1
|
Seo SM, Kim D, Kim T, Han S. Total synthesis of (-)-flueggenine A and (-)-15'- epi-flueggenine D. Chem Sci 2025; 16:1216-1221. [PMID: 39677935 PMCID: PMC11635435 DOI: 10.1039/d4sc07525k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
Securinega alkaloids, known for their unique structures and neuroplasticity-inducing potential, are promising candidates for treating neurodegenerative diseases such as depression and substance use disorders (SUD). Herein, we delineate the total synthesis of two dimeric Rauhut-Currier (RC) reaction-based securinega alkaloids, (-)-flueggenine A and (-)-15'-epi-flueggenine D. The key step involved a novel reductive Heck dimerization strategy, utilizing a silyl-tethered enone coupling partner to ensure the desired reactivity and stereoselectivity. This dimerization method, combined with established chemistry explored en route to (-)-flueggenines C and D, offers a comprehensive synthetic approach for accessing all known RC-based oligomeric securinega alkaloids.
Collapse
Affiliation(s)
- Seung Mo Seo
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Taewan Kim
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
2
|
Vergoten G, Bailly C. Interaction of Norsecurinine-Type Oligomeric Alkaloids with α-Tubulin: A Molecular Docking Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:1269. [PMID: 38732484 PMCID: PMC11085049 DOI: 10.3390/plants13091269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
The medicinal plant Securinega virosa (Roxb ex. Willd) Baill., also known as Flueggea virosa (Roxb. ex Willd.) Royle, is commonly used in traditional medicine in Africa and Asia for the management of diverse pathologies, such as parasite infections, diabetes, and gastrointestinal diseases. Numerous alkaloids have been isolated from the twigs and leaves of the plant, notably a variety of oligomeric indolizidine alkaloids derived from the monomers securinine and norsecurinine which both display anticancer properties. The recent discovery that securinine can bind to tubulin and inhibit microtubule assembly prompted us to investigate the potential binding of two series of alkaloids, fluevirosines A-H and fluevirosinine A-J, with the tubulin dimer by means of molecular modeling. These natural products are rare high-order alkaloids with tri-, tetra-, and pentameric norsecurinine motifs. Despite their large size (up to 2500 Å3), these alkaloids can bind easily to the large drug-binding cavity (about 4800 Å3) on α-tubulin facing the β-tubulin unit. The molecular docking analysis suggests that these hydrophobic macro-alkaloids can form stable complexes with α/β-tubulin. The tubulin-binding capacity varies depending on the alkaloid size and structure. Structure-binding relationships are discussed. The docking analysis identifies the trimer fluevirosine D, tetramer fluevirosinine D, and pentamer fluevirosinine H as the most interesting tubulin ligands in the series. This study is the first to propose a molecular target for these atypical oligomeric Securinega alkaloids.
Collapse
Affiliation(s)
- Gérard Vergoten
- U1286—INFINITE, Lille Inflammation Research International Center, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, 59006 Lille, France
| | - Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, 59000 Lille, France
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, 59006 Lille, France
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
| |
Collapse
|
3
|
Kim S, Lee HS, Han S. Transformation of (allo)securinine to (allo)norsecurinine via a molecular editing strategy. Front Chem 2024; 12:1355636. [PMID: 38318111 PMCID: PMC10839145 DOI: 10.3389/fchem.2024.1355636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Securinega alkaloids have intrigued chemists since the isolation of securinine in 1956. This family of natural products comprises a securinane subfamily with a piperidine substructure and norsecurinane alkaloids featuring a pyrrolidine core. From a biosynthetic perspective, the piperidine moiety in securinane alkaloids derives from lysine, whereas the pyrrolidine moiety in norsecurinane natural products originates from ornithine, marking an early biogenetic divergence. Herein, we introduce a single-atom deletion strategy that enables the late-stage conversion of securinane to norsecurinane alkaloids. Notably, for the first time, this method enabled the transformation of piperidine-based (allo)securinine into pyrrolidine-based (allo)norsecurinine. Straightforward access to norsecurinine from securinine, which can be readily extracted from the plant Flueggea suffruticosa, abundant across the Korean peninsula, holds promise for synthetic studies of norsecurinine-based oligomeric securinega alkaloids.
Collapse
Affiliation(s)
| | | | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
4
|
Ramos A, Griffin ED, Ho KH, Singh J, Jones SA, Walter SN, Castle SL. Synthesis of the Indolizidine Core of Virosinine A via a Microwave-Promoted Cascade Cyclization Involving Iminyl Radicals. Org Lett 2024. [PMID: 38197784 DOI: 10.1021/acs.orglett.3c03852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The indolizidine core of virosinine A was synthesized by means of a microwave-promoted cascade reaction featuring 5-exo-trig iminyl radical cyclization, thiyl radical elimination, and intramolecular imine alkylation. The resulting bicyclic iminium ion underwent stereoselective reduction by Red-Al to deliver the target compound. DFT calculations suggested that both the radical cyclization and thiyl radical elimination steps are reversible at high reaction temperatures.
Collapse
Affiliation(s)
- Alexander Ramos
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Elias D Griffin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Kai-Hang Ho
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Jatinder Singh
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Spencer A Jones
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Steven N Walter
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Steven L Castle
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
5
|
Zhu M, Zhu M, Wei F, Shao C, Li X, Liu B. Synthesis of Bridged Cycloisoxazoline Scaffolds via Rhodium-Catalyzed Coupling of Nitrones with Cyclic Carbonate. J Org Chem 2023; 88:16330-16339. [PMID: 37966420 DOI: 10.1021/acs.joc.3c01840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bridged isoxazolidines were synthesized via Rh(III)-catalyzed C-H allylation of α-aryl nitrones with 5-methylene-1,3-dioxan-2-one. The nitrone group serves as a directing group and 1,3-dipole in the C-H activation/[3 + 2] cycloaddition cascade, exhibiting excellent chemo- and stereoselectivity along with good functional group compatibility. The resulting skeletal structure was conveniently modified to produce a range of important chemical frameworks, and the protocol was applied to biologically active molecules.
Collapse
Affiliation(s)
- Man Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengdie Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fangjie Wei
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chongjing Shao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xingwei Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bingxian Liu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Kang G, Han S. Synthesis of Suffranidine B. J Am Chem Soc 2023. [PMID: 37917347 DOI: 10.1021/jacs.3c09969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Efficiently generating intricate molecular complexity is a coveted goal in organic synthesis. This can be realized through the implementation of inventive and audacious strategies coupled with the exploration and advancement of novel molecular reactivity pathways. Herein, we present a concise two-step synthesis of a high-oxidation state heterotrimeric securinega alkaloid, suffranidine B, from 2,3-dehydroallosecurinine and the vinylogous ketoaldehyde compound derived from kojic acid. Key to the success was the astute selection of appropriate acids during both the heterotrimerization and the desymmetrizing cyclization steps. This study underscores the value of biomimicry in the synthesis of complex natural products.
Collapse
Affiliation(s)
- Gyumin Kang
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Kang G, Park S, Han S. Synthesis of High-Order and High-Oxidation State Securinega Alkaloids. Acc Chem Res 2023; 56:140-156. [PMID: 36594722 DOI: 10.1021/acs.accounts.2c00719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Securinega alkaloids, composed of more than 100 members characterized by the compact tetracyclic scaffold, have fascinated the synthetic community with their structural diversity and notable bioactivities. On the basis of the structural phenotype, oligomerizations and oxidations are major biosynthetic diversification modes of the basic Securinega framework. Despite the rich history of synthesis of basic monomeric Securinega alkaloids, the synthesis of oligomeric Securinega alkaloids, as well as oxidized derivatives, has remained relatively unexplored because of their extra structural complexity. In the first half of this Account, our synthetic studies toward high-order Securinega alkaloids are described. We aimed to establish a reliable synthetic method to form C14-C15' and C12-C15' bonds, which are prevalent connection modes between monomers. During our total synthesis of flueggenine C (9), we have invented an accelerated Rauhut-Currier reaction capable of forming the C14-C15' bond stereoselectively. Installation of the nucleophilic functionality to the Michael acceptor, which ushers the C-C bond forming conjugate addition to follow the intramolecular pathway, was the key to success. The C12-C15' linkage, which was inaccessible via an accelerated Rauhut-Currier reaction, was established by devising a complementary cross-coupling/conjugate reduction-based dimerization strategy that enabled the total synthesis of flueggenines D (11) and I (14). In this approach, the C12-C15' linkage was established via a Stille cross-coupling, and the stereochemistry of the C15' position was controlled during the following conjugate reduction step. In the later half of this Account, our achievements in the field of high-oxidation state Securinega alkaloids synthesis are depicted. We have developed oxidative transformations at the N1 and C2-C4 positions, where the biosynthetic oxidation event occurs most frequently. The discovery of a VO(acac)2-mediated regioselective Polonovski reaction allowed us to access the key 2,3-dehydroallosecurinine (112). Divergent synthesis of secu'amamine A (62) and fluvirosaones A (60) and B (61) was accomplished by exploiting the versatile reactivities of the C2/C3 enamine moiety in 112. We have also employed a fragment-coupling strategy between menisdaurilide and piperidine units, which allowed the installation of various oxygen-containing functionality on the piperidine ring. Combined with the late-stage, light-mediated epimerization and well-orchestrated oxidative modifications, collective total synthesis of seven C4-oxygenated securinine-type natural products was achieved. Lastly, the synthesis of flueggeacosine B (70) via two synthetic routes from allosecurinine (103) was illustrated. The first-generation synthesis (seven overall steps) employing Pd-catalyzed cross-coupling between stannane and thioester to form the key C3-C15' bond enabled the structural revision of the natural product. In the second-generation synthesis, we have invented visible-light-mediated, Cu-catalyzed cross-dehydrogenative coupling (CDC) between an aldehyde and electron-deficient olefin, which streamlined the synthetic pathway into four overall steps. Organisms frequently utilize dimerization (oligomerization) and oxidations during the biosynthesis as a means to expand the chemical space of their secondary metabolites. Therefore, methods and strategies for dimerizations and oxidations that we have developed using the Securinega alkaloids as a platform would be broadly applicable to other alkaloids. It is our sincere hope that lessons we have learned during our synthetic journey would benefit other chemists working on organic synthesis.
Collapse
Affiliation(s)
- Gyumin Kang
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sangbin Park
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Sambhaji Vagh S, Hou B, Edukondalu A, Wang P, Chen Y, Lin W. Phosphine‐Mediated Rauhut‐Currier‐Type/Acyl Transfer/Wittig Strategy for Synthesis of Spirocyclopenta[
c
]chromene‐Indolinones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sandip Sambhaji Vagh
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Tingchow Road Taipei 11677 Taiwan, R.O.C
| | - Bo‐Jhih Hou
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Tingchow Road Taipei 11677 Taiwan, R.O.C
| | - Athukuri Edukondalu
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Tingchow Road Taipei 11677 Taiwan, R.O.C
| | - Pin‐Ching Wang
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Tingchow Road Taipei 11677 Taiwan, R.O.C
| | - Yi‐Ru Chen
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Tingchow Road Taipei 11677 Taiwan, R.O.C
| | - Wenwei Lin
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Tingchow Road Taipei 11677 Taiwan, R.O.C
| |
Collapse
|
9
|
Lim H, Seong S, Kim Y, Seo S, Han S. Biopatterned Reorganization of Alkaloids Enabled by Ring-Opening Functionalization of Tertiary Amines. J Am Chem Soc 2021; 143:19966-19974. [PMID: 34784466 DOI: 10.1021/jacs.1c10205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Biosynthetic processes often involve reorganization of one family of natural products to another. Chemical emulation of nature's rearrangement-based structural diversification strategy would enable the conversion of readily available natural products to other value-added secondary metabolites. However, the development of a chemical method that can be universally applied to structurally diverse natural products is nontrivial. Key to the successful reorganization of complex molecules is a versatile and mild bond-cleaving method that correctly places desired functionality, facilitating the target synthesis. Here, we report a ring-opening functionalization of a tertiary amine that can introduce desired functionalities in the context of alkaloids reorganization. The semistability of the difluoromethylated ammonium salt, accessed by the reaction of tertiary amine and in situ generated difluorocarbene, enabled the attack at the α-position by various external nucleophiles. The utility and generality of the method is highlighted by its applications in the transformation of securinega, iboga, and sarpagine alkaloids to neosecurinega, chippiine/dippinine, and vobasine-type bisindole alkaloids, respectively. During the course of these biosynthetically inspired reorganizations, we could explore chemical reactivities of biogenetically relevant precursors.
Collapse
Affiliation(s)
- Hyeonggeun Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sikwang Seong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Youyoung Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sangwon Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
10
|
Kang G, Park S, Han S. The Chemistry of High‐Oxidation State Securinega Alkaloids. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gyumin Kang
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141, Republic of Korea E-mail: synthesis.kaist.ac.kr
| | - Sangbin Park
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141, Republic of Korea E-mail: synthesis.kaist.ac.kr
| | - Sunkyu Han
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141, Republic of Korea E-mail: synthesis.kaist.ac.kr
| |
Collapse
|
11
|
Kang G, Baik M, Han S. Calculation‐Assisted
Stereochemical Analysis of Securingine A. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gyumin Kang
- Department of Chemistry Korea Advanced Institute of Science and Technology, 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science, 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
| | - Mu‐Hyun Baik
- Department of Chemistry Korea Advanced Institute of Science and Technology, 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science, 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
| | - Sunkyu Han
- Department of Chemistry Korea Advanced Institute of Science and Technology, 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science, 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
| |
Collapse
|