1
|
Zhu Y, Porcar L, Ravula T, Batchu KC, Lavoie TL, Liu Y, Perez-Salas U. Unexpected asymmetric distribution of cholesterol and phospholipids in equilibrium model membranes. Biophys J 2024; 123:3923-3934. [PMID: 39390746 PMCID: PMC11617633 DOI: 10.1016/j.bpj.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/21/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Lipid compositional asymmetry across the leaflets of the plasma membrane is an ubiquitous feature in eukaryotic cells. How this asymmetry is maintained is thought to be primarily controlled by active transport of lipids between leaflets. This strategy is facilitated by the fact that long-tail phospholipids and sphingolipids diffuse through the lipid bilayer slowly-taking many hours or days. However, a lipid like cholesterol-which is the most abundant lipid in the plasma membrane of animal cells-has been harder to pinpoint in terms of its favored side. In this work we show that, when a saturated lipid is added to a mix of the unsaturated lipid palmitoyl-oleoyl-phosphatidylcholine (POPC) and cholesterol, both cholesterol and the long-tail phospholipids organize asymmetrically across the membrane's leaflets naturally. In these extruded unilamellar vesicles, most cholesterol as well as the saturated lipid-dipalmitoylphosphatidylcholine or sphingomyelin-segregated to the inner leaflet while POPC preferentially localized in the outer leaflet. This asymmetric arrangement generated a slight phospholipid number imbalance favoring the outer leaflet and thus opposite to where cholesterol and the saturated lipids preferentially partitioned. These results were obtained using magic-angle spinning nuclear magnetic resonance (MAS NMR) in combination with small-angle neutron scattering (SANS) using isotope labeling to differentiate lipid species. We suggest that sidedness in membranes can be driven by thermodynamic processes. In addition, our MAS NMR results show that the lower bound for cholesterol's flip-flop half-time at 45°C is 10 ms, which is at least two orders of magnitude slower than current MD simulations predict. This result stands in stark contrast to previous work that suggested that cholesterol's flip-flop half-time at 37°C has an upper bound of 10 ms.
Collapse
Affiliation(s)
- Yuli Zhu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Lionel Porcar
- Institut Laue-Langevin, Large Scale Structures Group, Grenoble, France
| | - Thirupathi Ravula
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Krishna C Batchu
- Institut Laue-Langevin, Large Scale Structures Group, Grenoble, France
| | - Tera L Lavoie
- Advanced Electron Microscopy, University of Chicago, Chicago, Illinois
| | - Ying Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Ursula Perez-Salas
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
2
|
Cao Y, Gao C, Yang L, Zhou P, Sun D. Molecular simulation on the interaction between trehalose and asymmetric lipid bilayer mimicking the membrane of human red blood cells. Cryobiology 2024; 115:104898. [PMID: 38663665 DOI: 10.1016/j.cryobiol.2024.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Trehalose is widely acknowledged for its ability to stabilize plasma membranes during dehydration. However, the exact mechanism by which trehalose interacts with lipid bilayers remains presently unclear. In this study, we conducted atomistic molecular dynamic simulations on asymmetric model bilayers that mimic the membrane of human red blood cells at various trehalose and water contents. We considered three different hydration levels mimicking the full hydration to desiccation scenarios. Results indicate that the asymmetric distribution of lipids did not significantly influence the computed structural characteristics at full and low hydration. At dehydration, however, the order parameter obtained from the symmetric bilayer is significantly higher compared to those obtained from asymmetric ones. Analysis of hydrogen bonds revealed that the protective ability of trehalose is well described by the water replacement hypothesis at full and low hydration, while at dehydration other interaction mechanisms associated with trehalose exclusion from the bilayer may involve. In addition, we found that trehalose exclusion is not attributed to sugar saturation but rather to the reduction in hydration levels. It can be concluded that the protective effect of trehalose is not only related to the hydration level of the bilayer, but also closely tied to the asymmetric distribution of lipids within each leaflet.
Collapse
Affiliation(s)
- Yu Cao
- Department of Refrigeration & Cryogenics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Cai Gao
- Department of Refrigeration & Cryogenics Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Lei Yang
- Department of Refrigeration & Cryogenics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Pei Zhou
- Department of Refrigeration & Cryogenics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dongfang Sun
- Department of Refrigeration & Cryogenics Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
3
|
Tan B, Hu J, Wu F. Cholesterols Induced Distinctive Entry of the Graphene Nanosheet into the Cell Membrane. ACS OMEGA 2024; 9:9216-9225. [PMID: 38434853 PMCID: PMC10905697 DOI: 10.1021/acsomega.3c08236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Graphene nanosheets are highly valued in the biomedical field due to their potential applications in drug delivery, biological imaging, and biosensors. Their biological effects on mammalian cells may be influenced by cholesterols, which are crucial components in cell membranes that take part in many vital processes. Therefore, it is particularly important to investigate the effect of cholesterols on the transport mechanism of graphene nanosheets in the cell membrane as well as the final stable configuration of graphene, which may have an impact on cytotoxicity. In this paper, the molecular details of a graphene nanosheet interacting with a 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) membrane with cholesterols were studied using molecular dynamics simulations. Results showed that the structure of the graphene nanosheet transits from the cut-in state in a pure DPPC membrane to being sandwiched between two DPPC leaflets when cholesterols reach a certain concentration. The underlying mechanism showed that cholesterols are preferentially adsorbed on the graphene nanosheet, which causes a larger disturbance to the nearby DPPC tails and thus guides the graphene nanosheet into the core of lipid bilayers to form a sandwiched structure. Our results are helpful for understanding the fundamental interaction mechanism between the graphene nanosheet and cell membrane and to explore the potential applications of the graphene nanosheet in biomedical sciences.
Collapse
Affiliation(s)
- Binbin Tan
- Key Laboratory of Optical
Field Manipulation
of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Juanmei Hu
- Key Laboratory of Optical
Field Manipulation
of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengmin Wu
- Key Laboratory of Optical
Field Manipulation
of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
4
|
Chaisson EH, Heberle FA, Doktorova M. Building Asymmetric Lipid Bilayers for Molecular Dynamics Simulations: What Methods Exist and How to Choose One? MEMBRANES 2023; 13:629. [PMID: 37504995 PMCID: PMC10384462 DOI: 10.3390/membranes13070629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The compositional asymmetry of biological membranes has attracted significant attention over the last decade. Harboring more differences from symmetric membranes than previously appreciated, asymmetric bilayers have proven quite challenging to study with familiar concepts and techniques, leaving many unanswered questions about the reach of the asymmetry effects. One particular area of active research is the computational investigation of composition- and number-asymmetric lipid bilayers with molecular dynamics (MD) simulations. Offering a high level of detail into the organization and properties of the simulated systems, MD has emerged as an indispensable tool in the study of membrane asymmetry. However, the realization that results depend heavily on the protocol used for constructing the asymmetric bilayer models has sparked an ongoing debate about how to choose the most appropriate approach. Here we discuss the underlying source of the discrepant results and review the existing methods for creating asymmetric bilayers for MD simulations. Considering the available data, we argue that each method is well suited for specific applications and hence there is no single best approach. Instead, the choice of a construction protocol-and consequently, its perceived accuracy-must be based primarily on the scientific question that the simulations are designed to address.
Collapse
Affiliation(s)
- Emily H. Chaisson
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37916, USA
| | - Frederick A. Heberle
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37916, USA
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
5
|
Aghaaminiha M, Farnoud AM, Sharma S. Interdependence of cholesterol distribution and conformational order in lipid bilayers. Biointerphases 2023; 18:2887740. [PMID: 37125848 DOI: 10.1116/6.0002489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
We show, via molecular simulations, that not only does cholesterol induce a lipid order, but the lipid order also enhances cholesterol localization within the lipid leaflets. Therefore, there is a strong interdependence between these two phenomena. In the ordered phase, cholesterol molecules are predominantly present in the bilayer leaflets and orient themselves parallel to the bilayer normal. In the disordered phase, cholesterol molecules are mainly present near the center of the bilayer at the midplane region and are oriented orthogonal to the bilayer normal. At the melting temperature of the lipid bilayers, cholesterol concentration in the leaflets and the bilayer midplane is equal. This result suggests that the localization of cholesterol in the lipid bilayers is mainly dictated by the degree of ordering of the lipid bilayer. We validate our findings on 18 different lipid bilayer systems, obtained from three different phospholipid bilayers with varying concentrations of cholesterol. To cover a large temperature range in simulations, we employ the Dry Martini force field. We demonstrate that the Dry and the Wet Martini (with polarizable water) force fields produce comparable results.
Collapse
Affiliation(s)
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701
| | - Sumit Sharma
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701
| |
Collapse
|
6
|
Poveda Cuevas SA, Barroso da Silva FL, Etchebest C. NS1 from Two Zika Virus Strains Differently Interact with a Membrane: Insights to Understand Their Differential Virulence. J Chem Inf Model 2023; 63:1386-1400. [PMID: 36780300 DOI: 10.1021/acs.jcim.2c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Zika virus (ZIKV) from Uganda (UG) expresses a phenotype related to fetal loss, whereas the variant from Brazil (BR) induces microcephaly in neonates. The differential virulence has a direct relation to biomolecular mechanisms that make one strain more aggressive than the other. The nonstructural protein 1 (NS1) is a key viral toxin to comprehend these viral discrepancies because of its versatility in many processes of the virus life cycle. Here, we aim to examine through coarse-grained models and molecular dynamics simulations the protein-membrane interactions for both NS1ZIKV-UG and NS1ZIKV-BR dimers. A first evaluation allowed us to establish that the NS1 proteins, in the membrane presence, explore new conformational spaces when compared to systems simulated without a lipid bilayer. These events derive from both differential coupling patterns and discrepant binding affinities to the membrane. The N-terminal domain, intertwined loop, and greasy finger proposed previously as binding membrane regions were also computationally confirmed by us. The anchoring sites have aromatic and ionizable residues that manage the assembly of NS1 toward the membrane, especially for the Ugandan variant. Furthermore, in the presence of the membrane, the difference in the dynamic cross-correlation of residues between the two strains is particularly pronounced in the putative epitope regions. This suggests that the protein-membrane interaction induces changes in the distal part related to putative epitopes. Taken together, these results open up new strategies for the treatment of flaviviruses that would specifically target these dynamic differences.
Collapse
Affiliation(s)
- Sergio Alejandro Poveda Cuevas
- Programa Interunidades em Bioinformática, Universidade de São Paulo, Rua do Matão, 1010, São Paulo, São Paulo BR-05508-090, Brazil.,Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/no-Campus da USP, Ribeirão Preto, São Paulo BR-14040-903, Brazil.,Goethe University Frankfurt, Institute of Biochemistry II, Theodor-Stern-Kai 7, Frankfurt am Main, Hesse DE-60590, Germany.,Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Av. do Café, s/no-Campus da USP, Bloco B, Ribeirão Preto, São Paulo BR-14040-903, Brazil
| | - Fernando L Barroso da Silva
- Programa Interunidades em Bioinformática, Universidade de São Paulo, Rua do Matão, 1010, São Paulo, São Paulo BR-05508-090, Brazil.,Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/no-Campus da USP, Ribeirão Preto, São Paulo BR-14040-903, Brazil.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Av. do Café, s/no-Campus da USP, Bloco B, Ribeirão Preto, São Paulo BR-14040-903, Brazil
| | - Catherine Etchebest
- Université Paris Cité and Université des Antilles, INSERM, Biologie Intégrée du Globule Rouge, F-75015 Paris, France.,Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Av. do Café, s/no-Campus da USP, Bloco B, Ribeirão Preto, São Paulo BR-14040-903, Brazil
| |
Collapse
|
7
|
Wei T, Zhang L, Zhang Y. Cholesterol Distribution in Small Unilamellar Vesicles. J Phys Chem B 2022; 126:7135-7142. [PMID: 36074983 DOI: 10.1021/acs.jpcb.2c01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The plasma membrane has heterogeneity, where the constituents are not only asymmetrically distributed between the inner leaflet and the outer leaflet but also laterally organized within each leaflet. There is still an ongoing controversy over the cholesterol distribution between the two leaflets, and it is also significant to explore the lateral flow and localization of cholesterol. The unilamellar vesicle is extensively employed as a simplified model of the plasma membrane in research studies. In this work, we study the spontaneous spatial distribution of cholesterol in the small unilamellar vesicles with a single type of phospholipid as the bilayer backbone through coarse-grained molecular dynamics simulations. The results show that in a spherical vesicle under ambient pressure, cholesterol is more abundant in the inner leaflet than in the outer leaflet. As the vesicle is deformed under pressurization, the net lateral flow of cholesterol in the two leaflets is in the exactly opposite directions, finally leading to a distribution strongly associated with the monolayer curvature. One of the possible explanations for our results is from the point of view of curvature elastic energy. Another possibility is from the point of view of stress: according to the correlation between the cholesterol distribution and the tail angles of lipids, it is suggested that the possible governing mechanism for the distribution of cholesterol in a membrane is to alleviate the mismatch of stress between the two leaflets. Additionally, we obtain the effect of cholesterol infiltration on the bending modulus and the spontaneous curvature of the vesicles.
Collapse
Affiliation(s)
- Tanlin Wei
- School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lei Zhang
- School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yong Zhang
- School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Hammond CB, Aghaaminiha M, Sharma S, Shen C, Chen H, Wu L. Mesoscale Aggregation of Sulfur-Rich Asphaltenes: In Situ Microscopy and Coarse-Grained Molecular Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6896-6910. [PMID: 35594154 DOI: 10.1021/acs.langmuir.2c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Asphaltene aggregation is critical to many natural and industrial processes, from groundwater contamination and remediation to petroleum utilization. Despite extensive research in the past few decades, the fundamental process of sulfur-rich asphaltene aggregation still remains not fully understood. In this work, we have investigated the particle-by-particle growth of aggregates formed with sulfur-rich asphaltene by a combined approach of in situ microscopy and molecular simulation. The experimental results show that aggregates assembled from sulfur-rich asphaltene have morphologies with time-dependent structural self-similarity, and their growth rates are aligned with a crossover behavior between classic reaction-limited aggregation and diffusion-limited aggregation. Although the particle size distribution predicted using the Smoluchowski equation deviates from the observations at the initial stage, it provides a reasonable prediction of aggregate size distribution at the later stage, even if the observed cluster coalescence has an important effect on the corresponding cluster size distribution. The simulation results show that aliphatic sulfur exerts nonmonotonic effects on asphaltene nanoaggregate formation depending on the asphaltene molecular structure. Specifically, aliphatic sulfur has a profound effect on the structure of rod-like nanoaggregates, especially when asphaltene molecules have small aromatic cores. Interactions between aliphatic sulfur and the side chain of neighboring molecules account for the repulsive forces that largely explain the polydispersity in the nanoaggregates and corresponding colloidal aggregates. These results can improve our current understanding of the complex process of sulfur-rich asphaltene aggregation and sheds light on designing efficient crude oil utilization and remediation technologies.
Collapse
Affiliation(s)
- Christian B Hammond
- Department of Civil Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Mohammadreza Aghaaminiha
- Department of Civil Engineering, Ohio University, Athens, Ohio 45701, United States
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Sumit Sharma
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Chongyang Shen
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas 71601, United States
| | - Lei Wu
- Department of Civil Engineering, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
9
|
de Santis A, Scoppola E, Ottaviani MF, Koutsioubas A, Barnsley LC, Paduano L, D’Errico G, Russo Krauss I. Order vs. Disorder: Cholesterol and Omega-3 Phospholipids Determine Biomembrane Organization. Int J Mol Sci 2022; 23:5322. [PMID: 35628128 PMCID: PMC9140907 DOI: 10.3390/ijms23105322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lipid structural diversity strongly affects biomembrane chemico-physical and structural properties in addition to membrane-associated events. At high concentrations, cholesterol increases membrane order and rigidity, while polyunsaturated lipids are reported to increase disorder and flexibility. How these different tendencies balance in composite bilayers is still controversial. In this study, electron paramagnetic resonance spectroscopy, small angle neutron scattering, and neutron reflectivity were used to investigate the structural properties of cholesterol-containing lipid bilayers in the fluid state with increasing amounts of polyunsaturated omega-3 lipids. Either the hybrid 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine or the symmetric 1,2-docosahexaenoyl-sn-glycero-3-phosphocholine were added to the mixture of the naturally abundant 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine and cholesterol. Our results indicate that the hybrid and the symmetric omega-3 phospholipids affect the microscopic organization of lipid bilayers differently. Cholesterol does not segregate from polyunsaturated phospholipids and, through interactions with them, is able to suppress the formation of non-lamellar structures induced by the symmetric polyunsaturated lipid. However, this order/disorder balance leads to a bilayer whose structural organization cannot be ascribed to either a liquid ordered or to a canonical liquid disordered phase, in that it displays a very loose packing of the intermediate segments of lipid chains.
Collapse
Affiliation(s)
- Augusta de Santis
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (A.d.S.); (L.P.)
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), I-50019 Florence, Italy
| | - Ernesto Scoppola
- Max Planck Institut für Kolloid und Grenzflächenforschung, 14476 Potsdam, Germany;
| | | | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), 85748 Garching, Germany; (A.K.); (L.C.B.)
| | - Lester C. Barnsley
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), 85748 Garching, Germany; (A.K.); (L.C.B.)
- Australian Synchrotron, ANSTO, Clayton 3168, Australia
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (A.d.S.); (L.P.)
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), I-50019 Florence, Italy
| | - Gerardino D’Errico
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (A.d.S.); (L.P.)
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), I-50019 Florence, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (A.d.S.); (L.P.)
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), I-50019 Florence, Italy
| |
Collapse
|
10
|
Hossain MS, Ji J, Lynch CJ, Guzman M, Nangia S, Mozhdehi D. Adaptive Recombinant Nanoworms from Genetically Encodable Star Amphiphiles. Biomacromolecules 2022; 23:863-876. [PMID: 34942072 PMCID: PMC8924867 DOI: 10.1021/acs.biomac.1c01314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/09/2021] [Indexed: 02/04/2023]
Abstract
Recombinant nanoworms are promising candidates for materials and biomedical applications ranging from the templated synthesis of nanomaterials to multivalent display of bioactive peptides and targeted delivery of theranostic agents. However, molecular design principles to synthesize these assemblies (which are thermodynamically favorable only in a narrow region of the phase diagram) remain unclear. To advance the identification of design principles for the programmable assembly of proteins into well-defined nanoworms and to broaden their stability regimes, we were inspired by the ability of topologically engineered synthetic macromolecules to acess rare mesophases. To test this design principle in biomacromolecular assemblies, we used post-translational modifications (PTMs) to generate lipidated proteins with precise topological and compositional asymmetry. Using an integrated experimental and computational approach, we show that the material properties (thermoresponse and nanoscale assembly) of these hybrid amphiphiles are modulated by their amphiphilic architecture. Importantly, we demonstrate that the judicious choice of amphiphilic architecture can be used to program the assembly of proteins into adaptive nanoworms, which undergo a morphological transition (sphere-to-nanoworms) in response to temperature stimuli.
Collapse
Affiliation(s)
- Md Shahadat Hossain
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, 111 College Place, Syracuse, New York 13244, United
States
| | - Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United
States
| | - Christopher J. Lynch
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, 111 College Place, Syracuse, New York 13244, United
States
| | - Miguel Guzman
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, 111 College Place, Syracuse, New York 13244, United
States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United
States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, 111 College Place, Syracuse, New York 13244, United
States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
11
|
Steck TL, Tabei SMA, Lange Y. A basic model for cell cholesterol homeostasis. Traffic 2021; 22:471-481. [PMID: 34528339 DOI: 10.1111/tra.12816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
Cells manage their cholesterol by negative feedback using a battery of sterol-responsive proteins. How these activities are coordinated so as to specify the abundance and distribution of the sterol is unclear. We present a simple mathematical model that addresses this question. It assumes that almost all of the cholesterol is associated with phospholipids in stoichiometric complexes. A small fraction of the sterol is uncomplexed and thermodynamically active. It equilibrates among the organelles, setting their sterol level according to the affinity of their phospholipids. The activity of the homeostatic proteins in the cytoplasmic membranes is then set by their fractional saturation with uncomplexed cholesterol in competition with the phospholipids. The high-affinity phospholipids in the plasma membrane (PM) are filled to near stoichiometric equivalence, giving it most of the cell sterol. Notably, the affinity of the phospholipids in the endomembranes (EMs) is lower by orders of magnitude than that of the phospholipids in the PM. Thus, the small amount of sterol in the EMs rests far below stoichiometric capacity. Simulations match a variety of experimental data. The model captures the essence of cell cholesterol homeostasis, makes coherent a diverse set of experimental findings, provides a surprising prediction and suggests new experiments.
Collapse
Affiliation(s)
- Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls, Iowa, USA
| | - Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
12
|
Smith P, Lorenz CD. LiPyphilic: A Python Toolkit for the Analysis of Lipid Membrane Simulations. J Chem Theory Comput 2021; 17:5907-5919. [PMID: 34450002 DOI: 10.1021/acs.jctc.1c00447] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulations are now widely used to study emergent phenomena in lipid membranes with complex compositions. Here, we present LiPyphilic-a fast, fully tested, and easy-to-install Python package for analyzing such simulations. Analysis tools in LiPyphilic include the identification of cholesterol flip-flop events, the classification of local lipid environments, and the degree of interleaflet registration. LiPyphilic is both force field- and resolution-agnostic, and by using the powerful atom selection language of MDAnalysis, it can handle membranes with highly complex compositions. LiPyphilic also offers two on-the-fly trajectory transformations to (i) fix membranes split across periodic boundaries and (ii) perform nojump coordinate unwrapping. Our implementation of nojump unwrapping accounts for fluctuations in the box volume under the NPT ensemble-an issue that most current implementations have overlooked. The full documentation of LiPyphilic, including installation instructions and links to interactive online tutorials, is available at https://lipyphilic.readthedocs.io/en/latest.
Collapse
Affiliation(s)
- Paul Smith
- Department of Physics, King's College London, London WC2R 2LS, U.K
| | | |
Collapse
|
13
|
Scott HL, Kennison KB, Enoki TA, Doktorova M, Kinnun JJ, Heberle FA, Katsaras J. Model Membrane Systems Used to Study Plasma Membrane Lipid Asymmetry. Symmetry (Basel) 2021; 13. [PMID: 35498375 PMCID: PMC9053528 DOI: 10.3390/sym13081356] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is well known that the lipid distribution in the bilayer leaflets of mammalian plasma membranes (PMs) is not symmetric. Despite this, model membrane studies have largely relied on chemically symmetric model membranes for the study of lipid–lipid and lipid–protein interactions. This is primarily due to the difficulty in preparing stable, asymmetric model membranes that are amenable to biophysical studies. However, in the last 20 years, efforts have been made in producing more biologically faithful model membranes. Here, we review several recently developed experimental and computational techniques for the robust generation of asymmetric model membranes and highlight a new and particularly promising technique to study membrane asymmetry.
Collapse
Affiliation(s)
- Haden L. Scott
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Kristen B. Kennison
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Thais A. Enoki
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Jacob J. Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Frederick A. Heberle
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| |
Collapse
|