1
|
Bolgar P, Dhiman M, Núñez-Villanueva D, Hunter CA. Covalent Template-Directed Synthesis: A Powerful Tool for the Construction of Complex Molecules. Chem Rev 2025; 125:1629-1657. [PMID: 39804998 PMCID: PMC11826911 DOI: 10.1021/acs.chemrev.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/08/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025]
Abstract
Template-directed synthesis has become a powerful methodology to access complex molecules. Noncovalent templating has been widely used in the last few decades, but less attention has been paid to covalent template-directed synthesis, despite the fact that this methodology was used for the first reported synthesis of a catenane. This review highlights the evolution of covalent templating over the last 60 years, thereby providing a toolbox for the design of efficient covalent templating processes. Covalent templating represents a useful synthetic tool for accessing complex molecules, and the examples described here include the synthesis of macrocycles, mechanically interlocked molecules, linear oligomers, polydisperse linear polymers, and cross-linked polymer networks.
Collapse
Affiliation(s)
- Peter Bolgar
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Mohit Dhiman
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | - Christopher A. Hunter
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
2
|
Lee S, Song G, Jeong KS. Stimuli-Responsive Molecular Duplexes Displaying Duplex-to-Duplex Switching. Angew Chem Int Ed Engl 2024; 63:e202410884. [PMID: 38937392 DOI: 10.1002/anie.202410884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Synthetic duplexes with high stabilities have promising potential for mimicking biomolecular functions and developing supramolecular smart materials. Herein, we describe the synthesis and stimuli-responsive properties of molecular duplexes derived from indolocarbazole-pyridine (I-P) oligomers. These duplexes adopt nonclassical helical structures, stabilized by I-P hydrogen-bonding pairs in anhydrous chlorinated solvents. Notably, the longest duplex 62 (11-mer)2 displays remarkable stability, forming twenty hydrogen bonds; its exchange energy barrier was determined to be ΔG≠=22.0 kcal ⋅ mol-1 at 75 °C in anhydrous (CDCl2)2. Upon the addition of water, a hydrated duplex 62 (11-mer)2⊃10H2O was formed, with one water molecule inserted between each I-P hydrogen-bonding pair. The Hill coefficient (n) for this process is 6.1, demonstrating extremely positive cooperativity. Conversely, the hydrated duplex 62 (11-mer)2⊃10H2O was completely converted into the original anhydrous duplex 62 (11-mer)2 when the temperature was increased. Interconversion between these two distinct duplexes can be repeatedly carried out by varying the temperature. Furthermore, reversible switching between hetero-duplexes and homo-duplexes was also demonstrated by controlling the temperature, with concomitant changes in the characteristic emission signals.
Collapse
Affiliation(s)
- Seungwon Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Geunmoo Song
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
3
|
Núñez-Villanueva D, Hunter CA. Replication of synthetic recognition-encoded oligomers by ligation of trimer building blocks. Org Chem Front 2023; 10:5950-5957. [PMID: 38022796 PMCID: PMC10661083 DOI: 10.1039/d3qo01717f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
The development of methods for replication of synthetic information oligomers will underpin the use of directed evolution to search new chemical space. Template-directed replication of triazole oligomers has been achieved using a covalent primer in conjunction with non-covalent binding of complementary building blocks. A phenol primer equipped with an alkyne was first attached to a benzoic recognition unit on a mixed sequence template via selective covalent ester base-pair formation. The remaining phenol recognition units on the template were then used for non-covalent binding of phosphine oxide oligomers equipped with an azide. The efficiency of the templated CuAAC reaction between the primer and phosphine oxide building blocks was investigated as a function of the number of H-bonds formed with the template. Increasing the strength of the non-covalent interaction between the template and the azide lead to a significant acceleration of the templated reaction. For shorter phosphine oxide oligomers intermolecular reactions compete with the templated process, but quantitative templated primer elongation was achieved with a phosphine oxide 3-mer building block that was able to form three H-bonds with the template. NMR spectroscopy and molecular models suggest that the template can fold, but addition of the phosphine oxide 3-mer leads to a complex with three H-bonds between phosphine oxide and phenol groups, aligning the azide and alkyne groups in a favourable geometry for the CuAAC reaction. In the product duplex, 1H and 31P NMR data confirm the presence of the three H-bonded base-pairs, demonstrating that the covalent and non-covalent base-pairs are geometrically compatible. A complete replication cycle was carried out starting from the oligotriazole template by covalent attachment of the primer, followed by template-directed elongation, and hydrolysis of the the ester base-pair in the resulting duplex to regenerate the template and liberate the copy strand. We have previously demonstrated sequence-selective oligomer replication using covalent base-pairing, but the trimer building block approach described here is suitable for replication of sequence information using non-covalent binding of the monomer building blocks to a template.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
4
|
Rosa-Gastaldo D, Dalla Valle A, Marchetti T, Gabrielli L. Sequence-selective duplex formation and template effect in recognition-encoded oligoanilines. Chem Sci 2023; 14:8878-8888. [PMID: 37621420 PMCID: PMC10445429 DOI: 10.1039/d3sc00880k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
A new family of duplex-forming recognition encoded oligomers, capable of sequence selective duplex formation and template directed synthesis, was developed. Monomers equipped with both amine and aldehyde groups were functionalized with 2-trifluoromethylphenol or phosphine oxide as H-bond recognition units. Duplex formation and assembly properties of homo- and hetero-oligomers were studied by 19F and 1H NMR experiments in chloroform. The designed backbone prevents the undesired 1,2-folding allowing sequence-selective duplex formation, and the stability of the antiparallel duplex is 3-fold higher than the parallel arrangement. Dynamic combinatorial chemistry was exploited for the templated synthesis of complementary oligomers, showing that an aniline dimer can template the formation of the complementary imine. The key role of the H-bond recognition confers to the system the ability to discriminate a mutated donor monomer incapable of H-bonding. Sequence selective duplex formation combined with the template effect makes this system an attractive target for further studies.
Collapse
Affiliation(s)
- Daniele Rosa-Gastaldo
- Dipartimento di Scienze Chimiche, Università degli studi di Padova via Marzolo 1 35131 Padova Italy
| | - Andrea Dalla Valle
- Dipartimento di Scienze Chimiche, Università degli studi di Padova via Marzolo 1 35131 Padova Italy
| | - Tommaso Marchetti
- Dipartimento di Scienze Chimiche, Università degli studi di Padova via Marzolo 1 35131 Padova Italy
| | - Luca Gabrielli
- Dipartimento di Scienze Chimiche, Università degli studi di Padova via Marzolo 1 35131 Padova Italy
| |
Collapse
|
5
|
Núñez-Villanueva D, Hunter CA. Effect of backbone flexibility on covalent template-directed synthesis of linear oligomers. Org Biomol Chem 2022; 20:8285-8292. [PMID: 36226964 PMCID: PMC9629452 DOI: 10.1039/d2ob01627c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Covalent template-directed synthesis can be used to replicate synthetic oligomers, but success depends critically on the conformational properties of the backbone. Here we investigate how the choice of monomer building block affects the flexibility of the backbone and in turn the efficiency of the replication process for a series of different triazole oligomers. Two competing reaction pathways were identified for monomers attached to a template, resulting in the formation of either macrocyclic or linear products. For flexible backbones, macrocycles and linear oligomers are formed at similar rates, but a more rigid backbone gave exclusively the linear product. The experimental results are consistent with ring strain calculations using molecular mechanics: products with low ring strain (20-30 kJ mol-1) formed rapidly, and products with high ring strain (>100 kJ mol-1) were not observed. Template-directed replication of linear oligomers requires monomers that rigid enough to prevent the formation of undesired macrocycles, but not so rigid that the linear templating pathway leading to the duplex is inhibited. Molecular mechanics calculations of ring strain provide a straightforward tool for assessing the flexibility of potential backbones and the viability different monomer designs before embarking on synthesis.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
6
|
Núñez-Villanueva D, Hunter CA. Replication of a synthetic oligomer using chameleon base-pairs. Chem Commun (Camb) 2022; 58:11005-11008. [PMID: 36094173 DOI: 10.1039/d2cc04580j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salt bridges were used to attach polymerisable amidine monomers to an oligomeric benzoic acid template. CuAAC oligomerisation reactions in the presence of a benzoic acid 3-mer template gave the amidine 3-mer copy as the major product. Cleavage of ester linkers was used to hydrolyse off the amidine recognition units and convert the product into a benzoic acid 3-mer copy of the original template.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
7
|
Núñez-Villanueva D, Hunter CA. H-Bond Templated Oligomer Synthesis Using a Covalent Primer. J Am Chem Soc 2022; 144:17307-17316. [PMID: 36082527 PMCID: PMC9501907 DOI: 10.1021/jacs.2c08119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Template-directed synthesis of nucleic acids in the polymerase chain reaction is based on the use of a primer, which is elongated in the replication process. The attachment of a high affinity primer to the end of a template chain has been implemented for templating the synthesis of triazole oligomers. A covalent ester base-pair was used to attach a primer to a mixed sequence template. The resulting primed template has phenol recognition units on the template, which can form noncovalent base-pairs with phosphine oxide monomers via H-bonding, and an alkyne group on the primer, which can react with the azide group on a phosphine oxide monomer. Competition reactions between azides bearing phosphine oxide and phenol recognition groups were used to demonstrate a substantial template effect, due to H-bonding interactions between the phenols on the template and phosphine oxides on the azide. The largest rate acceleration was observed when a phosphine oxide 2-mer was used, because this compound binds to the template with a higher affinity than compounds that can only make one H-bond. The 31P NMR spectrum of the product duplex shows that the H-bonds responsible for the template effect are present in the product, and this result indicates that the covalent ester base-pairs and noncovalent H-bonded base-pairs developed here are geometrically compatible. Following the templated reaction, it is possible to regenerate the template and liberate the copy strand by hydrolysis of the ester base-pair used to attach the primer, thus completing a formal replication cycle.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Christopher A. Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
Juritz J, Poulton JM, Ouldridge TE. Minimal mechanism for cyclic templating of length-controlled copolymers under isothermal conditions. J Chem Phys 2022; 156:074103. [DOI: 10.1063/5.0077865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jordan Juritz
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jenny M. Poulton
- Foundation for Fundamental Research on Matter (FOM), Institute for Atomic and Molecular Physics (AMOLF), 1098 XE Amsterdam, The Netherlands
| | - Thomas E. Ouldridge
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Controlled mutation rates in synthetic replicators. Commun Chem 2021; 4:35. [PMID: 36697510 PMCID: PMC9814653 DOI: 10.1038/s42004-021-00474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
10
|
Núñez-Villanueva D, Hunter CA. Replication of Sequence Information in Synthetic Oligomers. Acc Chem Res 2021; 54:1298-1306. [PMID: 33554599 PMCID: PMC7931443 DOI: 10.1021/acs.accounts.0c00852] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 12/12/2022]
Abstract
The holy grail identified by Orgel in his 1995 Account was the development of novel chemical systems that evolve using reactions in which replication and information transfer occur together. There has been some success in the adaption of nucleic acids to make artificial analogues and in templating oligomerization reactions to form synthetic homopolymers, but replication of sequence information in synthetic polymers remains a major unsolved problem. In this Account, we describe our efforts in this direction based on a covalent base-pairing strategy to transfer sequence information between a parent template and a daughter copy. Oligotriazoles, which carry information as a sequence of phenol and benzoic acid side chains, have been prepared from bifunctional monomers equipped with an azide and an alkyne. Formation of esters between phenols and benzoic acids is used as the equivalent of nucleic base pairing to covalently attach monomer building blocks to a template oligomer. Sequential protection of the phenol side chains on the template, ester coupling of the benzoic acid side chains, and deprotection and ester coupling of the phenol side chains allow quantitative selective base-pair formation on a mixed sequence template. Copper catalyzed azide alkyne cycloaddition (CuAAC) is then used to oligomerize the monomers on the template. Finally, cleavage of the ester base pairs in the product duplex by hydrolysis releases the copy strand. This covalent template-directed synthesis strategy has been successfully used to copy the information encoded in a trimer template into a sequence-complementary oligomer in high yield.The use of covalent base pairing provides opportunities to manipulate the nature of the information transferred in the replication process. By using traceless linkers to connect the phenol and benzoic acid units, it is possible to carry out direct replication, reciprocal replication, and mutation. These preliminary results are promising, and methods have been developed to eliminate some of the side reactions that compete with the CuAAC process that zips up the duplex. In situ end-capping of the copy strand was found to be an effective general method for blocking intermolecular reactions between product duplexes. By selecting an appropriate concentration of an external capping agent, it is also possible to intercept macrocyclization of the reactive chain ends in the product duplex. The other side reaction observed is miscoupling of monomer units that are not attached to adjacent sites on the template, and optimization is required to eliminate these reactions. We are still some way from an evolvable synthetic polymer, but the chemical approach to molecular replication outlined here has some promise.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Christopher A. Hunter
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|