1
|
Palmer JR, Tyndall SB, Mantel GC, Buras OJ, Young RM, Krzyaniak MD, Wasielewski MR. Molecular Cocrystal Packing Suppresses Hopping-Driven Decoherence of Excitonic Spin Qubits. J Am Chem Soc 2025; 147:17394-17403. [PMID: 40334144 DOI: 10.1021/jacs.5c03973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Molecular excitonic spins have garnered significant interest for quantum technologies because they can be initialized into addressable, multilevel quantum states through spin-selective intersystem crossing or singlet fission. However, excitonic spin coherence is difficult to maintain above liquid helium temperatures due to typical crystal packings, which promote decoherence through exciton hopping between magnetically inequivalent sites. Here, we engineer donor-acceptor cocrystals where molecular packing in isolated π-stacks of magnetically equivalent molecules suppresses hopping-induced decoherence. Pulse-electron paramagnetic resonance spectroscopy reveals that high-temperature spin coherence in this packing geometry is instead strongly influenced by mutual spin flip-flops between interacting excitons. Coherence anisotropy measurements indicate that spin-phonon coupling enhances the rate of spin flip-flops through dynamic reorientation of the zero field splitting tensor. As a result, coherence times decrease exponentially at elevated temperatures, with coherence times measurable up to 150 K. The combined results present generalized design strategies to preserve excitonic spin coherence at high temperatures.
Collapse
Affiliation(s)
- Jonathan R Palmer
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Quantum Information Research and Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Samuel B Tyndall
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Quantum Information Research and Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Georgia C Mantel
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Quantum Information Research and Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Otis J Buras
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Quantum Information Research and Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Quantum Information Research and Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Quantum Information Research and Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Quantum Information Research and Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
2
|
Williams ML, Palmer JR, Tyndall SB, Chen Y, Young RM, Garzon-Ramirez AJ, Tempelaar R, Wasielewski MR. Molecular engineering charge transfer and triplet exciton formation in donor-acceptor cocrystals. J Chem Phys 2025; 162:024505. [PMID: 39783977 DOI: 10.1063/5.0243900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
Organic donor-acceptor (D-A) cocrystals are gaining attention for their potential applications in optoelectronic devices. This study explores the dynamics of charge transfer (CT) and triplet exciton formation in various D-A cocrystals. By examining a series of D-A cocrystals composed of coronene (COR), peri-xanthenoxanthene (PXX), and perylene (PER) donors paired with N,N-bis(3'-pentyl)perylene-3,4:9,10-bis(dicarboximide) (PDI), naphthalene-1,4:5,8-tetracarboxy-dianhydride (NDA), or pyrene-4,5,9,10-tetraone (PTO) acceptors, using transient absorption microscopy and time-resolved electron paramagnetic resonance spectroscopy, we find that the strength of the CT interaction influences the nature and yield of triplet excitons produced by CT state recombination. In particular, in the PER-PDI, COR-PTO, and PER-PTO cocrystals, localized triplet excitons are lower in energy than the CT state. By contrast, no localized triplet excitons are available to the CT states of the PXX-NDA, PER-NDA, and PXX-PTO cocrystals, and as a result, the CT states rapidly decay to ground state with no triplet formation. Moreover, density functional theory calculations show that the transition between delocalized CT states to a triplet state localized to a single donor or acceptor unit provides the source of spin-orbit coupling necessary when the triplet states are energetically accessible. These findings provide insights into the design of molecular materials with tailored exciton properties for optoelectronic applications.
Collapse
Affiliation(s)
- Malik L Williams
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Jonathan R Palmer
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Samuel B Tyndall
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Yizhe Chen
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Ryan M Young
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Antonio J Garzon-Ramirez
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Roel Tempelaar
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Michael R Wasielewski
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy Northwestern University, Evanston, Illinois 60208-3113, USA
| |
Collapse
|
3
|
Kramar BV, Bondarenko AS, Koehne SM, Diroll BT, Wang X, Yang H, Schanze KS, Chen LX, Tempelaar R, Hupp JT. Unexpected Photodriven Linker-to-Node Hole Transfer in a Zirconium-Based Metal-Organic Framework. J Phys Chem Lett 2024; 15:11496-11503. [PMID: 39514401 DOI: 10.1021/acs.jpclett.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Zr6(μ3-O)4(μ3-OH)4 node cores are indispensable building blocks for almost all zirconium-based metal-organic frameworks. Consistent with the insulating nature of zirconia, they are generally considered electronically inert. Contrasting this viewpoint, we present spectral measurements and calculations indicating that emission from photoexcited NU-601, a six-connected Zr-based MOF, comes from both linker-centric locally excited and linker-to-node charge-transfer (CT) states. The CT state originates from a hole transfer process enabled by favorable energy alignment of the HOMOs of the node and linker. This alignment can be manipulated by changing the pH of the medium, which alters the protonation state of multiple oxy groups on the Zr-node. Thus, the acid-base chemistry of the node has a direct effect on the photophysics of the MOF following linker-localized electronic excitation. These new findings open opportunities to understand and exploit, for energy conversion, unconventional mechanisms of exciton formation and transport in MOFs.
Collapse
Affiliation(s)
- Boris V Kramar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anna S Bondarenko
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sydney M Koehne
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Benjamin T Diroll
- Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Xiaodan Wang
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Haofan Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Roel Tempelaar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Sun X, Wang Y, Song M, Liu F, Lan DH, Yin SF, Chen P. Local polarization redistribution in Zn mIn 2S 3+m for the enhancing synergetic piezo-photocatalytic overall water splitting. J Colloid Interface Sci 2024; 665:999-1006. [PMID: 38579390 DOI: 10.1016/j.jcis.2024.03.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Piezo-photocatalytic water (deuterium oxide) decomposition is a promising strategy for realizing renewable energy, but the manipulation of the polar center remains a big challenge. This study uses a simple low-temperature hydrothermal process to successfully manufacture ZnmIn2Sm+3 (m = 1-3) (ZnIn2S4, Zn2In2S5 and Zn3In2S6). Incorporating both experimental and theoretical analyses, the structural contraction and local polarization of the Zn-S bond in Zn2In2S5 enhance the piezoelectric response and surface charge accumulation, which facilitate charge transfer and reduce the activation energy of water. Remarkably, Zn2In2S5 exhibits excellent piezoelectric photocatalytic total water splitting performance (H2/O2: 4284.72/1967.00 μmol g-1h-1), which is 1.77 times that of photocatalytic performance. Moreover, a significant enhancement in D2O splitting performance can be obtained for the optimized Zn2In2S5. Our work offers valuable insights into the disclosure of local polarization in catalysts for enhancing piezo-photocatalytic overall water splitting.
Collapse
Affiliation(s)
- Xiaomei Sun
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yi Wang
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Meiyang Song
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Fei Liu
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Dong-Hui Lan
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Rechemistry, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan 411104, PR China.
| | - Shuang-Feng Yin
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China; Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Peng Chen
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
5
|
Fisher JM, Williams ML, Palmer JR, Powers-Riggs NE, Young RM, Wasielewski MR. Long-Lived Charge Separation in Single Crystals of an Electron Donor Covalently Linked to Four Acceptor Molecules. J Am Chem Soc 2024; 146:9911-9919. [PMID: 38530990 DOI: 10.1021/jacs.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Crystalline donor-acceptor (D-A) systems serve as an excellent platform for studying CT exciton creation, migration, and dissociation into free charge carriers for solar energy conversion. Donor-acceptor cocrystals have been utilized to develop an understanding of CT exciton formation in ordered organic solids; however, the strong electronic coupling of the D and A units can sometimes limit charge separation lifetimes due to their close proximity. Covalent D-A systems that preorganize specific donor-acceptor structures can assist in engineering crystal morphologies that promote long-lived charge separation to overcome this limitation. Here we investigate photogenerated CT exciton formation in a single crystal of a 2,5,8,11-tetraphenylperylene (PerPh4) donor to which four identical naphthalene-(1,4:5,8)-bis(dicarboximide) (NDI) electron acceptors are covalently attached at the para positions of the PerPh4 phenyl groups to yield PerPh4-NDI4. X-ray crystallography shows that the four NDIs pack pairwise into two distinct motifs. Two NDI acceptors of one PerPh4-NDI4 are positioned over the PerPh4 donors of adjacent PerPh4-NDI4 molecules with the donor and acceptor π-systems having a large dihedral angle between them, while the other two NDIs of PerPh4-NDI4 form xylene-NDI van der Waals π-stacks with the corresponding NDIs in adjacent PerPh4-NDI4 molecules. Upon selective photoexcitation of PerPh4 in the single crystal, CT exciton formation occurs in <300 fs yielding electron-hole pairs that live for more than ∼16 μs. This demonstrates the effectiveness of covalently linked D-A systems for engineering single crystal structures that promote efficient and long-lived charge separation for solar energy conversion.
Collapse
Affiliation(s)
- Jeremy M Fisher
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| | - Malik L Williams
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| | - Jonathan R Palmer
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| | - Natalia E Powers-Riggs
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| |
Collapse
|
6
|
Palmer JR, Williams ML, Young RM, Peinkofer KR, Phelan BT, Krzyaniak MD, Wasielewski MR. Oriented Triplet Excitons as Long-Lived Electron Spin Qutrits in a Molecular Donor-Acceptor Single Cocrystal. J Am Chem Soc 2024; 146:1089-1099. [PMID: 38156609 DOI: 10.1021/jacs.3c12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The photogeneration of multiple unpaired electron spins within molecules is a promising route to applications in quantum information science because they can be initialized into well-defined, multilevel quantum states (S > 1/2) and reproducibly fabricated by chemical synthesis. However, coherent manipulation of these spin states is difficult to realize in typical molecular systems due to the lack of selective addressability and short coherence times of the spin transitions. Here, these challenges are addressed by using donor-acceptor single cocrystals composed of pyrene and naphthalene dianhydride to host spatially oriented triplet excitons, which exhibit promising photogenerated qutrit properties. Time-resolved electron paramagnetic resonance (TREPR) spectroscopy demonstrates that spatially orienting triplet excitons in a single crystal platform imparts narrow, well-resolved, tunable resonances in the triplet EPR spectrum, allowing selective addressability of the spin sublevel transitions. Pulse-EPR spectroscopy reveals that at temperatures above 30 K, spin decoherence of these triplet excitons is driven by exciton diffusion. However, coherence is limited by electronic spin dipolar coupling below 30 K, where T2 varies nonlinearly with the optical excitation density due to exciton annihilation. Overall, an optimized coherence time of T2 = 7.1 μs at 20 K is achieved. These results provide important insights into designing solid-state molecular excitonic materials with improved spin qutrit properties.
Collapse
Affiliation(s)
- Jonathan R Palmer
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Malik L Williams
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Kathryn R Peinkofer
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Brian T Phelan
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
7
|
Soldner S, Anhalt O, Sárosi MB, Stolte M, Würthner F. Donor-acceptor complex formation by social self-sorting of polycyclic aromatic hydrocarbons and perylene bisimides. Chem Commun (Camb) 2023; 59:11656-11659. [PMID: 37702093 DOI: 10.1039/d3cc03704e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Self-assembly versus complexation with polycyclic aromatic hydrocarbon (PAH) guest molecules is studied for a series of perylene bisimides (PBIs). Bulky imide substituents at the PBI guide their self-assembly into dimer aggregates with null-type exciton coupling. Host-guest titration experiments with perylene and triphenylene PAHs afford 1 : 1 and 1 : 2 complexes whose properties are studied by single crystal X-ray analysis and UV/Vis and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Simon Soldner
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany.
| | - Olga Anhalt
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany.
| | - Menyhárt B Sárosi
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany.
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Matthias Stolte
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany.
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany.
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
8
|
Williams ML, Schlesinger I, Jacobberger RM, Wasielewski MR. Mechanism of Ultrafast Triplet Exciton Formation in Single Cocrystals of π-Stacked Electron Donors and Acceptors. J Am Chem Soc 2022; 144:18607-18618. [PMID: 36178390 DOI: 10.1021/jacs.2c08584] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ultrafast triplet formation in donor-acceptor (D-A) systems typically occurs by spin-orbit charge-transfer intersystem crossing (SOCT-ISC), which requires a significant orbital angular momentum change and is thus usually observed when the adjacent π systems of D and A are orthogonal; however, the results presented here show that subnanosecond triplet formation occurs in a series of D-A cocrystals that form one-dimensional cofacial π stacks. Using ultrafast transient absorption microscopy, photoexcitation of D-A single cocrystals, where D is coronene (Cor) or pyrene (Pyr) and A is N,N-bis(3'-pentyl)-perylene-3,4:9,10-bis(dicarboximide) (C5PDI) or naphthalene-1,4:5,8-tetracarboxydianhydride (NDA), results in formation of the charge transfer (CT) excitons Cor•+-C5PDI•-, Pyr•+-C5PDI•-, Cor•+-NDA•-, and Pyr•+-NDA•- in <300 fs, while triplet exciton formation occurs in τ = 125, 106, 484, and 958 ps, respectively. TDDFT calculations show that the SOCT-ISC rates correlate with charge delocalization in the CT exciton state. In addition, time-resolved EPR spectroscopy shows that Cor•+-C5PDI•- and Pyr•+-C5PDI•- recombine to form localized 3*C5PDI excitons with zero-field splittings of |D| = 1170 and 1250 MHz, respectively. In contrast, Cor•+-NDA•- and Pyr•+-NDA•- give triplet excitons in which |D| is only 1240 and 690 MHz, respectively, compared to that of NDA (2091 MHz), which is the lowest energy localized triplet exciton, indicating that the Cor-NDA and Pyr-NDA triplet excitons have significant CT character. These results show that charge delocalization in CT excitons impacts both ultrafast triplet formation as well as the CT character of the resultant triplet states.
Collapse
Affiliation(s)
- Malik L Williams
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Itai Schlesinger
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Robert M Jacobberger
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
9
|
Bai X, Guo L, Jia T, Hao D, Wang C, Li H, Zong R. Perylene diimide growth on both sides of carbon nanotubes for remarkably boosted photocatalytic degradation of diclofenac. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128992. [PMID: 35489317 DOI: 10.1016/j.jhazmat.2022.128992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Perylene diimide and its derivatives are promising photocatalysts for clean and efficient production, but their practical application in the field of photocatalysis is still limited by the rapid photogenerated charge recombination. In this work, the confined photocatalysts were synthesized by using a gas-phase self-assembly method and comparing the morphology and photocatalytic properties of different photocatalysts after the confinement of carbon nanotubes. The confinement effect of carbon nanotubes acts to stabilize perylene diimide. Electrostatic interaction formed by a wide range of dispersion forces is dominant in the process of stabilization. Benefitting from the three-dimensional electron transfer pathway formed by the conjugation of perylene diimide with a large number of π electrons to the carbon nanotubes plane, the confined photocatalyst shows the pseudo-first-order kinetic constant k of 1.106 h-1 for the photocatalytic degradation of diclofenac under light, which is 6.11 times higher than that of perylene diimide. The electron transfer created an internal electric field at the interface from carbon nanotubes to perylene diimide, which greatly accelerated the separation of photogenerated electron-hole pairs and improved the photocatalytic activity. This study further expands the applicability of perylene diimide in the field of photocatalysis and provides a new approach for water environment treatment.
Collapse
Affiliation(s)
- Xiaojuan Bai
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Linlong Guo
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, China
| | - Tianqi Jia
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, China
| | - Derek Hao
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.
| | - Cong Wang
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, China
| | - Haiyan Li
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, China
| | - Ruilong Zong
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Fu L, Fang Y, Yang R, Guan Z, Wei Z, Shan N, Liu F, Zhao Y, Humphrey MG, Zhang C. Enhanced nonlinear optical properties of a π-conjugated porphyrin dimer–graphene nanocomposite. NEW J CHEM 2022. [DOI: 10.1039/d2nj00753c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A more conjugated nanocomposite and a potential NLO candidate with a strong intrasystem interaction were constructed using a rarely mentioned porphyrin dimer and graphene.
Collapse
Affiliation(s)
- Lulu Fu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yan Fang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Rui Yang
- United World College, Changshu, 215500, China
| | - Zihao Guan
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhiyuan Wei
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Naying Shan
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Fang Liu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yang Zhao
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Mark G. Humphrey
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Chi Zhang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
11
|
Kong J, Zhang W, Shao JY, Huo D, Niu X, Wan Y, Song D, Zhong YW, Xia A. Bridge-Length- and Solvent-Dependent Charge Separation and Recombination Processes in Donor-Bridge-Acceptor Molecules. J Phys Chem B 2021; 125:13279-13290. [PMID: 34814686 DOI: 10.1021/acs.jpcb.1c08308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The photoinduced intramolecular charge separation (CS) and charge recombination (CR) phenomena in a series of donor-bridge-acceptor (D-B-A) molecules are intensively investigated as a means of understanding electron transport through the π-B. Pyrene (Pyr) and triarylamine (TAA) moieties connected via phenylene Bs of various lengths are studied because their CS and CR behaviors can be readily monitored in real time by femtosecond transient absorption (fs-TA) spectroscopy. By combining the steady-state and fs-TA spectroscopic measurements in a variety of solvents together with chemical calculations, the parameters that govern the CS behaviors of these dyads were obtained, such as the solvent effects on free energy and the B-length-dependent electronic coupling (VDA) between D and A. We observed the sharp switch of the CS behavior with the increase of the solvent polarity and B-linker lengths. Furthermore, in the case of the shortest distance between D and A when the electron coupling is sufficiently large, we observed that the CS phenomenon occurs even in low-polar solvents. Upon increasing the length of B, CS occurs only in strong polar solvents. The distance-dependent decay constant of the CS rate is determined as ∼0.53 Å-1, indicating that CS is governed by superexchange tunneling interactions. The CS rate constants are also approximately estimated using Marcus electron transfer theory, and the results imply that the VDA value is the key factor dominating the CS rate, while the facile rotation of the phenylene B is important for modulating the lifetime of the charge-separated state in these D-B-A dyads. These results shed light on the practical strategy for obtaining a high CS efficiency with a long-lived CS state in TAA-B-Pyr derivatives.
Collapse
Affiliation(s)
- Jie Kong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Dayujia Huo
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xinmiao Niu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Di Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Andong Xia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| |
Collapse
|
12
|
Zeng L, Huang L, Wang Z, Wei J, Huang K, Lin W, Duan C, Han G. Self‐Assembled Metal–Organic Framework Stabilized Organic Cocrystals for Biological Phototherapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Le Zeng
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Ling Huang
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Zhonghe Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Jianwei Wei
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Kai Huang
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Wenhai Lin
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| |
Collapse
|
13
|
Zeng L, Huang L, Wang Z, Wei J, Huang K, Lin W, Duan C, Han G. Self-Assembled Metal-Organic Framework Stabilized Organic Cocrystals for Biological Phototherapy. Angew Chem Int Ed Engl 2021; 60:23569-23573. [PMID: 34347334 DOI: 10.1002/anie.202108076] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Indexed: 01/13/2023]
Abstract
Organic self-assembled co-crystals have garnered considerable attention due to their facile synthesis and intriguing properties, but supramolecular interactions restrict their stability in aqueous solution, which is especially important for biological applications. Herein, we report on the first biological application of aqueous dispersible self-assembled organic co-crystals via the construction of metal-organic framework (MOF) -stabilized co-crystals. In particular, we built an electron-deficient MOF with naphthalene diimide (NDI) as the ligand and biocompatible Ca2+ as the metal nodes. An electron donor molecule, pyrene, was encapsulated to form the host-guest MOF self-assembled co-crystal. We observed that such MOF structure leads to uniquely high-density ordered arrangement and the close intermolecular distance (3.47 Å) of the charge transfer pairs. Hence, the concomitant superior charge transfer interaction between pyrene/NDI can be attained and the resultant photothermal conversion efficiency of Py@Ca-NDI in aqueous solution can thus reach up to 41.8 %, which, to the best of our knowledge, is the highest value among the reported organic co-crystal materials; it is also much higher than that of the FDA approved photothermal agent ICG as well as most of the reported MOFs. Based on this realization, as a proof of concept, we demonstrated that such a self-assembled organic co-crystal platform can be used in biological applications that are exemplified via highly effective long wavelength light photothermal therapy.
Collapse
Affiliation(s)
- Le Zeng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Ling Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Zhonghe Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Jianwei Wei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Kai Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Wenhai Lin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
14
|
Madhu M, Ramakrishnan R, Vijay V, Hariharan M. Free Charge Carriers in Homo-Sorted π-Stacks of Donor-Acceptor Conjugates. Chem Rev 2021; 121:8234-8284. [PMID: 34133137 DOI: 10.1021/acs.chemrev.1c00078] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inspired by the high photoconversion efficiency observed in natural light-harvesting systems, the hierarchical organization of molecular building blocks has gained impetus in the past few decades. Particularly, the molecular arrangement and packing in the active layer of organic solar cells (OSCs) have garnered significant attention due to the decisive role of the nature of donor/acceptor (D/A) heterojunctions in charge carrier generation and ultimately the power conversion efficiency. This review focuses on the recent developments in emergent optoelectronic properties exhibited by self-sorted donor-on-donor/acceptor-on-acceptor arrangement of covalently linked D-A systems, highlighting the ultrafast excited state dynamics of charge transfer and transport. Segregated organization of donors and acceptors promotes the delocalization of photoinduced charges among the stacks, engendering an enhanced charge separation lifetime and percolation pathways with ambipolar conductivity and charge carrier yield. Covalently linking donors and acceptors ensure a sufficient D-A interface and interchromophoric electronic coupling as required for faster charge separation while providing better control over their supramolecular assemblies. The design strategies to attain D-A conjugate assemblies with optimal charge carrier generation efficiency, the scope of their application compared to state-of-the-art OSCs, current challenges, and future opportunities are discussed in the review. An integrated overview of rational design approaches derived from the comprehension of underlying photoinduced processes can pave the way toward superior optoelectronic devices and bring in new possibilities to the avenue of functional supramolecular architectures.
Collapse
Affiliation(s)
- Meera Madhu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Remya Ramakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Vishnu Vijay
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| |
Collapse
|