1
|
Liu H, Pang X, Duan M, Yang Z, Russell TP, Li X. A Simple Route for Open Fluidic Devices with Particle Walls. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413862. [PMID: 39538996 DOI: 10.1002/adma.202413862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Open fluidics, allowing liquid in a flow channel to interact with the external environment, is a revolutionary concept. However, fabricating a highly stable open fluidic device of arbitrary complexity, while maintaining reconfigurability, is still a challenge. This is achieved by the use of a patterned substrate and liquids that are covered with functional, readily available hydrophobic particles, providing great flexibility in the construction and use of open fluidic structures. Decorated with a coating of modified carbon nanotubes (CNTs) to encapsulate the fluids, the study capitalizes on the photothermal characteristics of CNTs to fabricate a device to probe the effects of temperature on tumor chemotherapy. The strategy substantially increases the availability and potential use of open fluidic devices.
Collapse
Affiliation(s)
- Heng Liu
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Xianglong Pang
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Mei Duan
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Zhujun Yang
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
- Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Xiaoguang Li
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| |
Collapse
|
2
|
Sneha Ravi A, Dalvi S. Liquid Marbles and Drops on Superhydrophobic Surfaces: Interfacial Aspects and Dynamics of Formation: A Review. ACS OMEGA 2024; 9:12307-12330. [PMID: 38524492 PMCID: PMC10956110 DOI: 10.1021/acsomega.3c07657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Liquid marbles (LMs) are droplets encapsulated with powders presenting varied roughness and wettability. These LMs have garnered a lot of attention due to their dual properties of leakage-free and quick transport on both solid and liquid surfaces. These droplets are in a Cassie-Baxter wetting state sitting on both roughness and air pockets existing between particles. They are also reminiscent of the state of a drop on a superhydrophobic (SH) surface. In this review, LMs and bare droplets on SH surfaces are comparatively investigated in terms of two aspects: interfacial and dynamical. LMs present a fascinating class of soft matter due to their superior interfacial activity and their remarkable stability. Inherently hydrophobic powders form stable LMs by simple rolling; however, particles with defined morphologies and chemistries contribute to the varied stability of LMs. The factors contributing to this interesting robustness with respect to bare droplets are then identified by tests of stability such as evaporation and compression. Next, the dynamics of the impact of a drop on a hydrophobic powder bed to form LMs is studied vis-à̀-vis that of drop impact on flat surfaces. The knowledge from drop impact phenomena on flat surfaces is used to build and complement insights to that of drop impact on powder surfaces. The maximum spread of the drop is empirically understood in terms of dimensionless numbers, and their drawbacks are highlighted. Various stages of drop impact-spreading, retraction and rebound, splashing, and final outcome-are systematically explored on both solid and hard surfaces. The implications of crater formation and energy dissipations are discussed in the case of granular beds. While the drop impact on solid surfaces is extensively reviewed, deep interpretation of the drop impact on granular surfaces needs to be improved. Additionally, the applications of each step in the sequence of drop impact phenomena on both substrates are also identified. Next, the criterion for the formation of peculiar jammed LMs was examined. Finally, the challenges and possible future perspectives are envisaged.
Collapse
Affiliation(s)
- Apoorva Sneha Ravi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| | - Sameer Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| |
Collapse
|
3
|
Tenjimbayashi M, Mouterde T, Roy PK, Uto K. Liquid marbles: review of recent progress in physical properties, formation techniques, and lab-in-a-marble applications in microreactors and biosensors. NANOSCALE 2023; 15:18980-18998. [PMID: 37990550 DOI: 10.1039/d3nr04966c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Liquid marbles (LMs) are nonsticking droplets whose surfaces are covered with low-wettability particles. Owing to their high mobility, shape reconfigurability, and widely accessible liquid/particle possibilities, the research on LMs has flourished since 2001. Their physical properties, fabrication mechanisms, and functionalisation capabilities indicate their potential for various applications. This review summarises the fundamental properties of LMs, the recent advances (mainly works published in 2020-2023) in the concept of LMs, physical properties, formation methods, LM-templated material design, and biochemical applications. Finally, the potential development and variations of LMs are discussed.
Collapse
Affiliation(s)
- Mizuki Tenjimbayashi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Timothée Mouterde
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Pritam Kumar Roy
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Koichiro Uto
- Research Center for Macromolecules and Biomaterials, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
4
|
Zhang Y, Cui H, Binks BP, Shum HC. Liquid Marbles under Electric Fields: New Capabilities for Non-wetting Droplet Manipulation and Beyond. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9721-9740. [PMID: 35918302 DOI: 10.1021/acs.langmuir.2c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study of liquid marbles (LMs) composed of stabilizing liquid droplets with solid particles in a gaseous environment has matured into an established area in surface and colloid science. The minimized "solid-liquid-air" triphase interface enables LMs to drastically reduce adhesion to a solid substrate, making them unique non-wetting droplets transportable with limited energy. The small volume, enclosed environment, and simple preparation render them suitable microreactors in industrial applications and processes such as cell culture, material synthesis, and blood coagulation. Extensive application contexts request precise and highly efficient manipulations of these non-wetting droplets. Many external fields, including magnetic, acoustic, photothermal, and pH, have emerged to prepare, deform, actuate, coalesce, mix, and disrupt these non-wetting droplets. Electric fields are rising among these external stimuli as an efficient source for manipulating the LMs with high controllability and a significant ability to contribute further to proposed applications. This Feature Article attempts to outline the recent developments related to LMs with the aid of electric fields. The effects of electric fields on the preparation and manipulation of LMs with intricate interfacial processes are discussed in detail. We highlight a wealth of novel electric field-involved LM-based applications and beyond while also envisaging the challenges, opportunities, and new directions for future development in this emerging research area.
Collapse
Affiliation(s)
- Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin 999077, Hong Kong, China
| | - Huanqing Cui
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin 999077, Hong Kong, China
| |
Collapse
|
5
|
Pang X, Duan M, Liu H, Xi Y, Shi H, Li X. Oscillation-Induced Mixing Advances the Functionality of Liquid Marble Microreactors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11999-12009. [PMID: 35171580 DOI: 10.1021/acsami.1c22314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Droplet-based microreactors often uncover fascinating phenomena and exhibit diverse functionality, which make them applicable in various fields. Liquid marbles (LMs) are non-wetting droplets coated with particles, and these features highlight their potential as microreactors. However, sophisticated experimental designs are typically hindered because it is difficult to obtain sufficient substance mixing in these miniature, damage-prone, self-supporting liquid containers. Here, we demonstrate that subjecting LMs to vertical oscillations by audio signals represents a controllable approach that allows sufficient mixing with variable dynamic modes. The characteristics and key issues in LM oscillation are systematically explored. The effects of oscillation on application potential are examined. Under oscillation conditions, homogeneous mixing can be achieved within a few seconds in LMs consisting of either water or viscous liquids. Importantly, the structures of materials synthesized in LMs can be regulated by modulating the oscillation modes. The variable modes, flexible adjustability, high efficiency, and wide applicability of this oscillation method make it a verified manipulation strategy for advancing the functionality of LM microreactors.
Collapse
Affiliation(s)
- Xianglong Pang
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Mei Duan
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Heng Liu
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Yuhang Xi
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Haixiao Shi
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Xiaoguang Li
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| |
Collapse
|
6
|
Asaumi Y, Rey M, Oyama K, Vogel N, Hirai T, Nakamura Y, Fujii S. Effect of Stabilizing Particle Size on the Structure and Properties of Liquid Marbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13274-13284. [PMID: 33115238 DOI: 10.1021/acs.langmuir.0c02265] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A liquid marble (LM) describes a liquid droplet that is wrapped by nonwetting micro- or nanoparticles and therefore obtains characteristics of a solid powder particle. Here, we investigate the effect of the stabilizing particle size on the resulting structure and properties of the LM. We synthesize a series of polystyrene particles with ultrathin coatings of heptadecafluorooctanesulfonic acid-doped polypyrrole with diameters ranging between 1 and 1000 μm by an aqueous chemical oxidative seeded polymerization of pyrrole. The methodology produced a set of hydrophobic particles with similar surface characteristics to allow the formation of LMs and to probe size effects in the LM formation and stabilization efficiency. We found that particles with a size above 20 μm adsorb as a particle monolayer to the surface of the LM, while smaller particles are adsorbed as ill-defined, multilayered aggregates. These results indicate that the balance between particle-particle interaction and gravity is an important parameter to control the surface structure of the LMs. The assembly behavior and size of the particles also correlated with the mechanical integrity of the LM against fall impact. The mechanical resistance was affected by the gap distance between the inner liquid of the LM and supporting substrate, the capillary forces acting between the particles at the LM surface, and the potential energy that depended on the particle size. Last, we demonstrate that the broadband light-absorbing properties of the polypyrrole shell also allow manipulating the evaporation rate of the inner liquid.
Collapse
Affiliation(s)
- Yuta Asaumi
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Marcel Rey
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Keigo Oyama
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|