1
|
Mehmood A, Janesko BG. An orbital-overlap complement to σ-hole electrostatic potentials. Phys Chem Chem Phys 2025; 27:861-867. [PMID: 39661027 DOI: 10.1039/d4cp03851g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A σ-hole is an electron-deficient region of positive electrostatic potential (ESP) opposite from a half-filled p orbital involved in forming a covalent bond. The σ-hole concept helps rationalize directional noncovalent interactions, known as σ-hole bonds, between covalently bonded group V-VII atoms and electron-pair donors. The magnitude and orientation of σ-holes are correlated with the strength and geometry of halogen bonds. However, ESP computed for isolated σ-holes are not always predictive of interaction energies. For example, the σ-holes of isolated CHFBr2 and isolated CH2FI have identical ESP on the molecule surface, but halogen bonds to these molecules generally have different strengths. Here we show that the compact/diffuse nature of the orbitals involved plays an important role. Our orbital overlap distance quantifies the compact/diffuse nature of the "test orbital" that best overlaps with a systems orbitals at each point. The overlap distance captures the response properties of σ-holes: diffuse σ-holes with large overlap distance are typically "softer" and more polarizable. This aids visualization and interpretation. A linear fit to overlap distance and ESP is predictive of the halogen bond strengths of CH3X and CF3X (X = Cl, Br and I). We suggest that the overlap distance will be a useful partner to ESP for characterizing σ-holes.
Collapse
Affiliation(s)
- Arshad Mehmood
- Division of Information Technology - Research Computing, Informatics & Innovation and Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA.
| | - Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, USA
| |
Collapse
|
2
|
Knüpfer C, Klerner L, Raucheisen M, Langer J, Harder S. Synthesis of Superbulky Amide Ligands by Addition of Polar Reagents to Sila-Imine. Chemistry 2024; 30:e202400715. [PMID: 38501797 DOI: 10.1002/chem.202400715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/20/2024]
Abstract
The chemistry of extremely bulky amide ligands is troubled by difficulties in deprotonation of the parent amine. As an alternative route to superbulky amide reagents, the addition of polar reagents to a sila-imine has been investigated. Attempts to synthesize the superbulky amide anion (tBu3Si)2N- by addition of tBuLi to tBu2Si=N(SitBu3) failed and gave tBu3Si(tBu2HSi)NLi and isobutene. Reaction of the sila-imine with KOtBu successfully led to tBu3Si[tBu2(tBuO)Si]NK which crystallized as a separated ion-pair. Reaction with the slightly bulkier KOAd (Ad=1-adamantyl) led in presence of THF to ether ring-opening. Reaction with tBuOH gave tBu3Si[tBu2(tBuO)Si]NH but this amine cannot be easily deprotonated. Reaction with (BDI*)MgnBu in presence of THF gave (BDI*)Mg+ ⋅ (THF)2 and the non-coordinating anion tBu3Si[tBu2(nBu)Si]N-; BDI*=ß-diketiminate ligand HC[C(tBu)N-DIPP]2, DIPP=2,6-diisopropylphenyl. Reaction of Mg(nBu)2 with tBu2Si=N(SitBu3) led to a Mg complex with one amide ligand: tBu3Si[tBu2(nBu)Si]N-. The other superbulky amide anion isomerized by internal deprotonation of a tBu-substituent to give a primary carbanion that is also coordinated to Mg. Although the amide-to-carbanion isomerization is highly contrathermodynamic, it allows for coordination of both anions to a single Mg center. The new bulky amides are rare cases of halogen-free weakly coordinating anions.
Collapse
Affiliation(s)
- Christian Knüpfer
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Lukas Klerner
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Michael Raucheisen
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Jens Langer
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| |
Collapse
|
3
|
Corner S, Gransbury GK, Vitorica-Yrezabal IJ, Whitehead GFS, Chilton NF, Mills DP. Halobenzene Adducts of a Dysprosocenium Single-Molecule Magnet. Inorg Chem 2024; 63:9552-9561. [PMID: 38359351 PMCID: PMC11134494 DOI: 10.1021/acs.inorgchem.3c04105] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Dysprosium complexes with strong axial crystal fields are promising candidates for single-molecule magnets (SMMs), which could be used for high-density data storage. Isolated dysprosocenium cations, [Dy(CpR)2]+ (CpR = substituted cyclopentadienyl), have recently shown magnetic hysteresis (a memory effect) above the temperature of liquid nitrogen. Synthetic efforts have focused on reducing strong transverse ligand fields in these systems as they are known to enhance magnetic relaxation by spin-phonon mechanisms. Here we show that equatorial coordination of the halobenzenes PhX (X = F, Cl, Br) and o-C6H4F2 to the cation of a recently reported dysprosocenium complex [Dy(Cpttt)(Cp*)][Al{OC(CF3)3}4] (Cpttt = C5H2tBu3-1,2,4; Cp* = C5Me5) reduces magnetic hysteresis temperatures compared to that of the parent cation. We find that this is due to increased effectiveness of both one- (Orbach) and two-phonon (Raman) relaxation mechanisms, which correlate with the electronegativity and number of interactions with the halide despite κ1-coordination of a single halobenzene having a minimal effect on the metrical parameters of [Dy(Cpttt)(Cp*)(PhX-κ1-X)]+ cations vs the isolated [Dy(Cpttt)(Cp*)]+ cation. We observe unusual divergent behavior of relaxation rates at low temperatures in [Dy(Cpttt)(Cp*)(PhX)][Al{OC(CF3)3}4], which we attribute to a phonon bottleneck effect. We find that, despite the transverse fields introduced by the monohalobenzenes in these cations, the interactions are sufficiently weak that the effective barriers to magnetization reversal remain above 1000 cm-1, being only ca. 100 cm-1 lower than for the parent complex, [Dy(Cpttt)(Cp*)][Al{OC(CF3)3}4].
Collapse
Affiliation(s)
| | | | | | - George F. S. Whitehead
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - David P. Mills
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
4
|
Corner S, Gransbury GK, Vitorica-Yrezabal IJ, Whitehead GFS, Chilton NF, Mills DP. Synthesis and Magnetic Properties of Bis-Halobenzene Decamethyldysprosocenium Cations. Inorg Chem 2024; 63:9562-9571. [PMID: 38382535 PMCID: PMC11134500 DOI: 10.1021/acs.inorgchem.3c04106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/23/2024]
Abstract
The decamethyldysprosocenium cation, [Dy(Cp*)2]+ (Cp* = {C5Me5}), was a target single-molecule magnet (SMM) prior to the isolation of larger dysprosocenium cations, which have recently shown magnetic memory effects up to 80 K. However, the relatively short Dy···Cp*centroid distances of [Dy(Cp*)2]+, together with the reduced resonance of its vibrational modes with electronic states compared to larger dysprosocenium cations, could lead to more favorable SMM behavior. Here, we report the synthesis and magnetic properties of a series of solvated adducts containing bis-halobenzene decamethyldysprosocenium cations, namely [Dy(Cp*)2(PhX-κ-X)2][Al{OC(CF3)3}4] (X = F or Cl) and [Dy(Cp*)2(C6H4F2-κ2-F,F)(C6H4F2-κ-F)][Al{OC(CF3)3}4]. These complexes were prepared by the sequential reaction of [Dy(Cp*)2(μ-BH4)]∞ with allylmagnesium chloride and [NEt3H][Al{OC(CF3)3}4], followed by recrystallization from parent halobenzenes. The complexes were characterized by powder and single crystal X-ray diffraction, NMR and ATR-IR spectroscopy, elemental analysis, and SQUID magnetometry; experimental data were rationalized by a combination of density functional theory and ab initio calculations. We find that bis-halobenzene adducts of the [Dy(Cp*)2]+ cation exhibit highly bent Cp*···Dy···Cp* angles; these cations are also susceptible to decomposition by C-X (X = F, Cl, Br) activation and displacement of halobenzenes by O-donor ligands. The effective energy barrier to reversal of magnetization measured for [Dy(Cp*)2(PhF-κ-F)2][Al{OC(CF3)3}4] (930(6) cm-1) sets a new record for SMMs containing {Dy(Cp*)2} fragments, though all SMM parameters are lower than would be predicted for an isolated [Dy(Cp*)2]+ cation, as expected due to transverse ligand fields introduced by halobenzenes and the large deviation of the Cp*···Dy···Cp* angle from linearity promoting magnetic relaxation.
Collapse
Affiliation(s)
- Sophie
C. Corner
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Gemma K. Gransbury
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - George F. S. Whitehead
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - David P. Mills
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
5
|
Knüpfer C, Klerner L, Mai J, Langer J, Harder S. s-Block metal complexes of superbulky ( tBu 3Si) 2N -: a new weakly coordinating anion? Chem Sci 2024; 15:4386-4395. [PMID: 38516089 PMCID: PMC10952107 DOI: 10.1039/d3sc06896j] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Sterically hindered amide anions have found widespread application as deprotonation agents or as ligands to stabilize metals in unusual coordination geometries or oxidation states. The use of bulky amides has also been advantageous in catalyst design. Herein we present s-block metal chemistry with one of the bulkiest known amide ligands: (tBu3Si)2N- (abbreviated: tBuN-). The parent amine (tBuNH), introduced earlier by Wiberg, is extremely resistant to deprotonation (even with nBuLi/KOtBu superbases) but can be deprotonated slowly with a blue Cs+/e- electride formed by addition of Cs0 to THF. (tBuN)Cs crystallized as a separated ion-pair, even without cocrystallized solvent. As salt-metathesis reactions with (tBuN)Cs are sluggish and incomplete, it has only limited use as an amide transfer reagent. However, ball-milling with LiI led to quantitative formation of (tBuN)Li and CsI. Structural characterization shows that (tBuN)Li is a monomeric contact ion-pair with a relatively short N-Li bond, an unusual T-shaped coordination geometry around N and extremely short Li⋯Me anagostic interactions. Crystal structures are compared with Li and Cs complexes of less bulky amide ligands (iPr3Si)2N- (iPrN-) and (Me3Si)2N- (MeN-). DFT calculations show trends in the geometries and electron distributions of amide ligands of increasing steric bulk (MeN- < iPrN- < tBuN-) and confirm that tBuN- is a rare example of a halogen-free weakly coordinating anion.
Collapse
Affiliation(s)
- Christian Knüpfer
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Lukas Klerner
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Jonathan Mai
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Jens Langer
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| |
Collapse
|
6
|
Antar K, Wacharine S, Zouaghi MO, Arfaoui Y. The aid of calorimetry for the thermochemical and kinetic study of the σ-hole bonding leading to I2 and 4-(dimethylamino) pyridine complexes in solution. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2023; 148:3887-3901. [DOI: 10.1007/s10973-023-11956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/05/2023] [Indexed: 01/06/2025]
|
7
|
Hsu CP, Liu CA, Wen CC, Liu YH, Lin YF, Chiu CW. Chiral Bis(oxazoline) Ligand‐Supported Alkyl Aluminum Cations. ChemCatChem 2022. [DOI: 10.1002/cctc.202101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Ya-Fan Lin
- Kaohsiung Medical University Fragrance and Cosmetic Science TAIWAN
| | - Ching-Wen Chiu
- National Taiwan University Department of Chemistry No. 1, Sec. 4, Roosevelt Rd. 10617 Taipei TAIWAN
| |
Collapse
|
8
|
Coordination complexes featuring bidentate κN, κI-8-iodoquinoline. J COORD CHEM 2022. [DOI: 10.1080/00958972.2021.2024521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Tan SL, Lo KM, Tan YS, Tiekink ERT. Structural systematics in the isomorphous binary co-crystal solvates comprising 2,2'-dithiodibenzoic acid, 4-halobenzoic acid and dimethylformamide (1:1:1), for halide = chloride, bromide and iodide. CrystEngComm 2022. [DOI: 10.1039/d2ce00094f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 1:1:1 binary co-crystal solvates formulated as 2,2'-dithiodibenzoic acid (DTBA), 4-halobenzoic acid (4-XBA) and dimethylformamide (DMF) for X = Cl (1), Br (2) and I (3) are isomorphous and the...
Collapse
|
10
|
Decato DA, Sun J, Boller MR, Berryman OB. Pushing the Limits of the Hydrogen Bond Enhanced Halogen Bond —The Case of the C–H Hydrogen Bond. Chem Sci 2022; 13:11156-11162. [PMID: 36320486 PMCID: PMC9516949 DOI: 10.1039/d2sc03792k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
C–H hydrogen bonds have remarkable impacts on various chemical systems. Here we consider the influence of C–H hydrogen bonds to iodine atoms. Positioning a methyl group between two iodine halogen bond donors of the receptor engendered intramolecular C–H hydrogen bonding (HBing) to the electron-rich belt of both halogen bond donors. When coupled with control molecules, the role of the C–H hydrogen bond was evaluated. Gas-phase density functional theory studies indicated that methyl C–H hydrogen bonds help bias a bidentate binding conformation. Interaction energy analysis suggested that the charged C–H donors augment the halogen bond interaction—producing a >10 kcal mol−1 enhancement over a control lacking the C–H⋯I–C interaction. X-ray crystallographic analysis demonstrated C–H hydrogen bonds and bidentate conformations with triflate and iodide anions, yet the steric bulk of the central functional group seems to impact the expected trends in halogen bond distance. In solution, anion titration data indicated elevated performance from the receptors that utilize C–H Hydrogen Bond enhanced Halogen Bonds (HBeXBs). Collectively, the results suggest that even modest hydrogen bonds between C–H donors and iodine acceptors can influence molecular structure and improve receptor performance. C–H hydrogen bonds to iodine halogen bond donors are shown to improve halogen bonding and molecular preorganization.![]()
Collapse
Affiliation(s)
| | - Jiyu Sun
- University of Montana 32 Campus Drive Missoula MT USA
| | | | | |
Collapse
|
11
|
Buchner MR, Thomas-Hargreaves LR. s-Block chemistry in weakly coordinating solvents. Dalton Trans 2021; 50:16916-16922. [PMID: 34738606 DOI: 10.1039/d1dt03443j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alkaline earth metal catalysis has been a growing field in recent years. To enhance reactivity and to understand the metal-substrate interactions in more detail, reactions are increasingly carried out in weakly coordinating solvents. This article gives an overview over the two main approaches to facilitate this, which are either through the employment of highly dipolar haloaryls as solvents, or by increasing the solubility of the ligand systems. The resulting coordination modes and reactivities are presented together with the synthetic strategies. Additionally, the latest results of group 1 complex chemistry in aliphatic solvents are illustrated and future challenges are highlighted.
Collapse
Affiliation(s)
- Magnus R Buchner
- Anorganische Chemie, Nachwuchsgruppe Hauptgruppenmetallchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | - Lewis R Thomas-Hargreaves
- Anorganische Chemie, Nachwuchsgruppe Hauptgruppenmetallchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| |
Collapse
|
12
|
Sharma D, Balasubramaniam S, Kumar S, Jemmis ED, Venugopal A. Reversing Lewis acidity from bismuth to antimony. Chem Commun (Camb) 2021; 57:8889-8892. [PMID: 34378571 DOI: 10.1039/d1cc03038h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Investigations on the boundaries between the neutral and cationic models of (Mesityl)2EX (E = Sb, Bi and X = Cl-, OTf-) have facilitated reversing the Lewis acidity from bismuth to antimony. We use this concept to demonstrate a higher efficiency of (Mesityl)2SbOTf over (Mesityl)2BiOTf in the catalytic reduction of phosphine oxides to phosphines. The experiments supported with computations described herein will find use in designing new Lewis acids relevant to catalysis.
Collapse
Affiliation(s)
- Deepti Sharma
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India.
| | - Selvakumar Balasubramaniam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India.
| | - Sandeep Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Eluvathingal D Jemmis
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ajay Venugopal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India.
| |
Collapse
|
13
|
Obi AD, Machost HR, Dickie DA, Gilliard RJ. A Thermally Stable Magnesium Phosphaethynolate Grignard Complex. Inorg Chem 2021; 60:12481-12488. [PMID: 34346670 DOI: 10.1021/acs.inorgchem.1c01700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The 2-phosphaethynolate (OCP) anion has found versatile applications across the periodic table but remains underexplored in group 2 chemistry due to challenges in isolating thermally stable complexes. By rationally modifying their coordination environments using 1,3-dialkyl-substituted N-heterocyclic carbenes (NHCs), we have now isolated and characterized thermally stable, structurally diverse, and hydrocarbon soluble magnesium phosphaethynolate complexes (2, 4Me, and 8-10), including the novel phosphaethynolate Grignard reagent (2iPr). The methylmagnesium phosphaethynolate and magnesium diphosphaethynolate complexes readily activate dioxane with subsequent H-atom abstraction to form [(NHC)MgX(μ-OEt)]2 [X = Me (3) or OCP (8 and 9)] complexes. Their reactivities increased with the Lewis acidity of the Mg2+ cation and may be attenuated by Lewis base saturation or a slight increase in carbene sterics. Solvent effects were also investigated and led to the surreptitious isolation of an ether-free sodium phosphaethynolate (NHC)3Na(OCP) (6), which is soluble in aromatic hydrocarbons and can be independently prepared by the reaction of NHC and [Na(dioxane)2][OCP] in toluene. Under forcing conditions (105 °C, 3 days), the magnesium diphosphaethynolate complex (NHC)3Mg(OCP)2 (10) decomposes to a mixture of organophosphorus complexes, among which a thermal decarbonylation product [(NHC)2PI][OCP] (11) was isolated.
Collapse
Affiliation(s)
- Akachukwu D Obi
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Haleigh R Machost
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| |
Collapse
|
14
|
Friedrich A, Eyselein J, Langer J, Färber C, Harder S. Cationic Heterobimetallic Mg(Zn)/Al(Ga) Combinations for Cooperative C-F Bond Cleavage. Angew Chem Int Ed Engl 2021; 60:16492-16499. [PMID: 33979476 PMCID: PMC8361950 DOI: 10.1002/anie.202103250] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/14/2022]
Abstract
Low-valent (Me BDI)Al and (Me BDI)Ga and highly Lewis acidic cations in [(tBu BDI)M+ ⋅C6 H6 ][(B(C6 F5 )4 - ] (M=Mg or Zn, Me BDI=HC[C(Me)N-DIPP]2 , tBu BDI=HC[C(tBu)N-DIPP]2 , DIPP=2,6-diisopropylphenyl) react to heterobimetallic cations [(tBu BDI)Mg-Al(Me BDI)+ ], [(tBu BDI)Mg-Ga(Me BDI)+ ] and [(tBu BDI)Zn-Ga(Me BDI)+ ]. These cations feature long Mg-Al (or Ga) bonds while the Zn-Ga bond is short. The [(tBu BDI)Zn-Al(Me BDI)+ ] cation was not formed. Combined AIM and charge calculations suggest that the metal-metal bonds to Zn are considerably more covalent, whereas those to Mg should be described as weak AlI (or GaI )→Mg2+ donor bonds. Failure to isolate the Zn-Al combination originates from cleavage of the C-F bond in the solvent fluorobenzene to give (tBu BDI)ZnPh and (Me BDI)AlF+ which is extremely Lewis acidic and was not observed, but (Me BDI)Al(F)-(μ-F)-(F)Al(Me BDI)+ was verified by X-ray diffraction. DFT calculations show that the remarkably facile C-F bond cleavage follows a dearomatization/rearomatization route.
Collapse
Affiliation(s)
- Alexander Friedrich
- Inorganic and Organometallic ChemistryUniversität Erlangen-NürnbergEgerlandstrasse 191058ErlangenGermany
| | - Jonathan Eyselein
- Inorganic and Organometallic ChemistryUniversität Erlangen-NürnbergEgerlandstrasse 191058ErlangenGermany
| | - Jens Langer
- Inorganic and Organometallic ChemistryUniversität Erlangen-NürnbergEgerlandstrasse 191058ErlangenGermany
| | - Christian Färber
- Inorganic and Organometallic ChemistryUniversität Erlangen-NürnbergEgerlandstrasse 191058ErlangenGermany
| | - Sjoerd Harder
- Inorganic and Organometallic ChemistryUniversität Erlangen-NürnbergEgerlandstrasse 191058ErlangenGermany
| |
Collapse
|
15
|
Friedrich A, Eyselein J, Langer J, Färber C, Harder S. Cationic Heterobimetallic Mg(Zn)/Al(Ga) Combinations for Cooperative C–F Bond Cleavage. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexander Friedrich
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstrasse 1 91058 Erlangen Germany
| | - Jonathan Eyselein
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstrasse 1 91058 Erlangen Germany
| | - Jens Langer
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstrasse 1 91058 Erlangen Germany
| | - Christian Färber
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstrasse 1 91058 Erlangen Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstrasse 1 91058 Erlangen Germany
| |
Collapse
|
16
|
Thum K, Pahl J, Eyselein J, Elsen H, Langer J, Harder S. Retro-Diels-Alder decomposition of norbornadiene mediated by a cationic magnesium complex. Chem Commun (Camb) 2021; 57:5278-5281. [PMID: 33942830 DOI: 10.1039/d1cc01691a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First evidence for the coordination of norbornadiene (nbd) and dicyclopentadiene (dcpd) with the main group metal Mg is provided by the crystal structures of adducts with cationic β-diketiminate (BDI) Mg complexes. While the dcpd complex is thermally stable, [(BDI)Mg+·nbd][B(C6F5)4-] shows slow room temperature retro-Diels-Alder decomposition to give a complex with the cation (BDI)Mg(C5H5)Mg(BDI)+.
Collapse
Affiliation(s)
- Katharina Thum
- Inorganic and Metallorganic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, Erlangen 91058, Germany.
| | - Jürgen Pahl
- Inorganic and Metallorganic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, Erlangen 91058, Germany.
| | - Jonathan Eyselein
- Inorganic and Metallorganic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, Erlangen 91058, Germany.
| | - Holger Elsen
- Inorganic and Metallorganic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, Erlangen 91058, Germany.
| | - Jens Langer
- Inorganic and Metallorganic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, Erlangen 91058, Germany.
| | - Sjoerd Harder
- Inorganic and Metallorganic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, Erlangen 91058, Germany.
| |
Collapse
|
17
|
Thum K, Martin J, Elsen H, Eyselein J, Stiegler L, Langer J, Harder S. Lewis Acidic Cationic Strontium and Barium Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Katharina Thum
- Chair of Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Johannes Martin
- Chair of Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Holger Elsen
- Chair of Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Jonathan Eyselein
- Chair of Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Lena Stiegler
- Chair of Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Jens Langer
- Chair of Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Sjoerd Harder
- Chair of Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| |
Collapse
|
18
|
Friedrich A, Eyselein J, Elsen H, Langer J, Pahl J, Wiesinger M, Harder S. Cationic Aluminium Complexes as Catalysts for Imine Hydrogenation. Chemistry 2021; 27:7756-7763. [PMID: 33780071 PMCID: PMC8252007 DOI: 10.1002/chem.202100641] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Strongly Lewis acidic cationic aluminium complexes, stabilized by β–diketiminate (BDI) ligands and free of Lewis bases, have been prepared as their B(C6F5)4− salts and were investigated for catalytic activity in imine hydrogenation. The backbone (R1) and N (R2) substituents on the R1,R2BDI ligand (R1,R2BDI=HC[C(R1)N(R2)]2) influence sterics and Lewis acidity. Ligand bulk increases along the row Me,DIPPBDI<Me,DIPePBDI≈tBu,DIPPBDI<tBu,DIPePBDI; DIPP=2,6‐C(H)Me2‐phenyl, DIPeP=2,6‐C(H)Et2‐phenyl. The Gutmann‐Beckett test showed acceptor numbers of: (tBu,DIPPBDI)AlMe+ 85.6, (tBu,DIPePBDI)AlMe+ 85.9, (Me,DIPPBDI)AlMe+ 89.7, (Me,DIPePBDI)AlMe+ 90.8, (Me,DIPPBDI)AlH+ 95.3. Steric and electronic factors need to be balanced for catalytic activity in imine hydrogenation. Open, highly Lewis acidic, cations strongly coordinate imine rendering it inactive as a Frustrated Lewis Pair (FLP). The bulkiest cations do not coordinate imine but its combination is also not an active catalyst. The cation (tBu,DIPPBDI)AlMe+ shows the best catalytic activity for various imines and is also an active catalyst for the Tishchenko reaction of benzaldehyde to benzylbenzoate. DFT calculations on the mechanism of imine hydrogenation catalysed by cationic Al complexes reveal two interconnected catalytic cycles operating in concert. Hydrogen is activated either by FLP reactivity of an Al⋅⋅⋅imine couple or, after formation of significant quantities of amine, by reaction with an Al⋅⋅⋅amine couple. The latter autocatalytic Al⋅⋅⋅amine cycle is energetically favoured.
Collapse
Affiliation(s)
- Alexander Friedrich
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Jonathan Eyselein
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Holger Elsen
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Jens Langer
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Jürgen Pahl
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Michael Wiesinger
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| |
Collapse
|
19
|
Mkrtchyan S, Jakubczyk M, Lanka S, Pittelkow M, Iaroshenko VO. Cu-Catalyzed Arylation of Bromo-Difluoro-Acetamides by Aryl Boronic Acids, Aryl Trialkoxysilanes and Dimethyl-Aryl-Sulfonium Salts: New Entries to Aromatic Amides. Molecules 2021; 26:2957. [PMID: 34065691 PMCID: PMC8156957 DOI: 10.3390/molecules26102957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/28/2022] Open
Abstract
We describe a mechanism-guided discovery of a synthetic methodology that enables the preparation of aromatic amides from 2-bromo-2,2-difluoroacetamides utilizing a copper-catalyzed direct arylation. Readily available and structurally simple aryl precursors such as aryl boronic acids, aryl trialkoxysilanes and dimethyl-aryl-sulfonium salts were used as the source for the aryl substituents. The scope of the reactions was tested, and the reactions were insensitive to the electronic nature of the aryl groups, as both electron-rich and electron-deficient aryls were successfully introduced. A wide range of 2-bromo-2,2-difluoroacetamides as either aliphatic or aromatic secondary or tertiary amides were also reactive under the developed conditions. The described synthetic protocols displayed excellent efficiency and were successfully utilized for the expeditious preparation of diverse aromatic amides in good-to-excellent yields. The reactions were scaled up to gram quantities.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łodź, Poland; (M.J.); (S.L.)
| | - Michał Jakubczyk
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łodź, Poland; (M.J.); (S.L.)
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Suneel Lanka
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łodź, Poland; (M.J.); (S.L.)
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Michael Pittelkow
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark;
| | - Viktor O. Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łodź, Poland; (M.J.); (S.L.)
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, 00014 Helsinki, Finland
| |
Collapse
|
20
|
Friedrich A, Eyselein J, Langer J, Harder S. Comparison of Magnesium and Zinc in Cationic π-Arene and Halobenzene Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander Friedrich
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Jonathan Eyselein
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Jens Langer
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
21
|
McMullen JS, Edwards AJ, Hicks J. C-H and C-F coordination of arenes in neutral alkaline earth metal complexes. Dalton Trans 2021; 50:8685-8689. [PMID: 34160514 DOI: 10.1039/d1dt01532j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A series of neutral magnesium and calcium complexes bearing an extremely bulky diamido ligand have been synthesised and crystallographically characterised. A number of these complexes feature rare group 2 metalaromatic interactions, such as the η6-coordination of benzene and 'agostic-like' C-H coordination, the latter previously unseen in neutral Mg and Ca complexes.
Collapse
Affiliation(s)
- Jacob S McMullen
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | - Alison J Edwards
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, New South Wales 2234, Australia
| | - Jamie Hicks
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| |
Collapse
|