1
|
Yang N, Chang Y, Wang J, Young DJ, Li HX, Lu Y, Ren ZG. Recoverable and Sensitive Pressure-Induced Mechanochromic Photoluminescence of a Au-P Complex. Molecules 2025; 30:2011. [PMID: 40363815 PMCID: PMC12073243 DOI: 10.3390/molecules30092011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
A binuclear Au-P complex [Au2(2-bdppmapy)2](PF6)2 (1) was synthesised by the reaction of 2-bdppmapy (N,N'-bis-(diphenylphosphanylmethyl-2-aminopyridine) with AuCN and [Cu(MeCN)4]PF6. The solid phase of 1 emitted bright yellow phosphorescence at λmax = 580 nm under UV excitation (QY = 4.41%, τ = 1.88 μs), which shifted to green (λmax = 551 nm, QY = 5.73%) after being pressurised under 5 MPa. This colour change was recoverable upon exposure to CH2Cl2 vapor. Similar mechanochromic photoluminescence behaviour was observed after grinding the crystals of 1. A filter paper impregnated with 1 demonstrated recyclable write/erase functionality for encrypted information transfer.
Collapse
Affiliation(s)
- Ningwen Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yijia Chang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiangyue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - David James Young
- James Watt School of Engineering, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuxin Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Huang GQ, Xia RQ, Chen X, Yang H, Huang YL, Wu K, Zheng J, Lu W, Li D. Enabling Thermally Stimulated Delayed Phosphorescence in Cu(I) Cyclic Trinuclear Complexes with Near-Unity Quantum Yield. J Am Chem Soc 2025; 147:6415-6426. [PMID: 39960434 DOI: 10.1021/jacs.4c09907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Thermally stimulated delayed phosphorescence (TSDP) emission has recently been discovered in several Au(I)/Au(III) complexes, featuring thermally enhanced emission intensities and notable quantum yields (QYs). Developing earth-abundant metal-based TSDP emitters with further increased QYs holds significant promise for practical applications. Herein, we present a halogen bonding approach to achieve TSDP emission in bromo-substituted Cu(I) cyclic trinuclear complexes (CTCs). Photophysical analysis and theoretical calculations reveal the crucial role of halogen bonding in suppressing the excited-state distortions and reducing energy differences between the first and second triplet excited states (T1 and T2). This enables efficient spin-allowed reverse internal conversion, leading to the TSDP behavior. Additionally, the low internal reorganization energy and rigid halogen-bonded network in bromo-substituted Cu(I) CTCs result in significantly suppressed nonradiative decay and high QYs, with one approaching near-unity. This work provides an innovative approach to extend the TSDP behavior from Au(I)/Au(III) to Cu(I) complexes with high QYs.
Collapse
Affiliation(s)
- Guo-Quan Huang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Ri-Qin Xia
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Xu Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Hu Yang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Kun Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Ji Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Weigang Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, Guangdong 510632, PR China
| |
Collapse
|
3
|
Xie Q, Chen A, Li X, Xu C, Bi S, Zhang W, Tang J, Pan C, Zhang F, Yu G. Tuning the interlayer stacking of a vinylene-linked covalent organic framework for enhancing sacrificial agent-free hydrogen peroxide photoproduction. Chem Sci 2025; 16:2215-2221. [PMID: 39790987 PMCID: PMC11707676 DOI: 10.1039/d4sc06451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
The layer-stacking mode of a two-dimensional (2D) material plays a dominant role either in its topology or properties, but remains challenging to control. Herein, we developed alkali-metal ion-regulating synthetic control on the stacking structure of a vinylene-linked covalent triazine framework (termed sp2c-CTF) for improving hydrogen peroxide (H2O2) photoproduction. Upon the catalysis of EtONa in Knoevenagel polycondensation, a typical eclipsed stacking mode (sp2c-CTF-4@AA) was built, while a staggered one (sp2c-CTF-4@AB) was constructed using LiOH. The AB stacking might be induced by the Li+ promoted Lewis acid-base interactions with the nitrogen atoms of s-triazine units which would endow the s-triazine units with a charged state and enlarge the total crystal stacking energy. Specifically, the shift in the stacking mode speeds up electron transfer within each layer and along interlayers, thereby improving the photocatalytic activity. sp2c-CTF-4@AB features superior activity over the eclipsed stacking counterpart (sp2c-CTF-4@AA) in sacrificial agent-free H2O2 generation, comparable to the state-of-the-art COF photocatalysts, which has not been demonstrated in this field before. This work demonstrates that regulating the interlayer-stacking mode of COFs can endow them with high photocatalytic activity, further inspiring the development of heterogeneous catalysis.
Collapse
Affiliation(s)
- Qiujian Xie
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
| | - Anqi Chen
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
| | - Xiaofeng Li
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
| | - Chen Xu
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
| | - Shuai Bi
- State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Weijie Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering Xiangtan 411104 P. R. China
| | - Juntao Tang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
| | - Chunyue Pan
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
| | - Fan Zhang
- State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Guipeng Yu
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
| |
Collapse
|
4
|
Luan J, Li Y, Yuan J, Wang Z, Shang X, Wang KP, Fang Y, Chen S, Hu ZQ. Simple cyclic chalcone dye with multiple optical functions: Piezochromism and lysosomes staining. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124485. [PMID: 38788510 DOI: 10.1016/j.saa.2024.124485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Both artificially synthesized and naturally occurring cyclic chalcones have been widely studied for their excellent biological activities. However, research on its photophysical properties is still limited. In the present study, we designed and synthesized a small molecule fluorescent dye based on the ICT effect, using dimethylamino as the electron-donating group and carbonyl as the electron withdrawing group, and investigated its photophysical properties in depth. Although YB is a simple small molecule, it exhibits significant piezochromic properties. The fluorescence of YB can change from green to yellow through grinding. After solvent fumigation, the fluorescence reverts to green. Furthermore, YB was used successfully in the lysosomal targeting. This study expands the research on the photophysical properties of cyclic chalcone and give richness to application of cyclic chalcone compounds.
Collapse
Affiliation(s)
- Junyu Luan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yahang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jianhao Yuan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zezhong Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xianzhao Shang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ying Fang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shaojin Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
5
|
Liu H, Isoda R, Doi M, Muto K, Ando S. Pressure-Induced Enhancement of Room-Temperature Phosphorescence in Heavy Halogen-Containing Imide and Polyimide. J Phys Chem B 2024. [PMID: 39054756 DOI: 10.1021/acs.jpcb.4c03946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
To investigate the correlation between the aggregated state and photoluminescence (PL) mechanism of dual fluorescent (FL) and phosphorescent (PH) polyimides (PIs), the photophysical processes of FL-type BP-PI, PH-type DBrBP-PI, and their corresponding imide model compounds (BP-MC and DBrBP-MC) dispersed in poly(methyl methacrylate) (PMMA) films were analyzed at elevated pressures up to 8 GPa using a diamond anvil cell. Dibromo-substituted DBrBP-MC demonstrated a shorter wavelength absorption than BP-MC owing to the larger dihedral angle in the biphenyl moiety. Both MCs exhibited red-shifts in their absorption spectra with increasing pressure, indicating planarization occurred at the biphenyl moieties associated with the compression of the free volume in PMMA. The PL intensity of BP-MC increased with increasing pressure, while its quantum yield (ΦPL) decreased sharply due to the enhanced energy transfer via the Förster mechanism. In contrast, the PH quantum yield (ΦPH) of DBrBP-MC monotonically increased at lower pressures, while it showed excitation wavelength-dependent behaviors at higher pressures: ΦPH remained unchanged under excitation at 340 nm but gradually increased under excitation at 365 nm. This fact suggests that, at higher pressures, 365 nm excitation promoted intersystem crossing (ISC) from excited singlet states at higher energy levels. Using this phenomenon, a significant pressure-induced PH enhancement (PIPE) was observed for DBrBP-PI up to 0.9 GPa upon excitation at 365 nm, which is a rare phenomenon for organic polymers. This study indicates that even in colorless and optically transparent amorphous polymers, an enhancement of PH due to restricted molecular motion and intensified ISC outweighs the deactivation due to intermolecular energy transfer under certain pressures, leading to an increase in ΦPH.
Collapse
Affiliation(s)
- Haonan Liu
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryuichi Isoda
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Marina Doi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Koichiro Muto
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Shinji Ando
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
6
|
Zhang XJ, Sun ME, Sun F, Jin Y, Dong XY, Li S, Li HY, Chen G, Fu Y, Wang Y, Tang Q, Wu Y, Jiang L, Zang SQ. Vibration-Dependent Dual-Phosphorescent Cu 4 Nanocluster with Remarkable Piezochromic Behavior. Angew Chem Int Ed Engl 2024; 63:e202401724. [PMID: 38691401 DOI: 10.1002/anie.202401724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
The dual emission (DE) characteristics of atomically precise copper nanoclusters (Cu NCs) are of significant theoretical and practical interest. Despite this, the underlying mechanism driving DE in Cu NCs remains elusive, primarily due to the complexities of excited state processes. Herein, a novel [Cu4(PPh3)4(C≡C-p-NH2C6H4)3]PF6 (Cu4) NC, shielded by alkynyl and exhibiting DE, was synthesized. Hydrostatic pressure was applied to Cu4, for the first time, to investigate the mechanism of DE. With increasing pressure, the higher-energy emission peak of Cu4 gradually disappeared, leaving the lower-energy emission peak as the dominant emission. Additionally, the Cu4 crystal exhibited notable piezochromism transitioning from cyan to orange. Angle-dispersive synchrotron X-ray diffraction results revealed that the reduced inter-cluster distances under pressure brought the peripheral ligands closer, leading to the formation of new C-H⋅⋅⋅N and N-H⋅⋅⋅N hydrogen bonds in Cu4. It is proposed that these strengthened hydrogen bond interactions limit the ligands' vibration, resulting in the vanishing of the higher-energy peak. In situ high-pressure Raman and vibrationally resolved emission spectra demonstrated that the benzene ring C=C stretching vibration is the structural source of the DE in Cu4.
Collapse
Affiliation(s)
- Xiao-Jing Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Meng-En Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
- College of Material Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, 451191, Zhengzhou, China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, 401331, Chongqing, China
| | - Yan Jin
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 454000, Jiaozuo, China
| | - Si Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Hai-Yang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Gaosong Chen
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Yonggang Wang
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, 401331, Chongqing, China
| | - Yuchen Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100871, Beijing, China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100871, Beijing, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| |
Collapse
|
7
|
Zhang R, He LH, Liu SJ, Liao JS, Wen HR, Chen JL, Zhao F. Multistimuli-responsive multicolor solid-state luminescence tuned by NH-dependent switchable hydrogen bonds. Dalton Trans 2023; 53:339-345. [PMID: 38050406 DOI: 10.1039/d3dt03124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper(I) complex [{Cu(bpmtzH)}2(μ-dppa)2](ClO4)2 (1), and the multistimuli-responsive mechanism is clarified by investigating its four different solvated compounds 1·2CH3COCH3·2H2O, 1·2DMSO·2H2O, 1·4CH3OH, and 1·4CH2Cl2. It is shown that luminescence mechanochromism is associated with the breakage of the hydrogen bonds of bmptzH-NH with counter-ions such as ClO4- induced by grinding, while luminescence vapochromism is attributable to the breaking and forming of hydrogen bonds of dppa-NH with solvents, such as acetone, dimethylsulfoxide, and methanol, caused by heating and vapor fuming. In addition, those results might provide new insights into the design and synthesis of multistimuli-responsive multicolor luminescent materials by using various structure-sensitive functional groups, such as distinct N-H ones, to construct switchable hydrogen bonds.
Collapse
Affiliation(s)
- Rui Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Li-Hua He
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Jin-Sheng Liao
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Jing-Lin Chen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China
| | - Feng Zhao
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China.
| |
Collapse
|
8
|
Ma XH, Si Y, Hu JH, Dong XY, Xie G, Pan F, Wei YL, Zang SQ, Zhao Y. High-Efficiency Pure Blue Circularly Polarized Phosphorescence from Chiral N-Heterocyclic-Carbene-Stabilized Copper(I) Clusters. J Am Chem Soc 2023; 145:25874-25886. [PMID: 37963217 DOI: 10.1021/jacs.3c10192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Circularly polarized luminescence (CPL) materials have attracted considerable attention for their promising applications in encryption, chiral sensing, and three-dimensional (3D) displays. However, the preparation of high-efficiency, pure blue CPL materials remains challenging. In this study, we reported an enantiomeric pair of triangle copper(I) clusters (R/S-Cu3) rigidified by employing chiral N-heterocyclic carbene (NHC) ligands with two pyridine-functionalized wingtips. These chiral clusters emitted pure blue phosphorescence that overlapped with that of the commercial blue phosphor having Commission Internationale de l'Eclairage (CIE) chromaticity coordinates of (0.14, 0.10), and the films exhibited an unprecedented photoluminescence quantum yield (PLQY) of ∼70.0%. Additionally, the solutions showed very bright circularly polarized phosphorescence (CPP) with a dissymmetry factor of ±2.1 × 10-3. The excellent solubility and photostability endowed these pure-blue-emitting chiral clusters with promising applications as pure blue CPP inks for 3D printing white objects, such as precise-atomic-enlarged models of metal clusters and a lovely white stereoscopic "rabbit". The intricate mechanism underlying blue phosphorescence in this small cluster and across various states is elucidated through a comprehensive approach that integrates thorough analysis of luminescence properties, controlled experiments, and theoretical calculations. For the first time, we propose that the dominant high-energy emission center is constituted by delocalized hybrid orbitals over multiple atomic centers, encompassing both the metal and the coordinated atoms. This challenges stereotypical assumptions that the cluster center solely supports low-energy emissions. This work expands the currently limited range of CPP functional materials and provides a new direction for CPP applications involving NHC-stabilized metal clusters.
Collapse
Affiliation(s)
- Xiao-Hong Ma
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yubing Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jia-Hua Hu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Guohua Xie
- The Institute of Flexible Electronics (Future Technologies), Xiamen University, Xiamen 361005, P. R. China
| | - Fangfang Pan
- College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yong-Li Wei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
9
|
Zhang R, Liu JW, Zhong WY, Chen JL, Zhao F, Liu SJ, Wen HR. Mechanochromic and Selective Vapochromic Solid-State Luminescence of a Dinuclear Cuprous Complex. Inorg Chem 2023; 62:11510-11517. [PMID: 37424076 DOI: 10.1021/acs.inorgchem.3c01107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The unraveling of the stimuli-responsive mechanism is crucial to the design and precise synthesis of stimuli-responsive luminescent materials. We report herein the mechanochromic and selective vapochromic solid-state luminescence properties of a new bimetallic cuprous complex [{Cu(bpmtzH)}2(μ-dppm)2](ClO4)2 (1), and the corresponding response mechanisms are elucidated by investigating its two different solvated polymorphs 1·2CH2Cl2 (1-g) and 1·2CHCl3 (1-c). Green-emissive 1-g and cyan-emissive 1-c can be interconverted upon alternate exposure to CHCl3 and CH2Cl2 vapors, which is principally attributable to a combined alteration of both intermolecular NHbpmtzH···OClO3- hydrogen bonds and intramolecular "triazolyl/phenyl" π···π interactions induced by different solvents. Solid-state luminescence mechanochromism present in 1-g and 1-c is mainly ascribed to the grinding-induced breakage of the NHbpmtzH···OClO3- hydrogen bonds. It is suggested that intramolecular π···π-triazolyl/phenyl interactions are affected by different solvents but not by grinding. The results provide new insights into the design and precise synthesis of multi-stimuli-responsive luminescent materials by the comprehensive use of intermolecular hydrogen bonds and intramolecular π···π interactions.
Collapse
Affiliation(s)
- Rui Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Jin-Wang Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Wei-Yong Zhong
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Jing-Lin Chen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Feng Zhao
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| |
Collapse
|
10
|
Lv C, Shen Y, Cao F, Zhang Q, Wang K, Zhang Y. Near-Infrared Piezochromism from an o-Carborane Dyad: Boron Clusters Facilitating a Wide-Range Redshift and High Sensitivity. Chemistry 2023; 29:e202300049. [PMID: 36732309 DOI: 10.1002/chem.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Piezochromic materials, which exhibit a fluorescence response with large emission spectral shifts and high sensitivity, may be useful in important applications, but there have been few reports of such organic luminophores. Herein, we report a new high-sensitivity piezochromic material based on the incorporation of an o-carborane unit, which exhibits aggregation-induced emission properties. In a high-pressure experiment, compared to carborane-free MTY, which exhibits an emission spectral shift of 75 nm and a sensitivity of 19.1 nm ⋅ GPa-1 , the o-carborane dyad MTCb shows a larger emission wavelength difference of 131 nm and a higher sensitivity of 32.8 nm ⋅ GPa-1 , demonstrating a performance that ranks among the best of organic piezochromic materials reported thus far. MTCb molecules adopt a J-aggregated pattern and have relatively loose molecular packing in the crystalline state. Interestingly, nonconjugated spherical carborane can disrupt the π-π interactions between adjacent molecules during compression, which results in excellent piezochromic performance.
Collapse
Affiliation(s)
- Chunyan Lv
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Rd. No. 759, Huzhou, 313000, P. R. China
| | - Yunxia Shen
- Key Laboratory of the Ministry of, Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road No. 688, Jinhua, 321004, P. R. China
| | - Feng Cao
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Rd. No. 759, Huzhou, 313000, P. R. China
| | - Qing Zhang
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Rd. No. 759, Huzhou, 313000, P. R. China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Yujian Zhang
- Key Laboratory of the Ministry of, Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road No. 688, Jinhua, 321004, P. R. China
| |
Collapse
|
11
|
Yang Z, Fu Z, Liu H, Wu M, Li N, Wang K, Zhang ST, Zou B, Yang B. Pressure-induced room-temperature phosphorescence enhancement based on purely organic molecules with a folded geometry. Chem Sci 2023; 14:2640-2645. [PMID: 36908955 PMCID: PMC9993843 DOI: 10.1039/d3sc00172e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
The pressure-dependent luminescence behavior of purely organic compounds is an important topic in the field of stimulus-responsive smart materials. However, the relevant studies are mainly limited to the investigation of fluorescence properties, while room-temperature phosphorescence (RTP) of purely organic compounds has not been investigated. Here, we filled in this gap regarding pressure-dependent RTP by using a model molecule selenanthrene (SeAN) with a folded geometry. For the first time to the best of our knowledge, a unique phenomenon involving pressure-induced RTP enhancement was discovered in an SeAN crystal, and an underlying mechanism involving folding-induced spin-orbit coupling enhancement was revealed. Pressure-induced RTP enhancement was also observed in an analog of SeAN also showing a folded geometry, but in this case yielded a white-light emission that is very rare in purely organic RTP-displaying materials.
Collapse
Affiliation(s)
- Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Zhiyuan Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Min Wu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Nan Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
12
|
Wang YM, Lin XC, Mo KM, Xie M, Huang YL, Ning GH, Li D. An Atomically Precise Pyrazolate-Protected Copper Nanocluster Exhibiting Exceptional Stability and Catalytic Activity. Angew Chem Int Ed Engl 2023; 62:e202218369. [PMID: 36573694 DOI: 10.1002/anie.202218369] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 12/28/2022]
Abstract
The synthesis of atomically precise copper nanoclusters (Cu-NCs) with high chemical stability is a prerequisite for practical applications, yet still remains a long-standing challenge. Herein, we have prepared a pyrazolate-protected Cu-NC (Cu8), which exhibited exceptional chemical stability either in solid-state or in solution. The crystals of Cu8 are still suitable for single crystal X-ray diffraction analysis even after being treated with boiling water, 8 wt % H2 O2 , high concentrated acid (1 M HCl) or saturated base (≈20 M KOH), respectively. More importantly, the structure of Cu8 in solution also remained intact toward oxygen, organic acid (100 eq. HOAc) or base (400 eq. dibutylamine) confirmed by 1 H NMR and UV/Vis analysis. Taking advantage of high alkali-resistant, Cu8 illustrates excellent catalytic activity for the synthesis of indolizines, and it can be reused for at least 10 cycles without losing catalytic performance.
Collapse
Affiliation(s)
- Yu-Mei Wang
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xiao-Chun Lin
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Kai-Ming Mo
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Mo Xie
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Guo-Hong Ning
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dan Li
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
13
|
Lu Z, Archambault CM, Li S, Syed U, Wang S, Kumar A, Shen G, Liu Z, Omary MA, Yan H. Modulating the Extent of Anisotropic Cuprophilicity via High Pressure with Piezochromic Luminescence Sensitization. J Phys Chem Lett 2023; 14:508-515. [PMID: 36626164 DOI: 10.1021/acs.jpclett.2c03284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metallophilicity has been widely studied as a fundamental supramolecular interaction. However, the extent and directionality thereof remain controversial. A major obstacle lies in the difficulty to separately control the geometry and chemical composition. Herein, we address this challenge by modulating metallophilicity with mechanical pressure. Using a multinuclear Cu(I) complex as model system, we report anomalous anisotropies of (supra)molecular structures, vibrations, and interaction energies upon isotropic compression as well as concomitant (essentially turn-on) piezochromic luminescence enhancement with ∼103 modulation. The in situ characterizations indicate opposite behaviors of contact distances and cuprophilic interactions for intermolecular vs intramolecular Cu-Cu pairs under pressure. Theoretical calculations break down the attractive and repulsive forces associated with cuprophilicity, its spontaneous 4p-3d hybridization origin, and direction-dependent interaction strength. The use of isotropic mechanical force reveals the intrinsic anisotropy of metallophilicity in multinuclear systems.
Collapse
Affiliation(s)
- Zhou Lu
- Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, Texas76203, United States
| | - Cynthia M Archambault
- Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, Texas76203, United States
| | - Shan Li
- Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, Texas76203, United States
- Department of Materials Science and Engineering, University of North Texas, 1155 Union Circle #305310, Denton, Texas76203, United States
| | - Umar Syed
- Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, Texas76203, United States
| | - Sicheng Wang
- Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, Texas76203, United States
| | - Abinaya Kumar
- Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, Texas76203, United States
| | - Guoyin Shen
- High Pressure Collaborative Access Team (HPCAT), X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Zhenxian Liu
- Department of Physics, University of Illinois Chicago, Chicago, Illinois60607, United States
| | - Mohammad A Omary
- Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, Texas76203, United States
| | - Hao Yan
- Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, Texas76203, United States
| |
Collapse
|
14
|
Lu Z, Vanga M, Li S, Adebanjo JO, Patterson MR, Dias HVR, Omary MA. Relativistic modulation of supramolecular halogen/copper interactions and phosphorescence in Cu(I) pyrazolate cyclotrimers. Dalton Trans 2023; 52:3964-3970. [PMID: 36594647 DOI: 10.1039/d2dt03725d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Described herein are the synthesis, structure, and photophysics of the iodo-substituted cyclic trinuclear copper(I) complex, Cu3[4-I-3,5-(CF3)2Pz]3 supported by a highly-fluorinated pyrazolate in comparison with its previously reported 4-Br/4-Cl analogues. The crystal structure is stabilised by multiple supramolecular interactions of Cu3⋯I and hydrogen/halogen bonding. The photophysical properties and supramolecular interactions are investigated experimentally/computationally for all three 4-halo complexes vis-à-vis relativistic effects.
Collapse
Affiliation(s)
- Zhou Lu
- Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, Texas 76203, USA.
| | - Mukundam Vanga
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - Shan Li
- Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, Texas 76203, USA.
| | - Joseph O Adebanjo
- Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, Texas 76203, USA.
| | - Monika R Patterson
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - Mohammad A Omary
- Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, Texas 76203, USA.
| |
Collapse
|
15
|
Huang Q, Zhang R, He LH, Chen JL, Zhao F, Liu SJ, Wen HR. Thermo-, Mechano-, and Vapochromic Dinuclear Cuprous-Emissive Complexes with a Switchable CH 3CN-Cu Bond. Inorg Chem 2022; 61:15629-15637. [PMID: 36129327 DOI: 10.1021/acs.inorgchem.2c02506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A thermo-, mechano-, and vapochromic bimetallic cuprous-emissive complex has been reported, and the origin and application of its tri-stimuli-responsive luminescence have been explored. As revealed by single-crystal structure analysis, thermo- and vapochromic luminescence adjusted by heating at 60 °C and CH3CN vapor fuming, accompanied by a crystalline-to-crystalline transition, is due to the breaking and rebuilding of the CH3CN-Cu bond, as supported by 1H nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), thermogravimetry (TG), and time-dependent density functional theory (TD-DFT) analyses of the CH3CN-coordinated species [Cu2(μ-dppa)2(μ-η1(N)η2(N,N)-fptz)(CH3CN)](ClO4)·H2O (1) and its CH3CN-removed derivative [Cu2(μ-dppa)2(μ-η1(N)η2(N,N)-fptz)](ClO4)·H2O (2). Luminescence mechanochromism, mixed with a crystalline-to-amorphous transition where the initial crystalline is different for 1 and 2, is mainly assigned as the destruction of the CH3CN-Cu bonding and/or the O···HNdppa and OH···Ntriazolyl hydrogen bonds. It is also suggested that a rational use of switchable coordination such as weak metal-solvent bonding is a feasible approach to develop multi-stimuli-responsive luminescent materials and devices.
Collapse
Affiliation(s)
- Qin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Rui Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Li-Hua He
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Jing-Lin Chen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Feng Zhao
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| |
Collapse
|
16
|
Zou J, Fang Y, Shen Y, Xia Y, Wang K, Zhang C, Zhang Y. Piezochromic Tetracoordinate Boron Complex: Blue‐Shifted and Enhanced Luminescence. Angew Chem Int Ed Engl 2022; 61:e202207426. [DOI: 10.1002/anie.202207426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Junjian Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Department of Chemistry Zhejiang Normal University Yingbin Road No.688 Jinhua 321004 P. R. China
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road NO. 18 Hangzhou 310014 P. R. China
| | - Yuanyuan Fang
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 P. R. China
| | - Yunxia Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Department of Chemistry Zhejiang Normal University Yingbin Road No.688 Jinhua 321004 P. R. China
| | - Yang Xia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Department of Chemistry Zhejiang Normal University Yingbin Road No.688 Jinhua 321004 P. R. China
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road NO. 18 Hangzhou 310014 P. R. China
| | - Kai Wang
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 P. R. China
| | - Cheng Zhang
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road NO. 18 Hangzhou 310014 P. R. China
| | - Yujian Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Department of Chemistry Zhejiang Normal University Yingbin Road No.688 Jinhua 321004 P. R. China
| |
Collapse
|
17
|
Zou J, Fang Y, Shen Y, Xia Y, Wang K, Zhang C, Zhang Y. Piezochromic Tetracoordinate Boron Complex: Blue‐Shifted and Enhanced Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junjian Zou
- Zhejiang Normal University Department of Chemistry CHINA
| | - Yuanyuan Fang
- Jilin University State Key Laboratory of Superhard Materials CHINA
| | - Yunxia Shen
- Zhejiang Normal University Department of Chemistry CHINA
| | - Yang Xia
- Zhejiang Normal University Department of Chemistry CHINA
| | - Kai Wang
- Jilin University State Key Laboratory of Superhard Materials CHINA
| | - Cheng Zhang
- Zhejiang University of Technology College of Chemical Engineering CHINA
| | - Yujian Zhang
- Zhejiang Normal University Department of Chemistry Yingbin Road No.688 321004 Jinhua CHINA
| |
Collapse
|
18
|
Wang XY, Lv L, Sun L, Hou Y, Hou Z, Chen Z. Recent Advances in Mechanochromism of Metal-Organic Compounds. Front Chem 2022; 10:865198. [PMID: 35308787 PMCID: PMC8931262 DOI: 10.3389/fchem.2022.865198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Smart luminescent materials, which can respond to the changing of external environment (light, electricity, force, temperature, etc.), have always been one of the research hotspots. Mechanochromism refers to the materials whose emission color or intensity can be altered under the stimulation of external mechanical force. This kind of smart materials have been widely used in data storage, information encryption and sensors due to its simple operation, obvious and rapid response. The introduction of metal atoms in metal-organic compounds brings about fascinating metalophilic interactions and results in more interesting and surprising mechanochromic behaviors. In this mini-review, recent advances in mechanochromism of metal-organic compounds, including mono-, di-, multinuclear metal-organic complexes and metallic clusters are summarized. Varies mechanisms are discussed and some design strategies for metal-organic compounds with mechanochromism are also presented.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Liqiang Lv
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Li Sun
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Yue Hou
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Zhenghao Hou
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
19
|
Ju P, Huang Q, Zhang R, Chen JL, Zhao F, Liu SJ, Wen HR. A tricolor-switchable stimuli-responsive luminescent binuclear Cu( i) complex with switchable NH⋯O interactions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00359g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Blue-green-yellow tricolor luminescence conversion is attributed to the loss and recovery of CH2Cl2 solvent molecules and the destruction and restoration of the orderly packing array caused by the breaking and rebuilding of NH⋯O hydrogen bonds.
Collapse
Affiliation(s)
- Peng Ju
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| | - Qin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| | - Rui Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| | - Jing-Lin Chen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China
| | - Feng Zhao
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| |
Collapse
|
20
|
Emashova SK, Titov AA, Smol'yakov AF, Chernyadyev AY, Godovikov IA, Godovikova MI, Dorovatovskii PV, Korlykov AA, Filippov OA, Shubina ES. Emissive silver( i) cyclic trinuclear complexes with aromatic amine donor pyrazolate derivatives: way to efficiency. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01648f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic silver(i) fluorinated pyrazolates containing triphenylamine and carbazole moieties are emissive in solution and the solid state, giving the first example of silver pyrazolate adducts emissive in solution at room temperature.
Collapse
Affiliation(s)
- Sofiia K. Emashova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119334 Moscow, Russia
| | - Aleksei A. Titov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119334 Moscow, Russia
| | - Alexander F. Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119334 Moscow, Russia
- Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Andrey Yu. Chernyadyev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prospect 31, 119071 Moscow, Russia
| | - Ivan A. Godovikov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119334 Moscow, Russia
| | - Maria I. Godovikova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119334 Moscow, Russia
| | - Pavel V. Dorovatovskii
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Alexander A. Korlykov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119334 Moscow, Russia
| | - Oleg A. Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119334 Moscow, Russia
| | - Elena S. Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119334 Moscow, Russia
| |
Collapse
|
21
|
Lv L, Ye L, Cao F, Yang S, Song Q, Zou B, Wang K, Lv C, Zhang C, Zhang Y. Red to near-infrared piezochromism from AIE-active luminophores: isolated dimers facilitating a wide-range redshift. NEW J CHEM 2022. [DOI: 10.1039/d2nj00901c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An AIE-activity architecture with HLCT and highly bright fluorescence was developed and it was the dispersed dimer packing found to be attributable to cholesteryl units. During compression, the dispersed dimers presented a remarkable redshift (157 nm) and high sensitivity (22.1 nm GPa−1).
Collapse
Affiliation(s)
- Long Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lijie Ye
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Feng Cao
- Department of Engineering Technology, Huzhou College, Xueshi Rd. No. 1, Huzhou 313000, People's Republic of China
| | - Shengchen Yang
- Department of Engineering Technology, Huzhou College, Xueshi Rd. No. 1, Huzhou 313000, People's Republic of China
| | - Qingbao Song
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bo Zou
- State Key Laboratory of Super-hard Materials, Jilin University, Qianjin Street 2699, Changchun, 130012, People's Republic of China
| | - Kai Wang
- State Key Laboratory of Super-hard Materials, Jilin University, Qianjin Street 2699, Changchun, 130012, People's Republic of China
| | - Chunyan Lv
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Rd. No. 759, Huzhou, 313000, People's Republic of China
| | - Cheng Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yujian Zhang
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Rd. No. 759, Huzhou, 313000, People's Republic of China
| |
Collapse
|
22
|
Yu P, Peng D, He LH, Chen JL, Wang JY, Liu SJ, Wen HR. A Mechanochromic and Vapochromic Luminescent Cuprous Complex Based on a Switchable Intramolecular π···π Interaction. Inorg Chem 2021; 61:254-264. [PMID: 34951312 DOI: 10.1021/acs.inorgchem.1c02807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An in-depth study on a stimuli-responsive tetranuclear cuprous luminescent complex is reported and gives new insights into the origin and possible use of the observed stimuli-responsive luminescence. Its crystalline polymorphs with two different shapes are obtained by using different crystallization solvents and show distinct emissions, with one being blue emissive and the other being yellow emissive. Upon grinding, only the blue-emitting polymorph has a marked change in the emission color from blue to yellow, and its ground sample exhibits a yellow emission similar to that of the yellow-emitting polymorph. Interestingly, the yellow-emitting polymorph after exposure to acetone vapor can emit a blue emission and display luminescence mechanochromism similar to that of the blue-emitting polymorph. Single-crystal structural analyses of the two different polymorphs reveal the relationship between the mechanochromic luminescence and the geometrical configuration of the {Cu(μ-dppm)2Cu} unit and intramolecular "pyridyl/phenyl" π···π interactions, supported as well by their PXRD, FT-IR, TGA, and PL studies in various states and by TD-DFT analyses. The results demonstrate the different roles of switchable intramolecular π···π interactions and the geometrical configuration of the {Cu(μ-dppm)2Cu} unit in this stimuli-responsive luminescence and potential applications of such stimuli-responsive luminescence in optical sensing and anticounterfeiting encryption technologies and deepen the understanding of such stimuli-responsive luminescence originating from switchable intramolecular π···π interactions. In addition, it is clearly suggested that the rational utilization of switchable intramolecular π···π interactions is a feasible route for developing stimuli-responsive intelligent luminescent materials and devices.
Collapse
Affiliation(s)
- Ping Yu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Dan Peng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Li-Hua He
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Jing-Lin Chen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| |
Collapse
|
23
|
Wang QF, Fan HC, Zhou Q, Chen X, Wang LJ, Lu ZX, Yang SX, Zheng LY, Cao QE. Reversible Photochromic Coordination Polymer by Phototriggered Subtle Molecular Conformation Variations. Inorg Chem 2021; 60:18870-18878. [PMID: 34855375 DOI: 10.1021/acs.inorgchem.1c02657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photochromic materials are constructed with molecules accompanied by structural change after triggering by light, which are of great importance and necessity for various applications. However, because of space-confinement effects, molecule stacking of these photoresponsive chromophores within coordination polymers (CPs) always results in an efficiency decrement and a response delay, and this phenomenon will lead to a poor photochromic property. Herein, a CP (named CIT-E) with a 3-fold-interpenetrating network structure, which was prepared with (Z)-1,2-diphenyl-1,2-bis[4-(pyridin-3-ylmethoxy)phenyl]ethene (1Z) and a CuI cluster, showed fast reversible photochromic behavior. Under UV-light illumination, the color of CIT-Z changed from pale yellow to reddish brown. With the illumination of green light, the polymer could return to its initial color within 10 s. To reveal the mechanism of reversible photochromic behavior of CIT-Z, single-crystal structures of each color state were fully studied, and other scientific study methods were also used, such as time-dependent density functional theory calculation and control experiments. It was found that, with light illumination, this behavior of CIT-Z was the result of a ligand-to-metal charge-transfer process, and this process was triggered by subtle molecular conformation variation of tetraphenylethylene. It should be noted that CIT-Z has high thermal and chemical stability, which are excellent advantages as smart photoresponsive materials. As a proof of concept, a uniform thin film with such a fascinating photochromic property allows applications in invisible anticounterfeiting and dynamic optical data storage. Overall, the present study opens up a new avenue toward reversible photochromic materials.
Collapse
Affiliation(s)
- Qiu-Feng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Hong-Chuan Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Qian Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Xin Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Long-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhi-Xiang Lu
- Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, People's Republic of China
| | - Shao-Xiong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Li-Yan Zheng
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Qiu-E Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
24
|
Inoue H, Yamashita Y, Ozawa Y, Ono T, Abe M. Solid-State Structures and Photoluminescence of Lamellar Architectures of Cu(I) and Ag(I) Paddlewheel Clusters with Hydrogen-Bonded Polar Guests. Molecules 2021; 26:molecules26216731. [PMID: 34771140 PMCID: PMC8587135 DOI: 10.3390/molecules26216731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Two hexanuclear paddlewheel-like clusters appending six carboxylic-acid pendants have been isolated with the inclusion of polar solvent guests: [Cu6(Hmna)6]·7DMF (1·7DMF) and [Ag6(Hmna)6]·8DMSO (2·8DMSO), where H2mna = 2-mercaptonicotininc acid, DMF = N,N’-dimethylformamide, and DMSO = dimethyl sulfoxide. The solvated clusters, together with their fully desolvated forms 1 and 2, have been characterized by FTIR, UV–Vis diffuse reflectance spectroscopy, TG-DTA analysis, and DFT calculations. Crystal structures of two solvated clusters 1·7DMF and 2·8DMSO have been unambiguously determined by single-crystal X-ray diffraction analysis. Six carboxylic groups appended on the clusters trap solvent guests, DMF or DMSO, through H-bonds. As a result, alternately stacked lamellar architectures comprising of a paddlewheel cluster layer and H-bonded solvent layer are formed. Upon UV illumination (λex = 365 nm), the solvated hexasilver(I) cluster 2·8DMSO gives intense greenish-yellow photoluminescence in the solid state (λPL = 545 nm, ΦPL = 0.17 at 298 K), whereas the solvated hexacopper(I) cluster 1·7DMF displays PL in the near-IR region (λPL = 765 nm, ΦPL = 0.38 at 298 K). Upon complete desolvation, a substantial bleach in the PL intensity (ΦPL < 0.01) is observed. The desorption–sorption response was studied by the solid-state PL spectroscopy. Non-covalent interactions in the crystal including intermolecular H-bonds, CH⋯π interactions, and π⋯π stack were found to play decisive roles in the creation of the lamellar architectures, small-molecule trap-and-release behavior, and guest-induced luminescence enhancement.
Collapse
Affiliation(s)
- Haruki Inoue
- Graduate School of Science, University of Hyogo, 3-2-1, Kouto, Kamigori-cho, Kobe 678-1297, Japan; (H.I.); (Y.Y.)
| | - Yuga Yamashita
- Graduate School of Science, University of Hyogo, 3-2-1, Kouto, Kamigori-cho, Kobe 678-1297, Japan; (H.I.); (Y.Y.)
| | - Yoshiki Ozawa
- Graduate School of Science, University of Hyogo, 3-2-1, Kouto, Kamigori-cho, Kobe 678-1297, Japan; (H.I.); (Y.Y.)
- Correspondence: (Y.O.); (M.A.)
| | - Toshikazu Ono
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Masaaki Abe
- Graduate School of Science, University of Hyogo, 3-2-1, Kouto, Kamigori-cho, Kobe 678-1297, Japan; (H.I.); (Y.Y.)
- Correspondence: (Y.O.); (M.A.)
| |
Collapse
|
25
|
Khalil AM, Xu C, Delmas V, Calvez G, Costuas K, Haouas M, Lescop C. Coordination-driven supramolecular syntheses of new homo- and hetero-polymetallic Cu( i) assemblies: solid-state and solution characterization. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00937k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New luminescent Cu(i) discrete assemblies D and FM and 1D coordination polymer E are reported. Deep insights of self-assembly processes based on flexible Cu(i) precursors are highlighted together with the preservation in solution of Cu(i) assemblies.
Collapse
Affiliation(s)
- Ali Moustafa Khalil
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Chendong Xu
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Vincent Delmas
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Guillaume Calvez
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Karine Costuas
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Christophe Lescop
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| |
Collapse
|
26
|
Li ZX, Kuang XN, Wang G, Zhu N, Sun ZZ, Han HL, Yang YP, Li ZF, Xin XL, Jin QH, Ren ZG. A series of luminescent Cu( i) complexes based on the diphosphine ligand and diimine ligand: weak intermolecular interactions, terahertz spectroscopy and photoproperties. CrystEngComm 2021. [DOI: 10.1039/d1ce01132d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Counter-ions can regulate the luminescence of complexes by changing the weak intermolecular interactions, which can be observed by THz spectroscopy.
Collapse
Affiliation(s)
- Zi-Xi Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xiao-Nan Kuang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Ning Zhu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhen-Zhou Sun
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Hong-Liang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yu-Ping Yang
- School of Science, Minzu University of China, Beijing 100081, China
| | - Zhong-Feng Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xiu-Lan Xin
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Qiong-Hua Jin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
27
|
Xu JP, Zou W, Zhan SZ, Zheng J, Wu K, Zhang GH, Li JH, Li M, Ning GH, Li D. Visible-light excited luminescent trigonal prismatic metallocages from a template-directed assembly. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00409c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Trigonal prismatic metallocages based on Cu3Pz3 and Cu2I2/Cu2Br2 with 24-component were assembled via a template-directed strategy. They showed rare visible-light responsive red emissions based on Cu2I2/Cu2Br2 coordination chromophores.
Collapse
Affiliation(s)
- Jian-Ping Xu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University
- Shantou 515063
- P. R. China
| | - Wen Zou
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University
- Shantou 515063
- P. R. China
| | - Shun-Ze Zhan
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University
- Shantou 515063
- P. R. China
- College of Chemistry and Materials Science
| | - Ji Zheng
- College of Chemistry and Materials Science
- and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Kun Wu
- College of Chemistry and Materials Science
- and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Guo-Hui Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University
- Shantou 515063
- P. R. China
| | - Jing-Hong Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University
- Shantou 515063
- P. R. China
| | - Mian Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University
- Shantou 515063
- P. R. China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science
- and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Dan Li
- College of Chemistry and Materials Science
- and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| |
Collapse
|
28
|
Zhu C, Li C, Wen L, Song Q, Wang K, Lv C, Zhang Y. Piezochromism of cyanostilbene derivatives: a small structural alteration makes a big photophysical difference. NEW J CHEM 2021. [DOI: 10.1039/d1nj01945g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We designed two HLCT-active luminophores with high PLYQs. Under high pressure, DPMO presents better sensitivity and a smaller PL wavelength redshift than TPPA due to the high PLYQs and the strong CT state.
Collapse
Affiliation(s)
- Chenfei Zhu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- People's Republic of China
| | - Chengjian Li
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- People's Republic of China
| | - Li Wen
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- People's Republic of China
| | - Qingbao Song
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- People's Republic of China
| | - Kai Wang
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Chunyan Lv
- Department of Materials Chemistry
- Huzhou University
- Huzhou
- People's Republic of China
| | - Yujiang Zhang
- Department of Materials Chemistry
- Huzhou University
- Huzhou
- People's Republic of China
| |
Collapse
|