1
|
Tripathi S, Prusti B, Chakravarty M. Multiphase detection of crucial biological amines using a 2,4,6-tristyrylpyrylium dye. Commun Chem 2025; 8:81. [PMID: 40089617 PMCID: PMC11910641 DOI: 10.1038/s42004-025-01459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/13/2025] [Indexed: 03/17/2025] Open
Abstract
The strong electrophilicity of arylpyrylium salts was recognized for the colorimetric detection of vital amine analytes, limited to ammonia or methylamines and putrescine as biogenic amine. This report presents conformationally twisted, electrophilic triphenylamine-linked 2,4,6-tristyrylpyrylium salt PyTPA as a single dye to sense various aliphatic/aromatic biogenic amines, nicotine, and guanidine rapidly in nanomolar concentrations. This unexplored styrylpyrylium design offers specific electronic conjugations, steric/geometric constraints with hydrophobicity, and decent thermal/photostability, facilitating precise diverse amines detection in unique fashions. The deep-violet solution/solid dye responded remarkably at 298 K with quick decoloration against putrescine, cadaverine, spermidine, spermine, histamines, serotonin, and 2-phenylethylamine. Further, this dye could detect nicotine at 313 K and guanidine at 298 K distinctively with diminished absorption and unexpected red-shifted emission enhancement. Variation in mechanistic path is recognized in detecting amines holding mono/di-NH2 groups and short/ long alkane chains, elucidated by mass, 1H-NMR, FT-IR, SEM, PXRD, and XPS studies. The notable detection of these biogenic amines in different phases is employed for onsite applications to detect fresh chicken and tuna. Nicotine in natural tobacco leaves was identified. Such pyrylium salt provides promising advancements in this class of molecules in detecting diverse biologically significant amines.
Collapse
Affiliation(s)
- Shivani Tripathi
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Jawahar Nagar, Shamirpet, Hyderabad, India
| | - Banchhanidhi Prusti
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Jawahar Nagar, Shamirpet, Hyderabad, India
| | - Manab Chakravarty
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Jawahar Nagar, Shamirpet, Hyderabad, India.
| |
Collapse
|
2
|
Santos WG, Pereira LH, Ramin BBS, Botelho SM, Morais STB, Cardoso DR, Santagneli SH, Ferreira FF, Leitão A, Ribeiro SJL. Pyrylazo Dye: A Novel Azo Dye Structure with Photoinduced Proton Release and Highlighted Photophysical Properties in Biological Media. ACS OMEGA 2025; 10:2517-2527. [PMID: 39895702 PMCID: PMC11780562 DOI: 10.1021/acsomega.4c06429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025]
Abstract
A straightforward method for synthesizing a stable, photoreactive, and fluorescent-probe azo dye molecule is presented, highlighting the influence of azo and pyrylium groups within the electronic structure of the novel dye. This compound, named the pyrylazo molecule, is synthesized through the chemical reaction between 2,4,6-trimethylpyrylium and a 4-methoxybenzenediazonium species. The methyl group at the para position of the pyrylium readily reacts with the diazonium molecule, forming a stable protonated pyrylium-azo dye (N-protonated pyrylazo). The pyrylazo structure can easily change into its N-deprotonated form upon introduction of a weak base, such as an amine, promoting significant spectral shifts in the visible absorption and fluorescence bands. Because of that and other photochemical properties, this novel dye has shown significant potential for applications in photoinduced processes and biological contexts, particularly in Coulombic interactions with micelles and animal cells. In contrast to other nonfluorescent azo dyes, the singlet excited state of pyrylazo is deactivated through a radiative process in organized media, as evidenced by its behavior during micelle media, cell membrane permeation, and fluorescence emission in the cytoplasm. Nanosecond-transient absorption spectroscopy reveals a reversible photoinduced proton release process occurring in the excited singlet state, suggesting that the excited states of pyrylazo may play roles in transport through ion channels, artificial photosynthesis, and photoinduced protein folding. These promising applications underscore the pyrylium-azo structure as a novel dye with remarkable photochemical and photophysical properties not observed in other azo dye molecules reported before.
Collapse
Affiliation(s)
- Willy G. Santos
- Federal
University of ABC−UFABC, Av. dos Estados 5001, Santo André, SP 09210-170, Brazil
| | - Lucas H. Pereira
- Institute
of Chemistry, São Paulo State University-UNESP, Araraquara, SP 14800-060, Brazil
| | - Beatriz B. S. Ramin
- Institute
of Chemistry, São Paulo State University-UNESP, Araraquara, SP 14800-060, Brazil
| | - Sabrina M. Botelho
- Chemical
Institute of São Carlos, University
of São Paulo, CP 780, São Carlos, SP 13560-970, Brazil
| | - Sinara T. B. Morais
- Chemical
Institute of São Carlos, University
of São Paulo, CP 780, São Carlos, SP 13560-970, Brazil
| | - Daniel R. Cardoso
- Chemical
Institute of São Carlos, University
of São Paulo, CP 780, São Carlos, SP 13560-970, Brazil
| | - Silvia H. Santagneli
- Institute
of Chemistry, São Paulo State University-UNESP, Araraquara, SP 14800-060, Brazil
| | - Fabio F. Ferreira
- Federal
University of ABC−UFABC, Av. dos Estados 5001, Santo André, SP 09210-170, Brazil
| | - Andrei Leitão
- Chemical
Institute of São Carlos, University
of São Paulo, CP 780, São Carlos, SP 13560-970, Brazil
| | - Sidney J. L. Ribeiro
- Institute
of Chemistry, São Paulo State University-UNESP, Araraquara, SP 14800-060, Brazil
| |
Collapse
|
3
|
Bhowmik PK, King D, Chen SL, Principe RCG, Han H, Evlyukhin E, Cifligu P, Jubair A, Kartazaev V, Gayen SK, Killarney ST, Caci JD, Wood KC. Synthesis, Optical Spectroscopy, and Laser and Biomedical Imaging Application Potential of 2,4,6-Triphenylpyrylium Tetrachloroferrate and Its Derivatives. J Phys Chem B 2024; 128:9815-9828. [PMID: 39327892 DOI: 10.1021/acs.jpcb.4c03934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Synthesis, optical spectroscopic properties, two-photon (TP) absorption-induced fluorescence, and laser and bioimaging application potentials of 2,4,6-triphenylpyrylium tetrachloroferrate (1),4-(4-methoxyphenyl)-2,6-diphenylpyrylium tetrachloroferrate (2), 2,6-bis(4-methoxyphenyl)-4-phenylpyrylium tetrachloroferrate (3), and 2,4,6-tris(4-methoxyphenyl)pyrylium tetrachloroferrate (4) are presented. The synthesis involves the conversion of pyrylium tosylates to pyrylium chlorides, followed by transformation into 1-4 on heating to reflux with FeCl3 in acetonitrile. They are characterized using 1H and 13C NMR spectra in CD3OD, and FTIR and Raman spectroscopic techniques. The salts dissolve in organic solvents and water (pH = 7 to 3) even at high concentrations (10-3 M). These solutions absorb light strongly from 500-300 nm. Solutions of 1, 3, and 4 fluoresce with high quantum yield in the 500-700 nm spectral range. Salts 1 and 4 exhibit fluorescence lifetime shortening, line width narrowing, and free-running laser action under intense pulsed laser excitation. Toxicity and cell imaging studies using human cancer cell lines reveal that salts 1 and 3 function as cellular fluorophores in vitro and have no adverse effects on cellular viability at nanomolar ranges. Furthermore, acetonitrile and methanol solutions of salts 1, 3, and 4 exhibit strong two-photon absorption-induced fluorescence, opening potential applications in biomedical imaging and microscopy.
Collapse
Affiliation(s)
- Pradip K Bhowmik
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, Nevada 89154, United States
| | - David King
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, Nevada 89154, United States
| | - Si L Chen
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, Nevada 89154, United States
| | - Ronald Carlo G Principe
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, Nevada 89154, United States
| | - Haesook Han
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, Nevada 89154, United States
| | - Egor Evlyukhin
- Department of Physics and Astronomy, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Petrika Cifligu
- Department of Physics and Astronomy, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Ahamed Jubair
- Department of Physics, Center for Discovery and Innovation, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
- Physics Program, The Graduate Center, City University of New York (CUNY), 365 Fifth Avenue, New York, New York 10016, United States
| | - Vladimir Kartazaev
- Department of Physics, Center for Discovery and Innovation, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Swapan K Gayen
- Department of Physics, Center for Discovery and Innovation, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
- Physics Program, The Graduate Center, City University of New York (CUNY), 365 Fifth Avenue, New York, New York 10016, United States
| | - Shane T Killarney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27705, United States
| | - Julia D Caci
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27705, United States
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27705, United States
| |
Collapse
|
4
|
Sivalingam V, Parbin M, Krishnaswamy S, Chand DK. Cage-To-Cage Transformations in Self-Assembled Coordination Cages Using "Acid/Base" or "Guest Binding-Induced Strain" as Stimuli. Angew Chem Int Ed Engl 2024; 63:e202403711. [PMID: 38567836 DOI: 10.1002/anie.202403711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 05/03/2024]
Abstract
Controlling supramolecular systems between different functional forms by utilizing acids/bases as stimuli is a formidable challenge, especially where labile coordination bonds are involved. A pair of acid/base responsive, interconvertible 1,5-enedione/pyrylium based Pd2L4-type cages are prepared that exhibit differential guest binding abilities towards disulfonates of varied sizes. A three-state switch has been achieved, where (i) a weakly coordinating base induced cage-to-cage transformation in the first step, (ii) a strongly coordinating base triggered cage disassembly as the second step, and (iii) the third step shows acid(strong) promoted generation of initial cage, thereby completing the cycle. To our surprise, binding of a specific disulfonate guest facilitated cage-to-cage transformations by inducing strain on the cage assembly thereby opening the labile pyrylium rings of the cage. Through a competitive guest binding study, we demonstrated the superior guest binding capability of the octacationic pyrylium-based cage over a similar-sized tetracationic cage. These results provide a reliable approach to reversibly modulate the guest binding properties of acid/base-responsive self-assembled coordination cages.
Collapse
Affiliation(s)
- Vellaiyadevan Sivalingam
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Minaz Parbin
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Shobhana Krishnaswamy
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Dillip Kumar Chand
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
5
|
Ren X, Zhang T, Wang B, Jin W, Xia Y, Wu S, Liu C, Zhang Y. Visible-Light-Driven Bifunctional Photocatalytic Radical-Cascade Selenocyanation/Cyclization of Acrylamides with KSeCN. J Org Chem 2024; 89:5783-5796. [PMID: 38591967 DOI: 10.1021/acs.joc.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
A visible-light-induced radical-cascade selenocyanation/cyclization of N-alkyl-N-methacryloyl benzamides, 2-aryl-N-acryloyl indoles, and N-methacryloyl-2-phenylbenzimidazoles with potassium isoselenocyanate (KSeCN) was developed. The reactions were carried out with inexpensive KSeCN as a selenocyanation reagent, potassium persulfate as an oxidant, 2,4,6-triphenylpyrylium tetrafluoroborate as a bifunctional catalyst for phase-transfer catalysis, and photocatalysis. A library of selenocyanate-containing isoquinoline-1,3(2H,4H)-diones, indolo[2,1-a]isoquinoline-6(5H)-ones, and benzimidazo[2,1-a]isoquinolin-6(5H)-ones were achieved in moderate to excellent yields at room temperature under visible-light and ambient conditions. Importantly, the present protocol features mild reaction conditions, large-scale synthesis, simple manipulation, product derivatization, good functional group, and heterocycle tolerance.
Collapse
Affiliation(s)
- Xinxin Ren
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Tao Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Shaofeng Wu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
6
|
Li Z, Zhang Z, Ma L, Wen H, Kang M, Li D, Zhang W, Luo S, Wang W, Zhang M, Wang D, Li H, Li X, Wang H. Combining Multiple Photosensitizer Modules into One Supramolecular System for Synergetic Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202400049. [PMID: 38193338 DOI: 10.1002/anie.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Photodynamic therapy (PDT), as an emerging cancer treatment, requires the development of highly desirable photosensitizers (PSs) with integrated functional groups to achieve enhanced therapeutic efficacy. Coordination-driven self-assembly (CDSA) would provide an alternative approach for combining multiple PSs synergistically. Here, we demonstrate a simple yet powerful strategy of combining conventional chromophores (tetraphenylethylene, porphyrin, or Zn-porphyrin) with pyridinium salt PSs together through condensation reactions, followed by CDSA to construct a series of novel metallo-supramolecular PSs (S1-S3). The generation of reactive oxygen species (ROS) is dramatically enhanced by the direct combination of two different PSs, and further reinforced in the subsequent ensembles. Among all the ensembles, S2 with two porphyrin cores shows the highest ROS generation efficiency, specific interactions with lysosome, and strong emission for probing cells. Moreover, the cellular and living experiments confirm that S2 has excellent PDT efficacy, biocompatibility, and biosafety. As such, this study will enable the development of more efficient PSs with potential clinical applications.
Collapse
Affiliation(s)
- Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Haifei Wen
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Danxia Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wenjing Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Siqi Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Weiguo Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518055, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
7
|
Haketa Y, Yamasumi K, Maeda H. π-Electronic ion pairs: building blocks for supramolecular nanoarchitectonics viaiπ- iπ interactions. Chem Soc Rev 2023; 52:7170-7196. [PMID: 37795542 DOI: 10.1039/d3cs00581j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The pairing of charged π-electronic systems and their ordered arrangement have been achieved by iπ-iπ interactions that are derived from synergetically worked electrostatic and dispersion forces. Charged π-electronic systems that provide ion pairs as building blocks for assemblies have been prepared by diverse strategies for introducing charge in the core π-electronic systems. One method to prepare charged π-electronic systems is the use of covalent bonding that makes π-electronic ions and valence-mismatched metal complexes as well as protonated and deprotonated states. Noncovalent ion complexation is another method used to create π-electronic ions, particularly for anion binding, producing negatively charged π-electronic systems. Charged π-electronic systems afford various ion pairs, consisting of both cationic and anionic π-systems, depending on their combinations. Geometries and electronic states of the constituents in π-electronic ion pairs affect the photophysical properties and assembling modes. Recent progress in π-electronic ion pairs has revealed intriguing characteristics, including the transformation into radical pairs through electron transfer and the magnetic properties influenced by the countercations. Furthermore, the assembly states exhibit diversity as observed in crystals and soft materials including liquid-crystal mesophases. While the chemistry of ion pairs (salts) is well-established, the field of π-electronic ion pairs is relatively new; however, it holds great promise for future applications in novel materials and devices.
Collapse
Affiliation(s)
- Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Kazuhisa Yamasumi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| |
Collapse
|
8
|
Nishino R, Tokitoh N, Sasayama R, Waterman R, Mizuhata Y. Unusual nuclear exchange within a germanium-containing aromatic ring that results in germanium atom transfer. Nat Commun 2023; 14:4519. [PMID: 37507362 PMCID: PMC10382490 DOI: 10.1038/s41467-023-40188-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The delivery of single atoms is highly desirable for the straightforward synthesis of complex molecules, however this approach is limited by a lack of suitable atomic transfer reagents. Here, we report a germanium atom transfer reaction employing a germanium analogue of the phenyl anion. The reaction yields a germanium-substituted benzene, along with a germanium atom which can be transferred to other chemical species. The transfer of atomic germanium is demonstrated by the formation of well-defined germanium doped molecules. Furthermore, computational studies reveal that the reaction mechanism proceeds via the first example of an aromatic-to-aromatic nuclear germanium replacement reaction on the germabenzene ring. This unusual reaction pathway was further probed by the reaction of our aromatic germanium anion with a molecular silicon species, which selectively yielded the corresponding silicon-substituted benzene derivative.
Collapse
Affiliation(s)
- Ryohei Nishino
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
- Integrated Research Consortium on Chemical Sciences, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Ryuto Sasayama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Rory Waterman
- Department of Chemistry, University of Vermont, Burlington, VT, 05405-0125, USA
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
- Integrated Research Consortium on Chemical Sciences, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
9
|
Zhong W, Wang Z, Yu WD, Wang N, Fu F, Wang J, Zhao H, Liu D, Jiang Z, Wang P, Chen M. Bi-directional geometric constraints in the construction of giant dual-rim nanorings. Dalton Trans 2023; 52:7071-7078. [PMID: 37161840 DOI: 10.1039/d3dt00897e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the field of metallo-supramolecular assemblies, supramolecular macrocycles have attracted considerable attention due to their guest recognition and catalytic properties. Herein, we report a novel strategy for the construction of giant hollow macrocyclic structures using a bi-directional geometric constraint strategy. We investigated the structural design of two terpyridine-based tetratopic organic ligands, whose inner and outer rims have different angles. Compared to conventional strategies of self-assembly using single angular orientation building blocks that typically generate small macrocyclic objects or polymers, the mutual interaction between the different angles of the ligands could promote the formation of giant hollow macrocyclic supramolecular architectures. The self-assembly mechanism and hierarchical self-assembly of giant supramolecular macrocycles have been characterized by NMR, ESI-MS and TEM experiments. The strategy used in this study not only advances the design of giant 2D macrocycles with large inner diameters but also gives insights into the mechanism of formation of large structures.
Collapse
Affiliation(s)
- Wanying Zhong
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| | - Zhantao Wang
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| | - Wei-Dong Yu
- College of Science, Hunan University of Technology and Business, Changsha 410000, P. R. China
| | - Ning Wang
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| | - Fan Fu
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| | - Jun Wang
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| | - He Zhao
- College of Chemistry and Chemical Engineering; Central South University, Changsha, 410083, Hunan, China
| | - Die Liu
- College of Chemistry and Chemical Engineering; Central South University, Changsha, 410083, Hunan, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, Guangdong, China.
- College of Chemistry and Chemical Engineering; Central South University, Changsha, 410083, Hunan, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
10
|
Xu Y, Zhang H, Su H, Ma J, Yu H, Li K, Shi J, Hao XQ, Wang K, Song B, Wang M. Hourglass-Shaped Nanocages with Concaved Structures Based on Selective Self-Complementary Coordination Ligands and Tunable Hierarchical Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300009. [PMID: 36964988 DOI: 10.1002/smll.202300009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Three-dimensional (3D) structures constructed via coordination-driven self-assemblies have recently garnered increasing attention due to the challenges in structural design and potential applications. In particular, developing new strategy for the convenient and precise self-assemblies of 3D supramolecular structures is of utmost interest. Introducing the concept of self-coordination ligands, herein the design and synthesis of two meta-modified terpyridyl ligands with selective self-complementary coordination moiety are reported and their capability to assemble into two hourglass-shaped nanocages SA and SB is demonstrated. Within these 3D structures, the meta-modified terpyridyl unit preferably coordinates with itself to serve as concave part. By changing the arm length of the ligands, hexamer (SA) and tetramer (SB) are obtained respectively. In-depth studies on the assembly mechanism of SA and SB indicate that the dimers could be formed first via self-complementary coordination and play crucial roles in controlling the final structures. Moreover, both SA and SB can go through hierarchical self-assemblies in solution as well as on solid-liquid interface, which are characterized by transmission electron microscope (TEM) and scanning tunneling microscopy (STM). It is further demonstrated that various higher-order assembly structures can be achieved by tuning the environmental conditions.
Collapse
Affiliation(s)
- Yaping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Haixin Zhang
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Haoyue Su
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Jianjun Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Kehuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xin-Qi Hao
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kun Wang
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS, 39762, USA
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Bo Song
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
11
|
Aleksiev M, García Mancheño O. Enantioselective dearomatization reactions of heteroarenes by anion-binding organocatalysis. Chem Commun (Camb) 2023; 59:3360-3372. [PMID: 36790499 PMCID: PMC10019134 DOI: 10.1039/d2cc07101k] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Catalytic asymmetric dearomatization of heteroaromatic compounds has received considerable attention in the last few years, since it allows for a fast expansion of the chemical space by converting relatively simple, flat molecules into complex, three dimensional structures with added value. Among different approaches, remarkable progress has been recently achieved by the development of organocatalytic dearomatization methods. In particular, the anion-binding catalysis technology has emerged as a potent alternative to metal catalysis, which together with the design of novel, tunable anion-receptor motifs, has provided new entries for the enantioselective dearomatization of heteroarenes through a chiral contact ion pair formation by activation of the electrophilic reaction partner. In this feature, we provide an overview of the different methodologies and advances in anion-binding catalyzed dearomatization reactions of different heteroarenes.
Collapse
Affiliation(s)
- Martin Aleksiev
- Organic Chemistry Institute, University of Münster, Corrensstraße 36/40, 48149 Münster, Germany.
| | - Olga García Mancheño
- Organic Chemistry Institute, University of Münster, Corrensstraße 36/40, 48149 Münster, Germany.
| |
Collapse
|
12
|
Morofuji T, Nagai S, Watanabe A, Inagawa K, Kano N. Streptocyanine as an activation mode of amine catalysis for the conversion of pyridine rings to benzene rings. Chem Sci 2023; 14:485-490. [PMID: 36741523 PMCID: PMC9847661 DOI: 10.1039/d2sc06225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Amine catalysts have emerged as an invaluable tool in organic synthesis. Iminium, enamine, and enamine radical cation species are representative activation modes of amine catalysis. However, the development of new amine catalysis activation modes that enable novel synthetic strategies remains highly desirable. Herein, we report streptocyanine as a new amine catalysis activation mode, which enables the skeletal editing of pyridine rings to benzene rings. N-Arylation of pyridines bearing an alkenyl substituent at the 3-position generates the corresponding N-arylpyridiniums. The resulting pyridinum reacts with a catalytic amount of piperidine to afford a streptocyanine intermediate. Catalytically generated streptocyanine forms a benzene ring via a ring-closing reaction, thereby releasing the amine catalyst. Consequently, the alkene moiety in the starting pyridines is incorporated into the benzene ring of the products. Pyridiniums bearing various alkene moieties were efficiently converted to formyl-substituted benzene derivatives. Mechanistic studies support the postulation that the present catalytic process was intermediated by streptocyanine. In this reaction system, streptocyanine could be regarded as a new activation mode of amine catalysis.
Collapse
Affiliation(s)
- Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University 1-5-1 Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Shota Nagai
- Department of Chemistry, Faculty of Science, Gakushuin University 1-5-1 Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Airi Watanabe
- Department of Chemistry, Faculty of Science, Gakushuin University 1-5-1 Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Kota Inagawa
- Department of Chemistry, Faculty of Science, Gakushuin University 1-5-1 Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University 1-5-1 Mejiro Toshima-ku Tokyo 171-8588 Japan
| |
Collapse
|
13
|
Huang X, Zhang Q. A Gourd-shaped Organometallic Coordination Cage: Synthesis and Selective Binding of Two Drug Molecules. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22120511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
14
|
Bhowmik PK, Principe RCG, Chen SL, King D, Han H, Jubair A, Kartazaev V, Gayen SK. Synthesis, optical spectroscopy and laser potential of 2,4,6-triphenylpyrylium chloride. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Su F, Zhang S, Chen Z, Zhang Z, Li Z, Lu S, Zhang M, Fang F, Kang S, Guo C, Su C, Yu X, Wang H, Li X. Precise Synthesis of Concentric Ring, Helicoid, and Ladder Metallo-Polymers with Chevron-Shaped Monomers. J Am Chem Soc 2022; 144:16559-16571. [PMID: 35998652 DOI: 10.1021/jacs.2c06251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular geometry represents one of the most important structural features and governs physical properties and functions of materials. Nature creates a wide array of substances with distinct geometries but similar chemical composition with superior efficiency and precision. However, it remains a formidable challenge to construct abiological macromolecules with various geometries based on identical repeating units, owing to the lack of corresponding synthetic approaches for precisely manipulating the connectivity between monomers and feasible techniques for characterizing macromolecules at the single-molecule level. Herein, we design and synthesize a series of tetratopic monomers with chevron stripe shape which serve as the key precursors to produce four distinct types of metallo-macromolecules with well-defined geometries, viz., the concentric hexagon, helicoid polymer, ladder polymer, and cross-linked polymer, via platinum-acetylide couplings. Concentric hexagon, helicoid, and ladder metallo-polymers are directly visualized by transmission electron microscopy, atomic force microscopy, and ultra-high-vacuum low-temperature scanning tunneling microscopy at the single-molecule level. Finally, single-walled carbon nanotubes (SWCNTs) are selected as the guest to investigate the structure-property relationship based on such macromolecules, among which the helicoid metallo-polymer shows high efficiency in wrapping SWCNTs with geometry-dependent selectivity.
Collapse
Affiliation(s)
- Feng Su
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Shunran Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong 523106, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Fang Fang
- Instrumental Analysis Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Shimin Kang
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong 523106, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chenliang Su
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China
| |
Collapse
|
16
|
Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Masada K, Kusumoto S, Nozaki K. Atom Swapping on Aromatic Rings: Conversion from Phosphinine Pincer Metal Complexes to Metallabenzenes Triggered by O 2 Oxidation. Angew Chem Int Ed Engl 2022; 61:e202117096. [PMID: 35191160 DOI: 10.1002/anie.202117096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/08/2022]
Abstract
Herein, we report a novel method for the synthesis of metallabenzenes by swapping the phosphorus atom in an aromatic phosphinine ring with transition metal fragments. The oxidation of a phosphine-phosphinine-phosphine pincer iridium complex by O2 triggered the replacement of the phosphorus atom of the phosphinine ring by an iridium fragment to afford iridabenzene. Dianionic rhodabenzene was also synthesized from a phosphinine rhodium complex by oxidation of the phosphorus atom, followed by subsequent reduction using metallic potassium. The aromaticity of the newly synthesized irida- and rhoda-benzenes was evaluated both experimentally and theoretically.
Collapse
Affiliation(s)
- Koichiro Masada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shuhei Kusumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
18
|
Pyrylium-based porous organic polymers via Knoevenagel condensation for efficient visible-light-driven heterogeneous photodegradation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Masada K, Kusumoto S, Nozaki K. Atom Swapping on Aromatic Rings: Conversion from Phosphinine Pincer Metal Complexes to Metallabenzenes Triggered by O
2
Oxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Koichiro Masada
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Shuhei Kusumoto
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| |
Collapse
|
20
|
Xu Y, Su H, Bai Q, Fang F, Ma J, Zhang Z, Hao XQ, Shi J, Wang P, Wang M. Design and Self-Assembly of Macrocycles with Metals at the Corners Based on Dissymmetric Terpyridine Ligands. Chem Asian J 2022; 17:e202200071. [PMID: 35212169 DOI: 10.1002/asia.202200071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/23/2022] [Indexed: 11/11/2022]
Abstract
Terpyridine-based discrete supramolecular architectures with metal ions in the corners have rarely been reported. Herein, we report two dissymmetric terpyridyl ligands LA and LB decorated at the 5-position and 4-position of terpyridine respectively. The complexes constructed by the self-assembly of LA and LB with Zn(II) exhibit hand-circle-like structures. Moreover, all Zn(II) are successfully fixed in the corners. A series of dimeric to hexameric macrocycles is obtained by head-to-tail connections with changing concentration. This work will pave the way for preparation of more elaborate self-assembled structures based on dissymetric ligands.
Collapse
Affiliation(s)
- Yaping Xu
- Jilin University, College of Chemistry, CHINA
| | - Haoyue Su
- Jilin University, College of Chemistry, CHINA
| | - Qixia Bai
- Guangzhou University, Institute of Environmental Research at Greater Bay Area, CHINA
| | - Fang Fang
- Shenzhen University, Instrumental Analysis Center of Shenzhen University, CHINA
| | - Jianjun Ma
- Jilin University, College of Chemistry, CHINA
| | - Zhe Zhang
- Guangzhou University, Institute of Environmental Research at Greater Bay Area, CHINA
| | - Xin-Qi Hao
- Zhengzhou University, College of Chemistry and Green Catalysis Center, CHINA
| | - Junjuan Shi
- Jilin University, College of Chemistry, CHINA
| | - Pingshan Wang
- Guangzhou University, Institute of Environmental Research at Greater Bay Area, CHINA
| | - Ming Wang
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, No 2699 Qianjin Street, 130012, changhcun, CHINA
| |
Collapse
|
21
|
Yu X, Guo C, Lu S, Chen Z, Wang H, Li X. Terpyridine-Based 3D Discrete Metallosupramolecular Architectures. Macromol Rapid Commun 2022; 43:e2200004. [PMID: 35167147 DOI: 10.1002/marc.202200004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Indexed: 12/13/2022]
Abstract
Terpyridine (tpy)-based 3D discrete metallosupramolecular architectures, which are often inspired by polyhedral geometry and the biological structures found in nature, have drawn significant attention from the community of metallosupramolecular chemistry. Because of the linear tpy-M(II)-tpy connectivity, the creation of sophisticated 3D metallosupramolecules based on tpy remains a formidable synthetic challenge. Nevertheless, with recent advancement in ligand design and self-assembly, diverse 3D metallosupramolecular polyhedrons, such as Platonic solids, Archimedean solids, prims as well as Johnson solids, have been constructed and their potential applications have been explored. This review summarizes the progress on tpy-based discrete 3D metallosupramolecules, aiming to shed more light on the design and construction of novel discrete architectures with molecular-level precision through coordination-driven self-assembly.
Collapse
Affiliation(s)
- Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
22
|
Bi S, Zhang Z, Meng F, Wu D, Chen J, Zhang F. Heteroatom‐Embedded Approach to Vinylene‐Linked Covalent Organic Frameworks with Isoelectronic Structures for Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuai Bi
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zixing Zhang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jie‐Sheng Chen
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
23
|
Li S, Liu C, Chen Q, Jiang F, Yuan D, Sun QF, Hong M. Adaptive coordination assemblies based on a flexible tetraazacyclododecane ligand for promoting carbon dioxide fixation. Chem Sci 2022; 13:9016-9022. [PMID: 36091216 PMCID: PMC9365242 DOI: 10.1039/d2sc03093d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Coordination hosts based on flexible ligands have received increasing attention due to their inherent adaptive cavities that often show induced-fit guest binding and catalysis like enzymes. Herein, we report the controlled self-assembly of a series of homo/heterometallic coordination hosts (Me4enPd)2n(ML)n [n = 2/3; M = Zn(ii)/Co(ii)/Ni(ii)/Cu(ii)/Pd(ii)/Ag(i); Me4en: N,N,N′,N′-tetramethylethylenediamine] with different shapes (tube/cage) from a flexible tetraazacyclododecane-based pyridinyl ligand (L) and cis-blocking Me4enPd(ii) units. While the Ag(i)-metalated ligand (AgL) gave rise to the formation of a (Me4enPd)4(ML)2-type cage, all other M(ii) ions led to isostructural (Me4enPd)6(ML)3-type tubular complexes. Structural transformations between cages and tubes could be realized through transmetalation of the ligand. The buffering effect on the ML panels endows the coordination tubes with remarkable acid–base resistance, which makes the (Me4enPd)6(ZnL)3 host an effective catalyst for the CO2 to CO32− conversion. Control experiments suggested that the integration of multiple active Zn(ii) sites on the tubular host and the perfect geometry match between CO32− and the cavity synergistically promoted such a conversion. Our results provide an important strategy for the design of adaptive coordination hosts to achieve efficient carbon fixation. A series of coordination hosts were prepared and their applications in CO2 fixation were studied.![]()
Collapse
Affiliation(s)
- Shaochuan Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Caiping Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Qing-Fu Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| |
Collapse
|
24
|
Grabowski D, Alef S, Becker S, Müller U, Schnakenburg G, Höger S. Condensation of pyrylium salts with mixed anhydrides: aryl ethers, aryl amines and sterically congested aromatics. Org Chem Front 2022. [DOI: 10.1039/d1qo01419f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Condensation of 2,4,6-triaryl pyrylium salts with mixed anhydrides, formed in situ from α-functionalized sodium acetates and an anhydride solvent, leads in good yields to the corresponding 2,4,6-triaryl benzenes functionalized at their 1-position.
Collapse
Affiliation(s)
- Daniel Grabowski
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Susanne Alef
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Steven Becker
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Ute Müller
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| |
Collapse
|
25
|
Li X, Chai L, Ren J, Jin L, Wang H, Li Y, Ma S. Efficient collection of perrhenate anions from water using poly(pyridinium salts) via pyrylium mediated transformation. Polym Chem 2022. [DOI: 10.1039/d1py01232k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Poly(pyridinium salts) composed of cationic pyridinium groups with benzene-rich motifs demonstrated high efficiency and selectivity in the capture of ReO4− from SO42− containing water.
Collapse
Affiliation(s)
- Xiaorui Li
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan, 410083, China
| | - Junyu Ren
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Linfeng Jin
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan, 410083, China
- Water Pollution Control Technology Key Lab of Hunan Province, Changsha, Hunan, 410004, China
| | - Yiming Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| |
Collapse
|
26
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
27
|
Bi S, Zhang Z, Meng F, Wu D, Chen JS, Zhang F. Heteroatom-Embedded Approach to Vinylene-Linked Covalent Organic Frameworks with Isoelectronic Structures for Photoredox Catalysis. Angew Chem Int Ed Engl 2021; 61:e202111627. [PMID: 34813141 DOI: 10.1002/anie.202111627] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/06/2022]
Abstract
Embedding heteroatoms into the main backbones of polymeric materials has become an efficient tool for tailoring their structures and improving their properties. However, owing to comparatively harsh heteroatom-doping conditions, this has rarely been explored in covalent organic frameworks (COFs). Herein, upon aldol condensation of a trimethyl-substituted pyrylium salt with a tritopic aromatic aldehyde, a two-dimensional oxonium-embedded COF with vinylene linkages was achieved, which was further converted to a neutral pyridine-cored COF by in situ replacement of oxonium ions with nitrogen atoms under ammonia treatment. The two heteroatom-embedded COFs are conceptually isoelectronic with each other, featuring similar geometric structures but different electronic structures, rendering them capable of catalyzing the visible-light-promoted multi-component synthesis of tri-substituted pyridine derivatives with good recyclability.
Collapse
Affiliation(s)
- Shuai Bi
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zixing Zhang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
28
|
Chang X, Wang Z, Wang G, Liu T, Lin S, Fang Y. Perylene Bisimide-Cored Supramolecular Coordination Complexes: Interplay between Ensembles, Excited State Processes, and Aggregation Behaviors. Chemistry 2021; 27:14876-14885. [PMID: 34462989 DOI: 10.1002/chem.202101970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Manipulating the optical properties of fluorescent species is challenging owing to complicated and tedious synthetic works. Herein, the photophysical properties of perylene bisimide (PBI) were effectively tuned by varying the geometrical arrangement of PBI moieties within supramolecular coordination complexes (SCCs), where a PBI-based dicycle (2) and a trigonal prism (3) were generated via using a typical 90° Pt(II) reagent, cis-(PEt3 )2 Pt(OTf)2 -based coordination-driven self-assembly approach. The ligand, an ortho-tetrapyridiyl-PBI (1), exhibits a moderate fluorescence quantum yield (∼13 %) and efficient inter-system crossing (ISC). 2, however, is much more emissive with a fluorescence quantum yield of ∼41 %, and the relevant ISC process is significantly hindered. The fluorescence quantum yield of 3 is merely ∼6 % due to the observed symmetry-breaking charge separation (SB-CS), which turns to triplet state upon charge recombination. Interestingly, 3 could be fully transformed into 2 by simply adding a suitable amount of a 90° Pt(II)-based neutral triangle. Moreover, 2 tends to form discrete dimers both in crystal and solution states, but 3 does not show the property. Therefore, controlling geometrical arrangement of fluorophores through coordination-driven self-assembly could be taken as another effective way to tune their excited state relaxation pathways and construct high-performance optical molecular materials, which generally have to be prepared via organic synthesis.
Collapse
Affiliation(s)
- Xingmao Chang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Simin Lin
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
29
|
Núñez-Franco R, Jiménez-Osés G, Jiménez-Barbero J, Cabrera-Escribano F, Franconetti A. Unveiling the role of pyrylium frameworks on π-stacking interactions: a combined ab initio and experimental study. Phys Chem Chem Phys 2021; 24:1965-1973. [PMID: 34633001 DOI: 10.1039/d1cp02622d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multidisciplinary study is presented to shed light on how pyrylium frameworks, as π-hole donors, establish π-π interactions. The combination of CSD analysis, computational modelling (ab intitio, DFT and MD simulations) and experimental NMR spectroscopy data provides essential information on the key parameters that characterize these intereactions, opening new avenues for further applications of this versatile heterocycle.
Collapse
Affiliation(s)
- Reyes Núñez-Franco
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain.
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain. .,lkerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain. .,lkerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Francisca Cabrera-Escribano
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Profesor García González 1, 41012 Sevilla, Spain
| | - Antonio Franconetti
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain.
| |
Collapse
|
30
|
Morofuji T, Inagawa K, Kano N. Sequential Ring-Opening and Ring-Closing Reactions for Converting para-Substituted Pyridines into meta-Substituted Anilines. Org Lett 2021; 23:6126-6130. [PMID: 34314185 DOI: 10.1021/acs.orglett.1c02225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein we report a method for converting para-substituted pyridine rings into meta-dialkylamino-substituted benzene rings through sequential ring-opening and ring-closing reactions. The nitrogen atom in the pyridine rings was replaced with a methine group, and a dialkylamino substituent was introduced onto the original unsubstituted carbon atom in the pyridine rings. This process can be formally regarded as a hybrid of the skeletal editing and C-H amination of pyridine rings.
Collapse
Affiliation(s)
- Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Kota Inagawa
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|