1
|
Wang X, Wang Q, Wang C, Chu Y, Hu M, Deng F, Yu J, Xu J. Observation of Water-Induced Synergistic Acidic Site from NMR-Invisible Al in Zeolite via Solid-State NMR Spectroscopy. J Am Chem Soc 2025; 147:17829-17838. [PMID: 40384119 DOI: 10.1021/jacs.5c01756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Zeolites are highly sensitive to water, which significantly affects their acidity─a key factor in catalytic reactions. This study investigates the dynamic interactions between water and often overlooked active sites, specifically the "NMR-invisible" aluminum species (tricoordinated framework Al─FAL and cationic extra-framework Al─EFAL) in ultrastable Y (USY) zeolite under ambient conditions. Using solid-state NMR spectroscopy combined with theoretical calculations, we demonstrate that water readily undergoes dissociative adsorption on these "NMR-invisible" Al sites. This process transforms both FAL and EFAL into "NMR-visible" Al species. The formation of new Brønsted acid sites on tetra-, penta-, and hexa-coordinated FAL results in an increase of over 60% in the BAS concentration in the USY zeolite. The hydrolysis of EFAL cations leads to the formation of Brønsted/Lewis acid synergistic sites, significantly improving the catalytic activity of USY zeolite. This enhancement is evident in the improved conversion of diethyl ether to ethene in the presence of moisture.
Collapse
Affiliation(s)
- Xingxing Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Lei C, Bornes C, Bengtsson O, Erlebach A, Slater B, Grajciar L, Heard CJ. A machine learning approach for dynamical modelling of Al distributions in zeolites via23Na/ 27Al solid-state NMR. Faraday Discuss 2025; 255:46-71. [PMID: 39382089 DOI: 10.1039/d4fd00100a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
One of the main limitations in supporting experimental characterization of Al siting/pairing via modelling is the high computational cost of ab initio calculations. For this reason, most works rely on static or very short dynamical simulations, considering limited Al pairing/siting combinations. As a result, comparison with experiment suffers from a large degree of uncertainty. To alleviate this limitation we have developed neural network potentials (NNPs) which can dynamically sample across broad configurational and chemical spaces of sodium-form aluminosilicate zeolites, preserving the level of accuracy of the ab initio (dispersion-corrected metaGGA) training set. By exploring a wide range of Al/Na arrangements and a combination of experimentally relevant Si/Al ratios, we found that the 23Na NMR spectra of dehydrated high-silica CHA zeolite offer an opportunity to assess the distribution and pairing of Al atoms. We observed that the 23Na chemical shift is sensitive not only to the location of sodium in 6- and 8MRs, but also to the Al-Sin-Al sequence length. Furthermore, neglect of thermal and dynamical contributions was found to lead to errors of several ppm, and has a profound influence on the shape of the spectra and the dipolar coupling constants, thus necessitating the long-term dynamical simulations made feasible by NNPs. Finally, we obtained a predictive regression model for the 23Na chemical shift in CHA (Si/Al = 35, 17, 11) that circumvents the need for expensive NMR density functional calculations and can be easily extended to other zeolite frameworks. By combining NNPs and regression methods, we can expedite the simulations of NMR properties and capture the effect of dynamics on the spectra, which is often overlooked in computational studies despite its clear manifestation in experimental setups.
Collapse
Affiliation(s)
- Chen Lei
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 12483, Czech Republic.
| | - Carlos Bornes
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 12483, Czech Republic.
| | - Oscar Bengtsson
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Andreas Erlebach
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 12483, Czech Republic.
| | - Ben Slater
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Lukas Grajciar
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 12483, Czech Republic.
| | - Christopher J Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 12483, Czech Republic.
| |
Collapse
|
3
|
Singh S, Martínez-Ortigosa J, Ortuño N, Polshettiwar V, García-Martínez J. Enhanced efficiency in plastic waste upcycling: the role of mesoporosity and acidity in zeolites. Chem Sci 2024; 15:20240-20250. [PMID: 39568899 PMCID: PMC11575530 DOI: 10.1039/d4sc05121a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
By modulating zeolite confinement and improving pore diffusion properties, addressing a significant limitation in current plastic waste upcycling methodologies is essential. In this work, we have developed mesoporous zeolites that exhibit enhanced diffusion capabilities for long-chain polymers without compromising the crystalline structure. The mesopore volume doubled from 0.14 cm3 g-1 (CBV720) to 0.28 cm3 g-1 (M7203h) after zeolite modification. This has enabled to overcome the inefficiencies associated with polymer diffusion in conventional zeolites, significantly advancing the catalytic conversion of plastic waste into valuable products. Catalytic pyrolysis experiments on various polyethylenes underline the superior performance of mesoporous zeolites, especially for highly branched polymer structures where degradation temperatures are reduced by 29 °C compared to conventional zeolites, highlighting the importance of pore arrangement. Detailed analysis using NH3-TPD and in situ DRIFT spectroscopy reveals the crucial role of Brønsted acid sites in enhancing degradation efficiency. The optimized mesoporous zeolite catalyst, M720cit, showed excellent effectiveness in reducing degradation temperatures for a wide range of daily-use plastic waste. The T 10 values were significantly reduced for various plastic wastes: food packaging dropped to 208 °C (from 354 °C), plastic bottles to 349 °C (from 381 °C), and milk packets to 277 °C (from 409 °C), among others. Moreover, the well-retained microstructure of the M720 catalyst yielded a very similar product distribution despite the introduction of mesoporosity. This study not only surmounts crucial obstacles in the modulation of zeolite confinement and the enhancement of pore diffusion properties but also augments the economic and environmental sustainability of plastic waste conversion processes.
Collapse
Affiliation(s)
- Saideep Singh
- Department of Chemical Sciences, Tata Institute of Fundamental Research Mumbai 40005 India
| | - Joaquín Martínez-Ortigosa
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC) Avda. de los Naranjos s/n 46022 Valencia Spain
- Laboratorio de Nanotecnología Molecular, Departamento de Química Inorgánica, Universidad de Alicante Ctra. San Vicente-Alicante s/n 03690 Alicante Spain
| | - Nuria Ortuño
- University Institute of Chemical Process Engineering, University of Alicante Carretera de San Vicente del Raspeig, s/n 03690 Alicante Spain
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research Mumbai 40005 India
| | - Javier García-Martínez
- Laboratorio de Nanotecnología Molecular, Departamento de Química Inorgánica, Universidad de Alicante Ctra. San Vicente-Alicante s/n 03690 Alicante Spain
| |
Collapse
|
4
|
Lin M, Jiang D, Yan Y, Zhan L, Song X, Li R, Wu Y. Selective regulation of products for guaiacol hydrodeoxygenation by adjusting type and acidity of supports. BIORESOURCE TECHNOLOGY 2024; 413:131478. [PMID: 39265753 DOI: 10.1016/j.biortech.2024.131478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Upgrading lignin-oil into advanced fuels or chemicals has been widely studied in recent years. To understand the effect of support type and acidity on the hydrodeoxygenation (HDO) of guaiacol (lignin-oil model compound), Ni-based catalysts were prepared with SiO2, Al2O3 and ZSM-5 as supports, respectively. The catalysts were characterized by X-ray diffraction (XRD), N2 adsorption desorption, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Pyridine adsorption Fourier-transform infrared (Py-IR). The research results indicate that selective regulation of guaiacol hydrogenation products can be achieved by changing the type and acidity of support. Cyclohexanol is the main product over Ni/SiO2, while cyclohexane is the main product over Ni/ZSM-5 series catalysts. Moreover, as the Si/Al ratio increases, the catalytic activity of Ni/ZSM-5 slightly decreases, and the yield of cyclohexane also decreases. The Brønsted acidity of the support is the key to promoting the conversion of cyclohexanol to cyclohexane. The formation of NiAl2O4 is the main reason for the relatively low activity of Ni/Al2O3. The conversion of guaiacol is as high as 99.2 %, and the yield of cyclohexane is as high as 86.6 % over Ni/ZSM-5(Si/Al = 27). In addition, complete conversion of guaiacol and 92.6 % yield of cyclohexanol were achieved over Ni/SiO2. More importantly, Ni/SiO2 and Ni/ZSM-5(27) are suitable for aromatic substrates with different substituents, respectively.
Collapse
Affiliation(s)
- Min Lin
- MOE Engineering Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Daxin Jiang
- MOE Engineering Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Yuhao Yan
- MOE Engineering Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Lulu Zhan
- MOE Engineering Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Xianliang Song
- MOE Engineering Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Rui Li
- MOE Engineering Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Yulong Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China; School of Chemistry and Chemical Engineering, Xinjiang University, Ürümqi 830046, China.
| |
Collapse
|
5
|
Devos J, Sushkevich VL, Khalil I, Robijns S, de Oliveira-Silva R, Sakellariou D, van Bokhoven J, Dusselier M. Enhancing the Acidity Window of Zeolites by Low-Temperature Template Oxidation with Ozone. J Am Chem Soc 2024; 146:27047-27059. [PMID: 39298277 DOI: 10.1021/jacs.4c08123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Revisiting the impact of the first and often deemed trivial postsynthetic step, i.e., a high-temperature oxidative calcination to remove organic templates, increases our understanding of thermal acid site evolution and Al distributions. An unprecedented degree of control over the acidity of high-silica zeolites (SSZ-13) was achieved by using a low-temperature ozonation approach. Fourier transform infrared spectroscopy of adsorbed probe molecules and solid-state NMR spectroscopy reveal the complexity of the thermal evolution of acid sites. Low-temperature activated (ozonated) zeolites maintain the original Brønsted acidity content and high defect content and have virtually no Lewis acidity. They also preserve the "as-made" Al distribution after crystallization and show a clear link between synthesis conditions and divalent cation capacity, as measured with aqueous cobalt ion uptake. The synthesis protocol is found to be the main contributor to Al proximity, yielding record high exchange capacity when ozonated. After conventional calcination at 500-600 °C, however, the presence of water leads to the gradual depletion of Brønsted acid sites, in particular, in small crystals. This work indicates that low-temperature ozonation followed by thermal activation at different temperatures can be used as a novel tool for tuning the amount and nature of acid sites, providing insights into the activity of zeolites in acid-catalyzed reactions, such as CO2 hydrogenation to dimethyl ether, and thereby expanding the possibilities of rational acidity tuning.
Collapse
Affiliation(s)
- Julien Devos
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Vitaly L Sushkevich
- Center for Energy and Environment, Paul Scherrer Institute, Villigen PSI 5232, Switzerland
| | - Ibrahim Khalil
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Sven Robijns
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Rodrigo de Oliveira-Silva
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Dimitrios Sakellariou
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Jeroen van Bokhoven
- Center for Energy and Environment, Paul Scherrer Institute, Villigen PSI 5232, Switzerland
| | - Michiel Dusselier
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| |
Collapse
|
6
|
Dalena F, Dib E, Onida B, Ferrarelli G, Daturi M, Giordano G, Migliori M, Mintova S. Evaluation of Zeolite Composites by IR and NMR Spectroscopy. Molecules 2024; 29:4450. [PMID: 39339445 PMCID: PMC11433990 DOI: 10.3390/molecules29184450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, we assessed the quantity, strength, and acidity of zeolite composites comprising Silicalite-1 grown on ZSM-5 crystals using a combination of infrared (IR) and solid-state nuclear magnetic resonance (NMR) spectroscopy. The composites were created through the direct growth of Silicalite-1 crystals on ZSM-5 (P_ZSM-5), either with or without the organic structure-directing agent (OSDA) introduced into the ZSM-5 channels (samples: H_ZSM-5_Sil1 and TPA_ZSM-5_Sil1). The results revealed that Silicalite-1 grew differently when the ZSM-5 core was in the H+ form (empty pores) compared to when the OSDA was still present in the sample. This distinction was evident in the textural properties, with a decrease in the micropore surface area and an increase in the external surface area in the H_ZSM-5_Sil1 compared to the parent sample. The TPA_ZSM-5_Sil1 composite exhibited characteristics similar to the parent zeolite. These findings were further supported by 29Si NMR, which revealed a comparable local order for the parent (P_ZSM-5) and TPA_ZSM-5_Sil1 samples, along with a broadening of the Q4 peak for the H_ZSM-5_Sil1 composite. Additionally, the acid sites were preserved in the TPA_ZSM-5_Sil1 composite, while in the H+-form core, the concentration of Brønsted acid sites significantly decreased. This reduction in isolated Brønsted acid sites was further corroborated by 1H NMR.
Collapse
Affiliation(s)
- Francesco Dalena
- ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Normandie University, 14000 Caen, France (S.M.)
| | - Eddy Dib
- ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Normandie University, 14000 Caen, France (S.M.)
| | - Barbara Onida
- Department of Applied Science and Technology, Polytechnic of Turin, 10129 Torino, Italy;
| | - Giorgia Ferrarelli
- Chemical Engineering, Catalysis and Sustainable Processes Laboratory, University of Calabria, 87036 Rende, Italy; (G.F.); (M.M.)
| | - Marco Daturi
- ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Normandie University, 14000 Caen, France (S.M.)
| | - Girolamo Giordano
- Chemical Engineering, Catalysis and Sustainable Processes Laboratory, University of Calabria, 87036 Rende, Italy; (G.F.); (M.M.)
| | - Massimo Migliori
- Chemical Engineering, Catalysis and Sustainable Processes Laboratory, University of Calabria, 87036 Rende, Italy; (G.F.); (M.M.)
| | - Svetlana Mintova
- ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Normandie University, 14000 Caen, France (S.M.)
| |
Collapse
|
7
|
Praikaew W, Chuseang J, Prameswari J, Ratchahat S, Chaiwat W, Koo-Amornpattana W, Assabumrungrat S, Lin YC, Srifa A. Direct Production of Sustainable Aviation Fuel by Deoxygenation and Isomerization of Triglycerides Over Bifunctional Ir-ReO x/SAPO-11 Catalyst. Chempluschem 2024; 89:e202400075. [PMID: 38828489 DOI: 10.1002/cplu.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Catalytic thermochemical conversion offers a sustainable method to upgrade oil-based feedstocks into highly valuable biofuel, aligning with the modern biorefinery concept. Herein, a series of IrRe/SAPO-11 catalysts with different Ir to Re molar ratios compared to reference Ir/SAPO-11 and Re/SAPO-11 catalysts was prepared using a wetness impregnation method. These catalysts were used for the direct production of sustainable aviation fuels (SAFs) via efficient hydrodeoxygenation and hydroisomerization of triglycerides. The catalyst screening confirmed that the optimum IrRe/SAPO-11 catalyst, with an equivalent Ir to Re molar ratio, exhibited the highest hydrodeoxygenation activity under milder operation conditions than the conditions used in previous studies. Increasing the reaction temperature up to 330 °C enhanced the formation of iso-alkanes in the liquid product, achieving a freezing point of -31.4 °C without additional cold flow improvers. Furthermore, a long-term stability experiment demonstrated that the developed Ir-Re system exhibited exceptional performance over 150 h. This excellent catalytic activity and stability of the bifunctional IrRe/SAPO-11 catalyst was owing to its suitable interface between metallic and oxide sites, mixed mesoporous structures, reduced catalyst size, and increased Lewis acid ratio, as confirmed by our comprehensive characterizations.
Collapse
Affiliation(s)
- Wanichaya Praikaew
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Jirawat Chuseang
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Jedy Prameswari
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Sakhon Ratchahat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Weerawut Chaiwat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Wanida Koo-Amornpattana
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Suttichai Assabumrungrat
- Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-Economy Technology & Engineering Center, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yu-Chuan Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Atthapon Srifa
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
8
|
Jayakumari MT, Krishnan CK. Modulating acid sites in Y zeolite for valorisation of furfural to get γ-valerolactone. RSC Adv 2024; 14:21453-21463. [PMID: 38979450 PMCID: PMC11228575 DOI: 10.1039/d4ra03113j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Furfural is a biomass-derived platform molecule that can be converted into a variety of useful products. Catalysts having appropriate balance between Lewis and Brønsted acid sites are suitable for valorisation of furfural. Lewis acidic metal ion incorporated zeolites were studied for this purpose. However, incorporating Lewis acidic metal ions into an alumino-silicate framework of a zeolite is a cumbersome process. Hence, an attempt has been made in this work to modulate the acid sites of Y zeolite via thermal treatment to effect controlled dealumination and use it for valorisation of furfural using isopropyl alcohol, which is a cascade transformation. The thermal treatment of zeolites changed the distribution of acid sites and increased the weak plus moderate to strong acid site ratio. Among the thermally dealuminated Y, beta and mordenite zeolites, with SiO2/Al2O3 ratio 5.2, 25 and 20, only Y zeolite could yield γ-valerolactone, the final product of the aimed cascade transformation. Complete conversion of furfural and 52% γ-valerolactone yield could be achieved under the optimized conditions using NH4Y zeolite thermally dealuminated at 700 °C (TY700). The better catalytic activity of TY700 could be correlated to a combination different factors such as framework structure, suitable weak plus moderate to strong acid site ratio, presence of both penta-coordinated and octahedral Al sites and balance between Brønsted and Lewis acid sites.
Collapse
Affiliation(s)
- Malu Thayil Jayakumari
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 India
| | | |
Collapse
|
9
|
Wang H, Yang Y, Zhou Y, Chen J, Wang D, Cui W, Zhou L, Xu S, Yao Y. Exploring the Interfacial Hydrogen Transfer between Pt and the Siliceous Framework and Its Promotional Effect on the Isotope Catalytic Exchange. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31126-31136. [PMID: 38836772 DOI: 10.1021/acsami.4c03725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Interfacial hydrogen transfer between metal particles and catalyst supports is a ubiquitous phenomenon in heterogeneous catalysis, and this occurrence on reducible supports has been established, yet controversies remain about how hydrogen transfer can take place on nonreducible supports, such as silica. Herein, highly dispersed Pt clusters supported on a series of porous silica materials with zeolitic or/and amorphous frameworks were prepared to interrogate the nature of hydrogen transfer and its promotional effect on H2-HDO isotope catalytic exchange. The formation of zeolitic frameworks upon these porous silica supports by hydrothermal crystallization greatly promotes the interfacial hydrogen bidirectional migration between metal clusters and supports. Benefiting from this transfer effect, the isotope exchange rate is enhanced by 10 times compared to that on the amorphous counterpart (e.g., Pt/SBA-15). In situ spectroscopic and theoretical studies suggest that the defective silanols formed within the zeolite framework serve as the reactive sites to bind HDO or H2O by hydrogen bonds. Under the electrostatic attraction interaction, the D of hydrogen-bonded HDO scrambles to the Pt site and the dissociated H on Pt simultaneously spills back to the electronegative oxygen atom of adsorbed water to attain H-D isotope exchange with an energy barrier of 0.43 eV. The reverse spillover D on Pt combines with the other H on Pt to form HD in the effluent. We anticipate that these findings are able to improve our understanding of hydrogen transfer between metal and silica supports and favor the catalyst design for the hydrogen-involving reaction.
Collapse
Affiliation(s)
- Hongbing Wang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China
| | - Yifei Yang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China
| | - Yida Zhou
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jun Chen
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China
| | - Dongping Wang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China
| | - Wei Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linsen Zhou
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China
| | - Shutao Xu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yunxi Yao
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China
| |
Collapse
|
10
|
Ji Y, Chen K, Han X, Bao X, Hou G. Precise Structural and Dynamical Details in Zeolites Revealed by Coupling-Edited 1H- 17O Double Resonance NMR Spectroscopy. J Am Chem Soc 2024. [PMID: 38528765 DOI: 10.1021/jacs.3c14787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Despite the extensive industrial and research interests in zeolites, their intrinsic catalytic nature is not fully understood due to the complexity of the hydroxyl-aluminum moieties. 17O NMR would provide irreplaceable opportunities for much-needed fine structural determination given the ubiquitous presence of oxygen atoms in nearly all species; however, the low sensitivity and quadrupolar nature of oxygen-17 make its NMR spectroscopic elucidation challenging. Here, we show that state-of-the-art double resonance solid-state NMR techniques have been combined with spectral editing methods based on scalar (through-bond) and dipolar (through-space) couplings, which allowed us to address the subtle protonic structures in zeolites. Notably, the often-neglected and undesired second-order quadrupolar-dipolar cross-term interaction ("2nd-QD interaction") can actually be exploited and can help gain invaluable information. Eventually, a comprehensive set of 1H-17O/1H-27Al double resonance NMR with J-/D-coupling spectral editing techniques have been designed in this work and enabled us to reveal atomic-scale precise structural and dynamical details in zeolites including: 1) The jump rate of the bridging acid site (BAS) proton is relatively low, i.e., far less than 100 s-1 at room temperature. 2) The Al-OH groups with 1H chemical shift at 2.6-2.8 ppm, at least for nonseverely dealuminated H-ZSM-5 catalysts, exhibit a rigid bridging environment similar to that of BAS. 3) The Si-OH groups at 2.0 ppm are not hydrogen bonded and undergo fast cone-rotational motion. The results in this study predict the 2nd-QD interaction to be universal for any rigid -17O-H environment, such as those in metal oxide surfaces or biomaterials.
Collapse
Affiliation(s)
- Yi Ji
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Xiuwen Han
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
11
|
Liu Q, van Bokhoven JA. Water structures on acidic zeolites and their roles in catalysis. Chem Soc Rev 2024; 53:3065-3095. [PMID: 38369933 DOI: 10.1039/d3cs00404j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The local reaction environment of catalytic active sites can be manipulated to modify the kinetics and thermodynamic properties of heterogeneous catalysis. Because of the unique physical-chemical nature of water, heterogeneously catalyzed reactions involving specific interactions between water molecules and active sites on catalysts exhibit distinct outcomes that are different from those performed in the absence of water. Zeolitic materials are being applied with the presence of water for heterogeneous catalytic reactions in the chemical industry and our transition to sustainable energy. Mechanistic investigation and in-depth understanding about the behaviors and the roles of water are essentially required for zeolite chemistry and catalysis. In this review, we focus on the discussions of the nature and structures of water adsorbed/stabilized on Brønsted and Lewis acidic zeolites based on experimental observations as well as theoretical calculation results. The unveiled functions of water structures in determining the catalytic efficacy of zeolite-catalyzed reactions have been overviewed and the strategies frequently developed for enhancing the stabilization of zeolite catalysts are highlighted. Recent advancement will contribute to the development of innovative catalytic reactions and the rationalization of catalytic performances in terms of activity, selectivity and stability with the presence of water vapor or in condensed aqueous phase.
Collapse
Affiliation(s)
- Qiang Liu
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland.
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland.
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
12
|
Zornes A, Abdul Rahman NB, Das OR, Gomez LA, Crossley S, Resasco DE, White JL. Impact of Low-Temperature Water Exposure and Removal on Zeolite HY. J Am Chem Soc 2024; 146:1132-1143. [PMID: 38156885 DOI: 10.1021/jacs.3c12437] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Aqueous-phase postsynthetic modifications of the industrially important Y-type zeolite are commonly used to change overall acid site concentrations, introduce stabilizing rare-earth cations, impart bifunctional character through metal cation exchange, and tailor the distribution of Brønsted and Lewis acid sites. Zeolite Y is known to undergo framework degradation in the presence of both vapor- and liquid-phase water at temperatures exceeding 100 °C, and rare-earth exchanged and stabilized HY catalysts are commonly used for fluidized catalytic cracking due to their increased hydrothermal resilience. Here, using detailed spectroscopy, crystallography, and flow-reactor experiments, we reveal unexpected decreases in Brønsted acid site (BAS) density for zeolite HY following exposure even to room-temperature liquid water. These data indicate that aqueous-phase ion-exchange procedures commonly used to modify zeolite Y are impacted by the liquid water and its removal, even when fractional heating rates and inert conditions much less severe than standard practice are used for catalyst dehydration. X-ray diffraction, thermogravimetric, and spectroscopic analyses reveal that the majority of framework degradation occurs during the removal of a strongly bound water fraction in HY, which does not form when NH4Y is immersed in liquid water and which leads to reduced acidity in HY even when dehydration conditions much milder than those typically practiced are employed. Na+-exchanged HY prepared via room-temperature aqueous dissolution demonstrates that Brønsted acid sites are lost in excess of the theoretical maximum that is possible from sodium titration. The structural impact of low-temperature aqueous-phase ion-exchange methods complicates the interpretation of subsequent data and likely explains the wide variation in reported acid site concentrations and catalytic activity of HY zeolites with high-Al content.
Collapse
Affiliation(s)
- Anya Zornes
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Nabihan B Abdul Rahman
- School of Sustainable Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Omio Rani Das
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Laura A Gomez
- School of Sustainable Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Steven Crossley
- School of Sustainable Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Daniel E Resasco
- School of Sustainable Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jeffery L White
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
13
|
Lei C, Erlebach A, Brivio F, Grajciar L, Tošner Z, Heard CJ, Nachtigall P. The need for operando modelling of 27Al NMR in zeolites: the effect of temperature, topology and water. Chem Sci 2023; 14:9101-9113. [PMID: 37655014 PMCID: PMC10466278 DOI: 10.1039/d3sc02492j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Solid state (ss-) 27Al NMR is one of the most valuable tools for the experimental characterization of zeolites, owing to its high sensitivity and the detailed structural information which can be extracted from the spectra. Unfortunately, the interpretation of ss-NMR is complex and the determination of aluminum distributions remains generally unfeasible. As a result, computational modelling of 27Al ss-NMR spectra has grown increasingly popular as a means to support experimental characterization. However, a number of simplifying assumptions are commonly made in NMR modelling, several of which are not fully justified. In this work, we systematically evaluate the effects of various common models on the prediction of 27Al NMR chemical shifts in zeolites CHA and MOR. We demonstrate the necessity of operando modelling; in particular, taking into account the effects of water loading, temperature and the character of the charge-compensating cation. We observe that conclusions drawn from simple, high symmetry model systems such as CHA do not transfer well to more complex zeolites and can lead to qualitatively wrong interpretations of peak positions, Al assignment and even the number of signals. We use machine learning regression to develop a simple yet robust relationship between chemical shift and local structural parameters in Al-zeolites. This work highlights the need for sophisticated models and high-quality sampling in the field of NMR modelling and provides correlations which allow for the accurate prediction of chemical shifts from dynamical simulations.
Collapse
Affiliation(s)
- Chen Lei
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague 128 43 Prague 2 Czech Republic
| | - Andreas Erlebach
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague 128 43 Prague 2 Czech Republic
| | - Federico Brivio
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague 128 43 Prague 2 Czech Republic
| | - Lukáš Grajciar
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague 128 43 Prague 2 Czech Republic
| | - Zdeněk Tošner
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague 128 43 Prague 2 Czech Republic
| | - Christopher J Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague 128 43 Prague 2 Czech Republic
| | - Petr Nachtigall
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague 128 43 Prague 2 Czech Republic
| |
Collapse
|
14
|
Chizallet C, Bouchy C, Larmier K, Pirngruber G. Molecular Views on Mechanisms of Brønsted Acid-Catalyzed Reactions in Zeolites. Chem Rev 2023; 123:6107-6196. [PMID: 36996355 DOI: 10.1021/acs.chemrev.2c00896] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Brønsted acidity of proton-exchanged zeolites has historically led to the most impactful applications of these materials in heterogeneous catalysis, mainly in the fields of transformations of hydrocarbons and oxygenates. Unravelling the mechanisms at the atomic scale of these transformations has been the object of tremendous efforts in the last decades. Such investigations have extended our fundamental knowledge about the respective roles of acidity and confinement in the catalytic properties of proton exchanged zeolites. The emerging concepts are of general relevance at the crossroad of heterogeneous catalysis and molecular chemistry. In the present review, emphasis is given to molecular views on the mechanism of generic transformations catalyzed by Brønsted acid sites of zeolites, combining the information gained from advanced kinetic analysis, in situ, and operando spectroscopies, and quantum chemistry calculations. After reviewing the current knowledge on the nature of the Brønsted acid sites themselves, and the key parameters in catalysis by zeolites, a focus is made on reactions undergone by alkenes, alkanes, aromatic molecules, alcohols, and polyhydroxy molecules. Elementary events of C-C, C-H, and C-O bond breaking and formation are at the core of these reactions. Outlooks are given to take up the future challenges in the field, aiming at getting ever more accurate views on these mechanisms, and as the ultimate goal, to provide rational tools for the design of improved zeolite-based Brønsted acid catalysts.
Collapse
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Christophe Bouchy
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Gerhard Pirngruber
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| |
Collapse
|
15
|
Gopal VL, Chellapandian K. Synthesis of hybrid framework of tenorite and octahedrally coordinated aluminosilicate for the robust adsorption of cationic and anionic dyes. ENVIRONMENTAL RESEARCH 2023; 220:115111. [PMID: 36586715 DOI: 10.1016/j.envres.2022.115111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/14/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Adsorption is an important process for the industrial dye effluent treatment. Many adsorbents are employed such as activated carbon, metal oxide, molecular sieves etc. All those adsorbents are having their own setbacks like longer adsorption time and lower adsorption capacity. So development of fast adsorption and higher adsorption capacity is very much essential. In this view, we synthesized hybrid crystal system of tenorite and aluminosilicate framework (CuO@AS) for the faster adsorption. It is characterized by FT-IR, HRTEM and WAXRD. WAXRD proved the hybridization of two crystal systems viz tenorite & alumina in monoclinic phase and silica in trigonal phase. The crystal structure drawn based on the WAXRD data. It is observed that the tenorite and aluminosilicate framework are separate, but they are interlinked through Cu-O-Al and Cu-O-Si bond. This interconnection makes the aluminium in six coordination and Cu in four coordination. Aluminium and copper has 3 and 2 Brønsted acid sites respectively. Moreover, copper has three more OH group, so totally 5 H+ and 3 OH- sites in copper and aluminium are responsible for the faster adsorption with high adsorption capacity compared to reported literature. To test the adsorption tendency, Victoria Blue (VB) and Metanil Yellow (MY) dyes are employed at room temperature. The rate constant of Pseudo-second order kinetics for the VB and MY are 0.002462 g mg-1 min-1 and 0.001619 g mg-1 min-1 which indicated faster adsorption of VB than MY. Moreover, total adsorption capacity for VB (636 mg/g) is higher than MY (52 mg/g). This is due to the hybridization of tenorite and aluminosilicate. Thermodynamic data such as ΔG°, ΔH° and ΔS° revealed that the adsorption is spontaneous, chemisorption and highly disordered in the adsorbent-adsorbate interface. This disorderness is due to the disordered pores present in the material.
Collapse
Affiliation(s)
- Vidhya Lakshmi Gopal
- Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627 012, Tamilnadu, India
| | - Kannan Chellapandian
- Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627 012, Tamilnadu, India.
| |
Collapse
|
16
|
Guo Y, Jia H, Qi J, Fan B, Qin B, Ma J, Du Y, Li R. Acid and steric synergies in industrial Y zeolites for 9, 10-dihydroanthracene hydrocracking. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
17
|
Catalytic dehydration of crotyl alcohol into 1,3-butadiene over silica-supported metal oxides: Mechanistic features. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Antunes MM, Silva AF, Fernandes A, Ribeiro F, Neves P, Pillinger M, Valente AA. Micro/mesoporous LTL derived materials for catalytic transfer hydrogenation and acid reactions of bio-based levulinic acid and furanics. Front Chem 2022; 10:1006981. [PMID: 36247668 PMCID: PMC9558274 DOI: 10.3389/fchem.2022.1006981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
The biomass-derived platform chemicals furfural and 5-(hydroxymethyl)furfural (HMF) may be converted to α-angelica lactone (AnL) and levulinic acid (LA). Presently, LA (synthesized from carbohydrates) has several multinational market players. Attractive biobased oxygenated fuel additives, solvents, etc., may be produced from AnL and LA via acid and reduction chemistry, namely alkyl levulinates and γ-valerolactone (GVL). In this work, hierarchical hafnium-containing multifunctional Linde type L (LTL) related zeotypes were prepared via top-down strategies, for the chemical valorization of LA, AnL and HMF via integrated catalytic transfer hydrogenation (CTH) and acid reactions in alcohol medium. This is the first report of CTH applications (in general) of LTL related materials. The influence of the post-synthesis treatments/conditions (desilication, dealumination, solid-state impregnation of Hf or Zr) on the material properties and catalytic performances was studied. AnL and LA were converted to 2-butyl levulinate (2BL) and GVL in high total yields of up to ca. 100%, at 200°C, and GVL/2BL molar ratios up to 10. HMF conversion gave mainly the furanic ethers 5-(sec-butoxymethyl)furfural and 2,5-bis(sec-butoxymethyl)furan (up to 63% total yield, in 2-butanol at 200°C/24 h). Mechanistic, reaction kinetics and material characterization studies indicated that the catalytic results depend on a complex interplay of different factors (material properties, type of substrate). The recovered-reused solids performed steadily.
Collapse
Affiliation(s)
- Margarida M. Antunes
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- *Correspondence: Margarida M. Antunes, ; Anabela A. Valente,
| | - Andreia F. Silva
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Auguste Fernandes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa Ribeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Patrícia Neves
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Martyn Pillinger
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Anabela A. Valente
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- *Correspondence: Margarida M. Antunes, ; Anabela A. Valente,
| |
Collapse
|
19
|
Hu M, Wang C, Chu Y, Wang Q, Li S, Xu J, Deng F. Unravelling the Reactivity of Framework Lewis Acid Sites towards Methanol Activation on H‐ZSM‐5 Zeolite with Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202207400. [DOI: 10.1002/anie.202207400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Min Hu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chao Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shenhui Li
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
20
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
21
|
Chen K, Zornes A, Nguyen V, Wang B, Gan Z, Crossley SP, White JL. 17O Labeling Reveals Paired Active Sites in Zeolite Catalysts. J Am Chem Soc 2022; 144:16916-16929. [PMID: 36044727 DOI: 10.1021/jacs.2c05332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Current needs for extending zeolite catalysts beyond traditional gas-phase hydrocarbon chemistry demand detailed characterization of active site structures, distributions, and hydrothermal impacts. A broad suite of homonuclear and heteronuclear NMR correlation experiments on dehydrated H-ZSM-5 catalysts with isotopically enriched 17O frameworks reveals that at least two types of paired active sites exist, the amount of which depends on the population of fully framework-coordinated tetrahedral Al (Al(IV)-1) and partially framework-coordinated tetrahedral Al (Al(IV)-2) sites, both of which can be denoted as (SiO)4-n-Al(OH)n. The relative amounts of Al(IV)-1 and Al(IV)-2 sites, and subsequent pairing, cannot be inferred from the catalyst Si/Al ratio, but depend on synthetic and postsynthetic modifications. Correlation experiments demonstrate that, on average, acidic hydroxyl groups from Al(IV)-1/Al(IV)-2 pairs are closer to one another than those from Al(IV)-1/Al(IV)-1 pairs, as supported by computational DFT calculations. Through-bond and through-space polarization transfer experiments exploiting 17O nuclei reveal a number of different acidic hydroxyl groups in varying Si/Al catalysts, the relative amounts of which change following postsynthetic modifications. Using room-temperature isotopic exchange methods, it was determined that 17O was homogeneously incorporated into the zeolite framework, while 17O → 27Al polarization transfer experiments demonstrated that 17O incorporation does not occur for extra-framework AlnOm species. Data from samples exposed to controlled hydrolysis indicates that nearest neighbor Al pairs in the framework are more susceptible to hydrolytic attack. The data reported here suggest that Al(IV)-1/Al(IV)-2 paired sites are synergistic sites leading to increased reactivity in both low- and high-temperature reactions. No evidence was found for paired framework/nonframework sites.
Collapse
Affiliation(s)
- Kuizhi Chen
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Anya Zornes
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Vy Nguyen
- School of Chemical, Materials, and Biological Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Bin Wang
- School of Chemical, Materials, and Biological Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Steven P Crossley
- School of Chemical, Materials, and Biological Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jeffery L White
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
22
|
Hu M, Wang C, Chu Y, Wang Q, Li S, Xu J, Deng F. Unravelling the Reactivity of Framework Lewis Acid Sites towards Methanol Activation on H‐ZSM‐5 Zeolite with Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Min Hu
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Chao Wang
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Yueying Chu
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Qiang Wang
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Shenhui Li
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Jun Xu
- wuhan institute of physics and mathematics state key laboratory of magnetic resonance and atomic and molecular physics West No.30 Xiao Hong Shan 430071 Wuhan CHINA
| | - Feng Deng
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| |
Collapse
|
23
|
Liu R, Fan B, Zhi Y, Liu C, Xu S, Yu Z, Liu Z. Dynamic Evolution of Aluminum Coordination Environments in Mordenite Zeolite and Their Role in the Dimethyl Ether (DME) Carbonylation Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rongsheng Liu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Benhan Fan
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Yuchun Zhi
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Chong Liu
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Shutao Xu
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Zhengxi Yu
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Zhongmin Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Science Dalian National Laboratory for Clean Energy Zhongshan Road #457 116023 Dalian CHINA
| |
Collapse
|
24
|
Rodriguez-Olguin MA, Cruz-Herbert RN, Atia H, Bosco M, Fornero EL, Eckelt R, De Haro Del Río DA, Aguirre A, Gardeniers JGE, Susarrey-Arce A. Tuning the catalytic acidity in Al 2O 3 nanofibers with mordenite nanocrystals for dehydration reactions. Catal Sci Technol 2022; 12:4243-4254. [PMID: 35873718 PMCID: PMC9252259 DOI: 10.1039/d2cy00143h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022]
Abstract
Alumina (Al2O3) is one of the most used supports in the chemical industry due to its exceptional thermal stability, surface area, and acidic properties. Mesoscopic structured alumina with adequate acidic properties is important in catalysis to enhance the selectivity and conversion of certain reactions and processes. This study introduces a synthetic method based on electrospinning to produce Al2O3 nanofibers (ANFs) with zeolite mordenite (MOR) nanocrystals (hereafter, hybrid ANFs) to tune the textural and surface acidity properties. The hybrid ANFs with electrospinning form a non-woven network with macropores. ANF-HMOR, i.e., ANFs containing protonated mordenite (HMOR), shows the highest total acidity of ca. 276 μmol g-1 as determined with infrared spectroscopy using pyridine as a molecular probe (IR-Py). IR-Py results reveal that Lewis acid sites are prominently present in the hybrid ANFs. Brønsted acid sites are also observed in the hybrid ANFs and are associated with the HMOR presence. The functionality of hybrid ANFs is evaluated during methanol dehydration to dimethyl ether (DME). The proof of concept reaction reveals that ANF-HMOR is the more active and selective catalyst with 87% conversion and nearly 100% selectivity to DME at 573 K. The results demonstrate that the textural properties and the acid site type and content can be modulated in hybrid ANF structures, synergistically improving the selectivity and conversion during the methanol dehydration reaction. From a broader perspective, our results promote the utilization of hybrid structural materials as a means to tune chemical reactions selectively.
Collapse
Affiliation(s)
- M A Rodriguez-Olguin
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217, 7500AE Enschede The Netherlands
| | - R N Cruz-Herbert
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas Pedro de Alba S/N San Nicolás de los Garza Nuevo León 64455 Mexico
| | - H Atia
- Leibniz Institute for Catalysis Albert-Einstein-Straße 29a D-18059 Rostock Germany
| | - M Bosco
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral CONICET, Güemes 3450 S3000GLN Santa Fe Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL) Santiago del Estero 2829 Santa Fe 3000 Argentina
| | - E L Fornero
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral CONICET, Güemes 3450 S3000GLN Santa Fe Argentina
- Facultad de Ingeniería en Ciencias Hídricas, UNL, Ciudad Universitaria Ruta Nacional N° 168 - Km 472,4 3000 Santa Fe Argentina
| | - R Eckelt
- Leibniz Institute for Catalysis Albert-Einstein-Straße 29a D-18059 Rostock Germany
| | - D A De Haro Del Río
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas Pedro de Alba S/N San Nicolás de los Garza Nuevo León 64455 Mexico
| | - A Aguirre
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral CONICET, Güemes 3450 S3000GLN Santa Fe Argentina
| | - J G E Gardeniers
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217, 7500AE Enschede The Netherlands
| | - A Susarrey-Arce
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217, 7500AE Enschede The Netherlands
| |
Collapse
|
25
|
Yakimov AV, Ravi M, Verel R, Sushkevich VL, van Bokhoven JA, Copéret C. Structure and Framework Association of Lewis Acid Sites in MOR Zeolite. J Am Chem Soc 2022; 144:10377-10385. [DOI: 10.1021/jacs.2c02212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander V. Yakimov
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Manoj Ravi
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - René Verel
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Vitaly L. Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Jeroen A. van Bokhoven
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, CH-8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Christophe Copéret
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, CH-8093 Zurich, Switzerland
| |
Collapse
|
26
|
Liu R, Fan B, Zhang W, Wang L, Qi L, Wang Y, Xu S, Yu Z, Wei Y, Liu Z. Increasing the Number of Aluminum Atoms in T 3 Sites of a Mordenite Zeolite by Low-Pressure SiCl 4 Treatment to Catalyze Dimethyl Ether Carbonylation. Angew Chem Int Ed Engl 2022; 61:e202116990. [PMID: 35192218 DOI: 10.1002/anie.202116990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 11/07/2022]
Abstract
Controlling the location of aluminum atoms in a zeolite framework is critical for understanding structure-performance relationships of catalytic reaction systems and tailoring catalyst design. Herein, we report a strategy to preferentially relocate mordenite (MOR) framework Al atoms into the desired T3 sites by low-pressure SiCl4 treatment (LPST). High-field 27 Al NMR was used to identify the exact location of framework Al for the MOR samples. The results indicate that 73 % of the framework Al atoms were at the T3 sites after LPST under optimal conditions, which leads to controllably generating and intensifying active sites in MOR zeolite for the dimethyl ether (DME) carbonylation reaction with higher methyl acetate (MA) selectivity and much longer lifetime (25 times). Further research reveals that the Al relocation mechanism involves simultaneous extraction, migration, and reinsertion of Al atoms from and into the parent MOR framework. This unique method is potentially applicable to other zeolites to control Al location.
Collapse
Affiliation(s)
- Rongsheng Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Benhan Fan
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenna Zhang
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Linying Wang
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Liang Qi
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yingli Wang
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shutao Xu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhengxi Yu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Liu R, Fan B, Zhang W, Wang L, Qi L, Wang Y, Xu S, Yu Z, Wei Y, Liu Z. Increasing the Number of Aluminum Atoms in T
3
Sites of a Mordenite Zeolite by Low‐Pressure SiCl
4
Treatment to Catalyze Dimethyl Ether Carbonylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rongsheng Liu
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Benhan Fan
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenna Zhang
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Linying Wang
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Liang Qi
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Yingli Wang
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Shutao Xu
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Zhengxi Yu
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
28
|
Huda MM, Saha C, Jahan N, Wilson WN, Rai N. Insights into Sorption and Molecular Transport of Aqueous Glucose into Zeolite Nanopores. J Phys Chem B 2022; 126:1352-1364. [PMID: 35119855 DOI: 10.1021/acs.jpcb.1c10572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid-phase heterogeneous catalysis using zeolites is important for biomass conversion to fuels and chemicals. There is a substantial body of work on gas-phase sorption in zeolites with different topologies; however, studies investigating the diffusion of complex molecules in liquid medium into zeolitic nanopores are scarce. Here, we present a molecular dynamics study to understand the sorption and diffusion of aqueous β-d-glucose into β-zeolite silicate at T = 395 K and P = 1 bar. Through 2-μs-long molecular dynamics trajectories, we reveal the role of the solvent, the kinetics of the pore filling, and the effect of the water model on these properties. We find that the glucose and water loading is a function of the initial glucose concentration. Although the glucose concentration increases monotonically with the initial glucose concentration, the water loading exhibits a nonmonotonic behavior. At the highest initial concentration (∼20 wt %), we find that the equilibrium loading of glucose is approximately five molecules per unit cell and displays a weak dependence on the water model. Glucose molecules follow a single-file diffusion in the nanopores due to confinement. The dynamics of glucose and water molecules slows significantly at the interface. The average residence time for glucose molecules is an order of magnitude larger than that in the bulk solution, while it is about twice as large for the water molecules. Our simulations reveal critical molecular details of the glucose molecule's local environment inside the zeolite pore relevant to catalytic conversion of biomass to valuable chemicals.
Collapse
Affiliation(s)
- Md Masrul Huda
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Chinmoy Saha
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Nusrat Jahan
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Woodrow N Wilson
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Neeraj Rai
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
29
|
Sawada M, Matsumoto T, Osuga R, Yasuda S, Park S, Wang Y, Kondo JN, Onozuka H, Tsutsuminai S, Yokoi T. Surfactant-Assisted Direct Crystallization of CON-Type Zeolites with Particle Size and Acid-Site Location Controlled. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masato Sawada
- Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Takeshi Matsumoto
- Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Ryota Osuga
- Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Shuhei Yasuda
- Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Sungsik Park
- Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yong Wang
- Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Junko N. Kondo
- Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroaki Onozuka
- Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| | - Susumu Tsutsuminai
- Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| | - Toshiyuki Yokoi
- Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
30
|
Abstract
Catalysis is at the core of chemistry and has been essential to make all the goods surrounding us, including fuels, coatings, plastics and other functional materials. In the near future, catalysis will also be an essential tool in making the shift from a fossil-fuel-based to a more renewable and circular society. To make this reality, we have to better understand the fundamental concept of the active site in catalysis. Here, we discuss the physical meaning - and deduce the validity and, therefore, usefulness - of some common approaches in heterogeneous catalysis, such as linking catalyst activity to a 'turnover frequency' and explaining catalytic performance in terms of 'structure sensitivity' or 'structure insensitivity'. Catalytic concepts from the fields of enzymatic and homogeneous catalysis are compared, ultimately realizing that the struggle that one encounters in defining the active site in most solid catalysts is likely the one we must overcome to reach our end goal: tailoring the precise functioning of the active sites with respect to many different parameters to satisfy our ever-growing needs. This article ends with an outlook of what may become feasible within the not-too-distant future with modern experimental and theoretical tools at hand.
Collapse
|
31
|
Zhang J, Ding X, Liu H, Fan D, Xu S, Wei Y, Liu Z. Study on the Framework Aluminum Distributions of HMOR Zeolite and Identification of Active Sites for Dimethyl Ether Carbonylation Reaction ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Kiani D, Xi Y, Ottinger N, Liu ZG. Revisiting NH 3–catalyst interactions in Cu-SSZ-13 SCR catalysts: an in situ spectro-kinetics study. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00805j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At low surface coverages, NH3 consumption was found to occur during adsorption at 120 °C over both Cu-SSZ-13, and H-SSZ-13; albeit much faster on Cu-SSZ-13.
Collapse
Affiliation(s)
- Daniyal Kiani
- Cummins Emission Solutions, 1801 US Hwy 51/138, Stoughton, WI, 53589, USA
| | - Yuanzhou Xi
- Cummins Emission Solutions, 1801 US Hwy 51/138, Stoughton, WI, 53589, USA
| | - Nathan Ottinger
- Cummins Emission Solutions, 1801 US Hwy 51/138, Stoughton, WI, 53589, USA
| | - Z. Gerald Liu
- Cummins Emission Solutions, 1801 US Hwy 51/138, Stoughton, WI, 53589, USA
| |
Collapse
|
33
|
Fan B, Zhu D, Wang L, Xu S, Wei Y, Liu Z. Dynamic evolution of Al species in the hydrothermal dealumination process of CHA zeolite. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00750a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrothermal stability of zeolites is an important factor being considered which could restrict their scope of industrial application. Revealing the water-induced dealumination mechanism is crucial for improving the hydrothermal...
Collapse
|
34
|
Tatiana García‐Sánchez J, Darío Mora‐Vergara I, Molina‐Velasco DR, Antonio Henao‐Martínez J, Gabriel Baldovino‐Medrano V. Key Factors During the Milling Stage of the Seed‐assisted and Solvent‐free Synthesis of MFI and Catalytic Behavior in the Alkylation of Phenol with Tert‐butyl Alcohol. ChemCatChem 2021. [DOI: 10.1002/cctc.202100479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julieth Tatiana García‐Sánchez
- Centro de Investigaciones en Catálisis (CICAT) Universidad Industrial de Santander Parque Tecnológico Guatiguará km 2 vía El Refugio Universidad Industrial de Santander Piedecuesta (Santander) 681011 Colombia
| | - Iván Darío Mora‐Vergara
- Centro de Investigaciones en Catálisis (CICAT) Universidad Industrial de Santander Parque Tecnológico Guatiguará km 2 vía El Refugio Universidad Industrial de Santander Piedecuesta (Santander) 681011 Colombia
| | - Daniel Ricardo Molina‐Velasco
- Laboratorio de Resonancia Magnética Nuclear Universidad Industrial de Santander Parque Tecnológico Guatiguará km 2 vía El Refugio Universidad Industrial de Santander Piedecuesta (Santander) 681011 Colombia
| | - José Antonio Henao‐Martínez
- Laboratorio de Rayos-X Universidad Industrial de Santander Parque Tecnológico Guatiguará km 2 vía El Refugio Universidad Industrial de Santander Piedecuesta (Santander) 681011 Colombia
| | - Víctor Gabriel Baldovino‐Medrano
- Centro de Investigaciones en Catálisis (CICAT) Universidad Industrial de Santander Parque Tecnológico Guatiguará km 2 vía El Refugio Universidad Industrial de Santander Piedecuesta (Santander) 681011 Colombia
- Laboratorio de Ciencia de Superficies (SurfLab) Universidad Industrial de Santander Parque Tecnológico Guatiguará km 2 vía El Refugio Universidad Industrial de Santander Piedecuesta (Santander) 681011 Colombia
| |
Collapse
|
35
|
Chen K, Gan Z, Horstmeier S, White JL. Distribution of Aluminum Species in Zeolite Catalysts: 27Al NMR of Framework, Partially-Coordinated Framework, and Non-Framework Moieties. J Am Chem Soc 2021; 143:6669-6680. [PMID: 33881305 PMCID: PMC8212420 DOI: 10.1021/jacs.1c02361] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The structure of aluminum-containing moieties in and within zeolite H-ZSM-5 catalysts is a complex function of the elemental composition of the catalyst, synthesis conditions, exposure to moisture, and thermal history. 27Al NMR data collected at field strengths ranging from 7.05 to 35.2 T, i.e., 1H Larmor frequencies from 300 to 1500 MHz, reveal that Al primarily exists as framework or partially coordinated framework species in commercially available dehydrated H-ZSM-5 catalysts with Si/Al ranging from 11.5 to 40. Quantitative direct-excitation and sensitivity-enhanced 27Al NMR techniques applied over the wide range of magnetic field strengths used in this study show that prior to significant hydrothermal exposure, detectable amounts of nonframework Al species do not exist. Two-dimensional 27Al multiple-quantum magic-angle spinning (MQMAS) along with 1H-27Al and 29Si-27Al dipolar correlation (D-HMQC) NMR experiments confirm this conclusion and show that generation of nonframework species following varying severities of hydrothermal exposure are clearly resolved from partially coordinated framework sites. The impact of hydration on the appearance and interpretation of conventional direct-excitation 27Al spectra, commonly used to assess framework and nonframework Al, is discussed. Aluminum sites in dehydrated catalysts, which are representative of typical operating conditions, are characterized by large quadrupole interactions and are best assigned by obtaining data at multiple field strengths. On the basis of the results here, an accurate initial assessment of Al sites in high-Al content MFI catalysts prior to any hydrothermal treatment can be used to guide reaction conditions, anticipate potential water impacts, and identify contributions from hydroxyl groups other than those associated with the framework bridging acid site.
Collapse
Affiliation(s)
- Kuizhi Chen
- author to whom correspondence should be addressed: ;
| | | | | | - Jeffery L. White
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078
| |
Collapse
|