1
|
Ünver B, Pekcan Ö, Akın Evingür G. Optical and mechanical
properties of PNIPAm‐MWCNTs
and
PNIPAm‐GO composites. J Appl Polym Sci 2022. [DOI: 10.1002/app.53539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Batuhan Ünver
- Faculty of Navigation Maritime University of Szczecin Szczecin Poland
| | - Önder Pekcan
- Faculty of Engineering and Natural Sciences Kadir Has University Istanbul Turkey
| | - Gülşen Akın Evingür
- Department of Industrial Engineering, Faculty of Engineering Pîrî Reis University Istanbul Turkey
| |
Collapse
|
2
|
Tian Y, Zhu X, Gan T, He B, Wang X. Preparation of multifunctional biohydrogel sensors with one freeze–thaw process. J Appl Polym Sci 2022. [DOI: 10.1002/app.52482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yi Tian
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
- Institute of Biomass & Functional Materials Shaanxi University of Science & Technology Xi'an China
| | - Xing Zhu
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
- Institute of Biomass & Functional Materials Shaanxi University of Science & Technology Xi'an China
| | - Ting Gan
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- Institute of Biomass & Functional Materials Shaanxi University of Science & Technology Xi'an China
| | - Bin He
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
| | - Xuechuan Wang
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
- Institute of Biomass & Functional Materials Shaanxi University of Science & Technology Xi'an China
| |
Collapse
|
3
|
Zhang J, Wang Y, Wei Q, Wang Y, Lei M, Li M, Li D, Zhang L, Wu Y. Self-Healing Mechanism and Conductivity of the Hydrogel Flexible Sensors: A Review. Gels 2021; 7:216. [PMID: 34842713 PMCID: PMC8628684 DOI: 10.3390/gels7040216] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sensors are devices that can capture changes in environmental parameters and convert them into electrical signals to output, which are widely used in all aspects of life. Flexible sensors, sensors made of flexible materials, not only overcome the limitations of the environment on detection devices but also expand the application of sensors in human health and biomedicine. Conductivity and flexibility are the most important parameters for flexible sensors, and hydrogels are currently considered to be an ideal matrix material due to their excellent flexibility and biocompatibility. In particular, compared with flexible sensors based on elastomers with a high modulus, the hydrogel sensor has better stretchability and can be tightly attached to the surface of objects. However, for hydrogel sensors, a poor mechanical lifetime is always an issue. To address this challenge, a self-healing hydrogel has been proposed. Currently, a large number of studies on the self-healing property have been performed, and numerous exciting results have been obtained, but there are few detailed reviews focusing on the self-healing mechanism and conductivity of hydrogel flexible sensors. This paper presents an overview of self-healing hydrogel flexible sensors, focusing on their self-healing mechanism and conductivity. Moreover, the advantages and disadvantages of different types of sensors have been summarized and discussed. Finally, the key issues and challenges for self-healing flexible sensors are also identified and discussed along with recommendations for the future.
Collapse
Affiliation(s)
- Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingju Lei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dinghao Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Longyu Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yu Wu
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
4
|
Ding H, Xu S, Wang J, Fan Z, Huang Z, Wu H, Pi P, Cheng J, Wen X. A conductive, antibacterial, and antifouling hydrogel based on zwitterion. J Appl Polym Sci 2021. [DOI: 10.1002/app.51648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Huan Ding
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Shouping Xu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Jiangjiang Wang
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Zhouxiang Fan
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Zhongquan Huang
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Hui Wu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Pihui Pi
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Jiang Cheng
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Xiufang Wen
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| |
Collapse
|
5
|
Li Y, Zhao E, Li L, Bai L, Zhang W. Facile design of lidocaine-loaded polymeric hydrogel to persuade effects of local anesthesia drug delivery system: complete in vitro and in vivo toxicity analyses. Drug Deliv 2021; 28:1080-1092. [PMID: 34114924 PMCID: PMC8204985 DOI: 10.1080/10717544.2021.1931558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The principal goal of the present investigation was to enterprise new and effective drug delivery vesicle for the sustained delivery of local anesthetic lidocaine hydrochloride (LDC), using a novel combination of copolymeric hydrogel with tetrahydroxyborate (COP–THB) to improve bioactivity and therapeutic potential. To support this contention, the physical and mechanical properties, rheological characteristics, and component release of candidate formulations were investigated. An optimized formulation of COP–THB containing LDC to an upper maximum concentration of 1.5% w/w was assessed for drug crystallization. The biocompatibility of the prepared COP–THB hydrogel was exhibited strong cell survival (96%) and growth compatibility on L929 fibroblast cell lines, which was confirmed by using methods of MTT assay and microscopic observations. The COP–THB hydrogel release pattern is distinct from that of COP–THB/LDC hydrogels by the slow-release rate and the low percentage of cumulative release. In vivo evaluations were demonstrated the anesthetic effects and toxicity value of treated samples by using mice models. In addition, COP–THB/LDC hydrogels significantly inhibit in vivo tumor growth in mice model and effectively reduced it is in vivo toxicity. The pharmacological evaluation showed that encapsulation of LDC in COP–THB hydrogels prolonged its anesthetic action with favorable in vitro and in vivo compatibility. This novel design may theoretically be used in promising studies involving the controlled release of local anesthetics.Highlights Development a modified sustained release system for the local anesthetic lidocaine. PVP-THB hydrogel to improve the pharmacological properties of the drug and their anesthetic activities. Profiles of PVP-THB/LDC showed that the effective release of associated lidocaine. This new formulation could potentially be used in future local anesthetics.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Erxian Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liying Bai
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Zhao L, Li X, Li Y, Wang X, Yang W, Ren J. Polypyrrole-Doped Conductive Self-Healing Composite Hydrogels with High Toughness and Stretchability. Biomacromolecules 2021; 22:1273-1281. [PMID: 33596651 DOI: 10.1021/acs.biomac.0c01777] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, hydrogels with self-healing capability and conductivity have become ideal materials for the design of electrodes, soft robotics, electronic skin, and flexible wearable devices. However, it is still a critical challenge to achieve the synergistic characteristics of high conductivity, excellent self-healing efficiency without any stimulations, and decent mechanical properties. Herein, we developed a ferric-ion (Fe3+) crosslinked acrylic acid and chitosan polymer hydrogel using embedded polypyrrole particles with features of high conductivity (2.61S·m-1) and good mechanical performances (a tensile strength of 628%, a stress of 0.33 MPa, an elastic modulus of 0.146 MPa, and a toughness of 1.14 MJ·m-3). In addition, the self-healing efficiency achieved 93% in tensile strength after healing in the air for 9 h without any external stimuli. Therefore, with these outstanding mechanical, self-healing, and conductive abilities all in one, it is possible to fabricate a new kind of soft material with wide applications.
Collapse
Affiliation(s)
- Lingling Zhao
- Chemistry & Chemical Engineering College, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Northwest Normal University, Lanzhou 730070, PR China
| | - Xin Li
- The High School Attached to Northwest Normal University, Lanzhou 730070, PR China
| | - Yan Li
- Chemistry & Chemical Engineering College, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Northwest Normal University, Lanzhou 730070, PR China
| | - Xuemiao Wang
- Chemistry & Chemical Engineering College, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Northwest Normal University, Lanzhou 730070, PR China
| | - Wu Yang
- Chemistry & Chemical Engineering College, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Northwest Normal University, Lanzhou 730070, PR China
| | - Jie Ren
- Chemistry & Chemical Engineering College, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Northwest Normal University, Lanzhou 730070, PR China
| |
Collapse
|