans Ågren
- Henan Center for Outstanding Overseas Scientists College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475004 China
- Department of Physics and Astronomy Uppsala University 75120 Uppsala Sweden
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| |
Collapse
|
17
|
Yue B, Jia X, Baryshnikov GV, Jin X, Feng X, Lu Y, Luo M, Zhang M, Shen S, Ågren H, Zhu L. Photoexcitation‐based Supramolecular Access to Full‐scale Phase‐diagram Structures through in situ Phase‐volume Ratio Phototuning. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bingbing Yue
- Fudan University Department of Macromolecular Science CHINA
| | - Xiaoyong Jia
- Fudan University Department of Macromolecular Science CHINA
| | | | - Xin Jin
- Wenzhou Medical College - Chashan Campus: Wenzhou Medical University School of Biomedical Engineering CHINA
| | - Xicheng Feng
- USST: University of Shanghai for Science and Technology School of Materials and Chemistry CHINA
| | - Yunle Lu
- Fudan University Department of Macromolecular Science CHINA
| | - Mengkai Luo
- Fudan University Department of Macromolecular Science CHINA
| | - Man Zhang
- Fudan University Department of Macromolecular Science CHINA
| | - Shen Shen
- Fudan University Department of Macromolecular Science CHINA
| | - Hans Ågren
- Uppsala Universitet Department of Physics and Astronomy Roslagstullsbacken 15 10691 Stockholm SWEDEN
| | - Liangliang Zhu
- Fudan University Department of Macromolecular Science 220 Handan RoadYangpu District 200433 Shanghai CHINA
| |
Collapse
|
18
|
Yang C, Li Z, Xu J. Single crystals and two‐dimensional crystalline assemblies of block copolymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zi‐Xian Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jun‐Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
19
|
Su Y, Jiang Y, Liu L, Xie Y, Chen S, Wang Y, O’Reilly RK, Tong Z. Hydrogen-Bond-Regulated Platelet Micelles by Crystallization-Driven Self-Assembly and Templated Growth for Poly(ε-Caprolactone) Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yawei Su
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yikun Jiang
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liping Liu
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yujie Xie
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Shichang Chen
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yongjun Wang
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zaizai Tong
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
20
|
Song S, Jiang J, Nikbin E, Howe JY, Manners I, Winnik MA. The role of cooling rate in crystallization-driven block copolymer self-assembly. Chem Sci 2022; 13:396-409. [PMID: 35126972 PMCID: PMC8729813 DOI: 10.1039/d1sc05937h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Self-assembly of crystalline-coil block copolymers (BCPs) in selective solvents is often carried out by heating the mixture until the sample appears to dissolve and then allowing the solution to cool back to room temperature. In self-seeding experiments, some crystallites persist during sample annealing and nucleate the growth of core-crystalline micelles upon cooling. There is evidence in the literature that the nature of the self-assembled structures formed is independent of the annealing time at a particular temperature. There are, however, no systematic studies of how the rate of cooling affects self-assembly. We examine three systems based upon poly(ferrocenyldimethylsilane) BCPs that generated uniform micelles under typical conditions where cooling took pace on the 1–2 h time scale. For example, several of the systems generated elongated 1D micelles of uniform length under these slow cooling conditions. When subjected to rapid cooling (on the time scale of a few minutes or faster), branched structures were obtained. Variation of the cooling rate led to a variation in the size and degree of branching of some of the structures examined. These changes can be explained in terms of the high degree of supersaturation that occurs when unimer solutions at high temperature are suddenly cooled. Enhanced nucleation, seed aggregation, and selective growth of the species of lowest solubility contribute to branching. Cooling rate becomes another tool for manipulating crystallization-driven self-assembly and controlling micelle morphologies. In the self-assembly of crystalline-coil block copolymers in solution, heating followed by different cooling rates can lead to different structures.![]()
Collapse
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495
| | - Jingjie Jiang
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495
| | - Ehsan Nikbin
- Department of Materials Science and Engineering, University of Toronto, 184 College Street Toronto Ontario M5S 3E4 Canada
| | - Jane Y Howe
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495.,Department of Materials Science and Engineering, University of Toronto, 184 College Street Toronto Ontario M5S 3E4 Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto Ontario M5S 3E2 Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria Victoria British Columbia V8P 5C2 Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495.,Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto Ontario M5S 3E2 Canada
| |
Collapse
|
21
|
Xu W, Zheng Y, Pan P. Crystallization‐driven self‐assembly of semicrystalline block copolymers and end‐functionalized polymers: A minireview. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenqing Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Zhejiang University—Quzhou Quzhou China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Zhejiang University—Quzhou Quzhou China
| |
Collapse
|
22
|
Song S, Zhou H, Hicks G, Jiang J, Zhang Y, Manners I, Winnik MA. An Amphiphilic Corona-Forming Block Promotes Formation of a Variety of 2D Platelets via Crystallization-Driven Block Copolymer Self-Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hang Zhou
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Garion Hicks
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jingjie Jiang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Yefeng Zhang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
23
|
Song S, Zhou H, Manners I, Winnik MA. Block copolymer self-assembly: Polydisperse corona-forming blocks leading to uniform morphologies. Chem 2021. [DOI: 10.1016/j.chempr.2021.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
|
25
|
Yang S, Kang SY, Choi TL. Semi-conducting 2D rectangles with tunable length via uniaxial living crystallization-driven self-assembly of homopolymer. Nat Commun 2021; 12:2602. [PMID: 33972541 PMCID: PMC8110585 DOI: 10.1038/s41467-021-22879-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/01/2021] [Indexed: 11/11/2022] Open
Abstract
Semi-conducting two-dimensional (2D) nanoobjects, prepared by self-assembly of conjugated polymers, are promising materials for optoelectronic applications. However, no examples of self-assembled semi-conducting 2D nanosheets whose lengths and aspect ratios are controlled at the same time have been reported. Herein, we successfully prepared uniform semi-conducting 2D sheets using a conjugated poly(cyclopentenylene vinylene) homopolymer and its block copolymer by blending and heating. Using these as 2D seeds, living crystallization-driven self-assembly (CDSA) was achieved by adding the homopolymer as a unimer. Interestingly, unlike typical 2D CDSA examples showing radial growth, this homopolymer assembled only in one direction. Owing to this uniaxial growth, the lengths of the 2D nanosheets could be precisely tuned from 1.5 to 8.8 μm with narrow dispersity according to the unimer-to-seed ratio. We also studied the growth kinetics of the living 2D CDSA and confirmed first-order kinetics. Subsequently, we prepared several 2D block comicelles (BCMs), including penta-BCMs in a one-shot method.
Collapse
Affiliation(s)
- Sanghee Yang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Sung-Yun Kang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
26
|
Song S, Zhou H, Ye S, Tam J, Howe JY, Manners I, Winnik MA. Spherulite‐Like Micelles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shaofei Song
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Hang Zhou
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Shuyang Ye
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Jason Tam
- Department of Materials Science and Engineering University of Toronto 184 College Street Toronto Ontario M5S 3E4 Canada
| | - Jane Y. Howe
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Materials Science and Engineering University of Toronto 184 College Street Toronto Ontario M5S 3E4 Canada
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College St Toronto Ontario M5S 3E5 Canada
| | - Ian Manners
- Department of Chemistry University of Victoria 3800 Finnerty Road Victoria British Columbia V8P 5C2 Canada
| | - Mitchell A. Winnik
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College St Toronto Ontario M5S 3E5 Canada
| |
Collapse
|
27
|
Song S, Zhou H, Ye S, Tam J, Howe JY, Manners I, Winnik MA. Spherulite-Like Micelles. Angew Chem Int Ed Engl 2021; 60:10950-10956. [PMID: 33626229 DOI: 10.1002/anie.202101177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/06/2022]
Abstract
One-dimensional (1D) and 2D structures by crystallization-driven self-assembly of block copolymers (BCPs) can form fascinating hierarchical structures through secondary self-assembly. But examples of 3D structures formed via hierarchical self-assembly are rare. Here we report seeded growth experiments in decane of a poly(ferrocenyldimethylsilane) BCP with an amphiphilic corona forming block in which lenticular platelets grow into classic spherulite-like uniform colloidally stable structures. These 3D objects are spherically symmetric on the exterior, but asymmetric near the core, where there is a more open structure consisting of sheaf-like leaves. The most remarkable aspect of these experiments is that growth stops at different stages of growth process, depending upon how much unimer is added in the seeded growth step. The system provides a model for studying spherulitic growth where real-time observations on their growth at different stages remains challenging.
Collapse
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Hang Zhou
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Shuyang Ye
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Jason Tam
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario, M5S 3E4, Canada
| | - Jane Y Howe
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.,Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario, M5S 3E4, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada
| |
Collapse
|
28
|
Tong Z, Su Y, Jiang Y, Xie Y, Chen S, O’Reilly RK. Spatially Restricted Templated Growth of Poly(ε-caprolactone) from Carbon Nanotubes by Crystallization-Driven Self-Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zaizai Tong
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yawei Su
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yikun Jiang
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yujie Xie
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Shichang Chen
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
29
|
Song S, Zhou H, Puzhitsky M, Zhang Y, Hicks G, Lu Y, Manners I, Winnik MA. Crystallization-Driven Self-Assembly of a Block Copolymer with Amphiphilic Pendant Groups. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hang Zhou
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Matthew Puzhitsky
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Yefeng Zhang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Garion Hicks
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Yijie Lu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
30
|
Song S, Puzhitsky M, Ye S, Abtahi M, Rastogi CK, Lu E, Hicks G, Manners I, Winnik MA. Crystallization-Driven Self-Assembly of Amphiphilic Triblock Terpolymers With Two Corona-Forming Blocks of Distinct Hydrophilicities. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Matthew Puzhitsky
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shuyang Ye
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mahtab Abtahi
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | | | - Elsa Lu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Garion Hicks
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|