1
|
Wang J, Wang R, Chen P, Jiang L, Luo B, Zhang X, Bai W, Zhang T, Zhang J, Tan S, Tian R, Li Y, Cai H, Xu Y. A customizable 32P hydrogel applicator for brachytherapy of skin hemangioma based on machine learning and 3D-printing. J Mater Chem B 2025. [PMID: 40261142 DOI: 10.1039/d5tb00647c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Skin hemangioma is a tumor originating from skin blood vessels, which often occurs in infants and children. Brachytherapy with the 32P-based radionuclide applicator is an effective non-invasive therapeutic method. However, the inordinance of lesions is still the main challenge for precise local treatment and radiation protection of normal skins. A radionuclide applicator possessing advanced shape adaptability, favorable radionuclide biodistribution, optimized stress feature, and convenient preparation method is highly required for clinical practice. Herein, we present a customizable polyacrylamide (PAAm) hydrogel-based radionuclide applicator, integrating automatic lesion recognition via machine learning and 3D printing technology. The machine learning algorithm achieved a geometric accuracy of 98.78% in automated lesion contour recognition, providing guaranteed data support for 3D printing. The optimized hydrogel exhibited excellent mechanical properties (elastic modulus: 228 kPa, fracture toughness: 4.51 MJ m-3), rapid curing (<10 min), and promising 32P loading efficiency (>85%). Especially, this system greatly shortened the fabrication time while ensuring precise geometric matching for complex lesions. Through in vitro cell and in vivo tumor-bearing mouse models, the hydrogel loaded with 32P (P-HG) demonstrated favorable biocompatibility and effective therapeutic efficacy. It is believed that the synergy of intelligent recognition, 3D printing, and enhanced hydrogel performance can establish a promising treatment method with great practical potential for precise fitting brachytherapy of skin hemangioma.
Collapse
Affiliation(s)
- Jingyu Wang
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.
| | - Rang Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Peng Chen
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.
| | - Lisha Jiang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Banggan Luo
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.
| | - Wanjie Bai
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.
| | - Ting Zhang
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.
| | - Jinsong Zhang
- Nuclear Power Institute of China, Chengdu 610101, China
| | - Shu Tan
- Nuclear Power Institute of China, Chengdu 610101, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yuanting Xu
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Nedrelow DS, Townsend JM, Detamore MS. Osteochondral Regeneration With Anatomical Scaffold 3D-Printing-Design Considerations for Interface Integration. J Biomed Mater Res A 2025; 113:e37804. [PMID: 39387548 DOI: 10.1002/jbm.a.37804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
There is a clinical need for osteochondral scaffolds with complex geometries for restoring articulating joint surfaces. To address that need, 3D-printing has enabled scaffolds to be created with anatomically shaped geometries and interconnected internal architectures, going beyond simple plug-shaped scaffolds that are limited to small, cylindrical, focal defects. A key challenge for restoring articulating joint surfaces with 3D-printed constructs is the mechanical loading environment, particularly to withstand delamination or mechanical failure. Although the mechanical performance of interfacial scaffolds is essential, interface strength testing has rarely been emphasized in prior studies with stratified scaffolds. In the pioneering studies where interface strength was assessed, varying methods were employed, which has made direct comparisons difficult. Therefore, the current review focused on 3D-printed scaffolds for osteochondral applications with an emphasis on interface integration and biomechanical evaluation. This 3D-printing focus included both multiphasic cylindrical scaffolds and anatomically shaped scaffolds. Combinations of different 3D-printing methods (e.g., fused deposition modeling, stereolithography, bioprinting with pneumatic extrusion of cell-laden hydrogels) have been employed in a handful of studies to integrate osteoinductive and chondroinductive regions into a single scaffold. Most 3D-printed multiphasic structures utilized either an interdigitating or a mechanical interlocking design to strengthen the construct interface and to prevent delamination during function. The most effective approach to combine phases may be to infill a robust 3D-printed osteal polymer with an interlocking chondral phase hydrogel. Mechanical interlocking is therefore recommended for scaling up multiphasic scaffold applications to larger anatomically shaped joint surface regeneration. For the evaluation of layer integration, the interface shear test is recommended to avoid artifacts or variability that may be associated with alternative approaches that require adhesives or mechanical grips. The 3D-printing literature with interfacial scaffolds provides a compelling foundation for continued work toward successful regeneration of injured or diseased osteochondral tissues in load-bearing joints such as the knee, hip, or temporomandibular joint.
Collapse
Affiliation(s)
- David S Nedrelow
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jakob M Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
3
|
Heo E, Koo HB, Yang JC, Cho I, Lee HH, Yoon YJ, Park S, Chang JB. Hydrogel-based 3D fabrication of multiple replicas with varying sizes and materials from a single template via iterative shrinking. SOFT MATTER 2024; 20:9249-9260. [PMID: 39541239 DOI: 10.1039/d4sm00835a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
3D printing technologies have been widely used for the rapid prototyping of 3D structures, but their application in a broader context has been hampered by their low printing throughput. For the same structures to be produced in a variety of sizes and materials, each must be printed separately, which increases time and cost. Replicating 3D-printed structures in a variety of sizes using a molding process with size-tunable molds could be a solution, but it has only been applied to simple structures, such as those with tapered or vertical profiles. This work demonstrates the generation of multiple replicas of varying sizes and materials from a single 3D-printed template with complex geometries by using molds made of stretchable hydrogel that shrink isotropically. We optimize hydrogel compositions to synthesize a hydrogel that is highly stretchable and shrinks isotropically in all directions. The high stretchability of this hydrogel allows for the removal of complex 3D-printed templates from hydrogel molds. The cavities of the hydrogel molds are then filled with polycaprolactone (PCL) and dried at 80 °C. As the hydrogel shrinks due to drying, the melted PCL fragments completely fill the cavities. The entire process can be repeated to produce multiple replicas in a variety of sizes and materials. Replicas that are one-tenth of the size of the original printed template can be produced. Finally, we demonstrate how our method can be used to reduce the size of interconnected geometries, which would be impossible to achieve using traditional molding processes.
Collapse
Affiliation(s)
- Eunseok Heo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Hye Been Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Jun Chang Yang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - In Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Hyun-Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Yong-Jin Yoon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Song D, Liu Y, Husari A, Kotz‐Helmer F, Tomakidi P, Rapp BE, Rühe J. Generation of Tailored Multi-Material Microstructures Through One-Step Direct Laser Writing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405586. [PMID: 39235375 PMCID: PMC11600689 DOI: 10.1002/smll.202405586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Direct laser writing has gained remarkable popularity by offering architectural control of 3D objects at submicron scales. However, it faces limitations when the fabrication of microstructures comprising multiple materials is desired. The generation processes of multi-material microstructures are often very complex, requiring meticulous alignment, as well as a series of step-and-repeat writing and development of the materials. Here, a novel material system based on multilayers of chemically tailored polymers containing anthraquinone crosslinker units is demonstrated. Upon two-photon excitation, the crosslinkers only require nearby aliphatic C,H units as reaction partners to form a crosslinked network. The desired structure can be written into a solid multi-layered material system, wherein the properties of each material can be designed at the molecular level. In this way, C,H insertion crosslinking (CHic) of the polymers within each layer, along with simultaneous reaction at their interfaces, is performed, leading to the one-step fabrication of multi-material microstructures. A multi-material 3D scaffold with a sixfold symmetry is produced to precisely control the adhesion of cells both concerning surface chemistry and topology. The demonstrated material system shows great promise for the fabrication of 3D microstructures with high precision, intricate geometries and customized functionalities.
Collapse
Affiliation(s)
- Dan Song
- Cluster of Excellence livMatS @ FIT – Freiburg Center of Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Köhler‐Allee 10579110FreiburgGermany
- Laboratory of Chemistry & Physics of Interfaces (CPI)Department of Microsystems Engineering (IMTEK)University of FreiburgGeorges‐Köhler‐Allee 10379110FreiburgGermany
| | - Yizheng Liu
- Laboratory of Chemistry & Physics of Interfaces (CPI)Department of Microsystems Engineering (IMTEK)University of FreiburgGeorges‐Köhler‐Allee 10379110FreiburgGermany
| | - Ayman Husari
- Division of Oral BiotechnologyUniversity Medical Center FreiburgFaculty of MedicineUniversity of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Frederik Kotz‐Helmer
- Laboratory of Process Technology (NeptunLab)Department of Microsystems Engineering (IMTEK)University of FreiburgGeorges‐Köhler‐Allee 10379110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 2179104FreiburgGermany
| | - Pascal Tomakidi
- Division of Oral BiotechnologyUniversity Medical Center FreiburgFaculty of MedicineUniversity of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Bastian E. Rapp
- Cluster of Excellence livMatS @ FIT – Freiburg Center of Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Köhler‐Allee 10579110FreiburgGermany
- Laboratory of Process Technology (NeptunLab)Department of Microsystems Engineering (IMTEK)University of FreiburgGeorges‐Köhler‐Allee 10379110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 2179104FreiburgGermany
| | - Jürgen Rühe
- Cluster of Excellence livMatS @ FIT – Freiburg Center of Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Köhler‐Allee 10579110FreiburgGermany
- Laboratory of Chemistry & Physics of Interfaces (CPI)Department of Microsystems Engineering (IMTEK)University of FreiburgGeorges‐Köhler‐Allee 10379110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 2179104FreiburgGermany
| |
Collapse
|
5
|
Grigor E, Carver J, Bulan E, Scott S, Chew YMJ, Perera S. A New Generation of Activated Carbon Adsorbent Microstructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406551. [PMID: 39239773 PMCID: PMC11558120 DOI: 10.1002/advs.202406551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/11/2024] [Indexed: 09/07/2024]
Abstract
This work presents the successful manufacture and characterization of bespoke carbon adsorbent microstructures such as tessellated (TES) or serpentine spiral grooved (SSG) by using 3D direct light printing. This is the first time stereolithographic printing has been used to exert precise control over specific micromixer designs to quantify the impact of channel structure on the removal of n-butane. Activated microstructures achieved nitrogen Brunauer Emmett Teller (BET) surface areas up to 1600 m2 g-1 while maintaining uniform channel geometries. When tested with 1000 ppm n-butane at 1 L min-1, the microstructures exceeded the equilibrium loading of commercial carbon-packed beds by over 40%. Dynamic adsorption breakthrough testing using a constant Reynolds number (Re 80) shows that complex micromixer designs surpassed simpler geometries, with the SSG geometry achieving a 41% longer breakthrough time. Shorter mass transfer zones were observed in all the complex geometries, suggesting superior kinetics and carbon structure utilization as a result of the micromixer-based etched grooves and interlinked channels. Furthermore, pressure drop testing demonstrates that all microstructures had half the pressure drop of commercial carbon-packed beds. This study shows the power of leveraging 3D printing to produce optimized microstructures, providing a glimpse into the future of high-performance gas separation.
Collapse
Affiliation(s)
- Ethan Grigor
- Department of Chemical EngineeringUniversity of BathBathBA2 7AYUK
| | - Joseph Carver
- Department of Chemical EngineeringUniversity of BathBathBA2 7AYUK
| | - Edric Bulan
- Department of Chemical EngineeringUniversity of BathBathBA2 7AYUK
| | - Stuart Scott
- Department of Chemical EngineeringUniversity of BathBathBA2 7AYUK
| | - YM John Chew
- Department of Chemical EngineeringUniversity of BathBathBA2 7AYUK
| | - Semali Perera
- Department of Chemical EngineeringUniversity of BathBathBA2 7AYUK
| |
Collapse
|
6
|
Astaneh ME, Fereydouni N. Silver Nanoparticles in 3D Printing: A New Frontier in Wound Healing. ACS OMEGA 2024; 9:41107-41129. [PMID: 39398164 PMCID: PMC11465465 DOI: 10.1021/acsomega.4c04961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
This review examines the convergence of silver nanoparticles (AgNPs), three-dimensional (3D) printing, and wound healing, focusing on significant advancements in these fields. We explore the unique properties of AgNPs, notably their strong antibacterial efficacy and their potential applications in enhancing wound recovery. Furthermore, the review delves into 3D printing technology, discussing its core principles, various materials employed, and recent innovations. The integration of AgNPs into 3D-printed structures for regenerative medicine is analyzed, emphasizing the benefits of this combined approach and identifying the challenges that must be addressed. This comprehensive overview aims to elucidate the current state of the field and to direct future research toward developing more effective solutions for wound healing.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
7
|
Heshmati N, Chakka LRJ, Zhang Y, Maniruzzaman M. Fabrication of mRNA encapsulated lipid nanoparticles using state of the art SMART-MaGIC technology and transfection in vitro. Sci Rep 2024; 14:22714. [PMID: 39349578 PMCID: PMC11442764 DOI: 10.1038/s41598-024-73804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
The messenger ribose nucleic acid (mRNA) in the form of Corona virus of 2019 (COVID-19) vaccines were effectively delivered through lipid nanoparticles (LNP) proving its use as effective carriers in clinical applications. In the present work, mRNA (erythropoietin (EPO)) encapsulated LNPs were prepared using a next generation state-of-the-art patented, Sprayed Multi Absorbed-droplet Reposing Technology (SMART) coupled with Multi-channeled and Guided Inner-Controlling printheads (MaGIC) technologies. The LNP-mRNA were synthesized at different N/P ratios and the particles were characterized for particle size and zeta potential (Zetasizer), encapsulation or complexation (gel retardation assay) and transfection (Fluorescence microscopy and ELISA) in MG63 sarcoma cells in vitro. The results showed a narrow distribution of mRNA-lipid particles of 200 nm when fabricated with SMART alone and then the size was reduced to approximately 50 nm with the combination of SMART-MaGIC technologies. The gel retardation assay showed that the N/P > 1 exhibited strong encapsulation of mRNA with lipid. The in vitro results showed the toxicity profile of the lipids where N/P ratio of 5 was optimized with > 50% cell viability. It can be concluded that the functional LNP-mRNA prepared and analyzed with SMART-MaGIC technologies, could be a potential new fabrication method of mRNA loaded LNPs for point-of-service or distributed manufacturing.
Collapse
Affiliation(s)
- Niloofar Heshmati
- Department of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Leela Raghava Jaidev Chakka
- Department of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Yu Zhang
- Department of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Mohammed Maniruzzaman
- Department of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA.
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
8
|
Lian L, Xie M, Luo Z, Zhang Z, Maharjan S, Mu X, Garciamendez-Mijares CE, Kuang X, Sahoo JK, Tang G, Li G, Wang D, Guo J, González FZ, Abril Manjarrez Rivera V, Cai L, Mei X, Kaplan DL, Zhang YS. Rapid Volumetric Bioprinting of Decellularized Extracellular Matrix Bioinks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304846. [PMID: 38252896 PMCID: PMC11260906 DOI: 10.1002/adma.202304846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/28/2023] [Indexed: 01/24/2024]
Abstract
Decellularized extracellular matrix (dECM)-based hydrogels are widely applied to additive biomanufacturing strategies for relevant applications. The extracellular matrix components and growth factors of dECM play crucial roles in cell adhesion, growth, and differentiation. However, the generally poor mechanical properties and printability have remained as major limitations for dECM-based materials. In this study, heart-derived dECM (h-dECM) and meniscus-derived dECM (Ms-dECM) bioinks in their pristine, unmodified state supplemented with the photoinitiator system of tris(2,2-bipyridyl) dichlororuthenium(II) hexahydrate and sodium persulfate, demonstrate cytocompatibility with volumetric bioprinting processes. This recently developed bioprinting modality illuminates a dynamically evolving light pattern into a rotating volume of the bioink, and thus decouples the requirement of mechanical strengths of bioprinted hydrogel constructs with printability, allowing for the fabrication of sophisticated shapes and architectures with low-concentration dECM materials that set within tens of seconds. As exemplary applications, cardiac tissues are volumetrically bioprinted using the cardiomyocyte-laden h-dECM bioink showing favorable cell proliferation, expansion, spreading, biomarker expressions, and synchronized contractions; whereas the volumetrically bioprinted Ms-dECM meniscus structures embedded with human mesenchymal stem cells present appropriate chondrogenic differentiation outcomes. This study supplies expanded bioink libraries for volumetric bioprinting and broadens utilities of dECM toward tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Liming Lian
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Maobin Xie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zeyu Luo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zhenrui Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xiao Kuang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Guosheng Tang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Gang Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Di Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jie Guo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Federico Zertuche González
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Victoria Abril Manjarrez Rivera
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ling Cai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
9
|
Rostamani H, Fakhraei O, Zamirinadaf N, Mahjour M. An overview of nasal cartilage bioprinting: from bench to bedside. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1273-1320. [PMID: 38441976 DOI: 10.1080/09205063.2024.2321636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Nasal cartilage diseases and injuries are known as significant challenges in reconstructive medicine, affecting a substantial number of individuals worldwide. In recent years, the advent of three-dimensional (3D) bioprinting has emerged as a promising approach for nasal cartilage reconstruction, offering potential breakthroughs in the field of regenerative medicine. This paper provides an overview of the methods and challenges associated with 3D bioprinting technologies in the procedure of reconstructing nasal cartilage tissue. The process of 3D bioprinting entails generating a digital 3D model using biomedical imaging techniques and computer-aided design to integrate both internal and external scaffold features. Then, bioinks which consist of biomaterials, cell types, and bioactive chemicals, are applied to facilitate the precise layer-by-layer bioprinting of tissue-engineered scaffolds. After undergoing in vitro and in vivo experiments, this process results in the development of the physiologically functional integrity of the tissue. The advantages of 3D bioprinting encompass the ability to customize scaffold design, enabling the precise incorporation of pore shape, size, and porosity, as well as the utilization of patient-specific cells to enhance compatibility. However, various challenges should be considered, including the optimization of biomaterials, ensuring adequate cell viability and differentiation, achieving seamless integration with the host tissue, and navigating regulatory attention. Although numerous studies have demonstrated the potential of 3D bioprinting in the rebuilding of such soft tissues, this paper covers various aspects of the bioprinted tissues to provide insights for the future development of repair techniques appropriate for clinical use.
Collapse
Affiliation(s)
- Hosein Rostamani
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Omid Fakhraei
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Niloufar Zamirinadaf
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mehran Mahjour
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
10
|
Xu Y, Luan X, He P, Zhu D, Mu R, Wang Y, Wei G. Fabrication and Functional Regulation of Biomimetic Interfaces and Their Antifouling and Antibacterial Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308091. [PMID: 38088535 DOI: 10.1002/smll.202308091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/26/2023] [Indexed: 05/25/2024]
Abstract
Biomimetic synthesis provides potential guidance for the synthesis of bio-nanomaterials by mimicking the structure, properties and functions of natural materials. Behavioral studies of biological surfaces with specific micro/nano structures are performed to explore the interactions of various molecules or organisms with biological surfaces. These explorations provide valuable inspiration for the development of biomimetic surfaces with similar effects. This work reviews some conventional preparation methods and functional modulation strategies for biomimetic interfaces. It aims to elucidate the important role of biomimetic interfaces with antifouling and low-pollution properties that can replace non-environmentally friendly coatings. Thus, biomimetic antifouling interfaces can be better applied in the field of marine antifouling and antimicrobial. In this review, the commonly used fabrication methods for biomimetic interfaces as well as some practical strategies for functional modulation is present in detail. These methods and strategies modify the physical structure and chemical properties of the biomimetic interfaces, thus improving the wettability, adsorption, drag reduction, etc. that they exhibit. In addition, practical applications are presented of various biomimetic interfaces for antifouling and look ahead to potential biomedical applications. By continuously discovering functional surfaces with biomimetic properties and studying their microstructure and macroscopic properties, more biomimetic interfaces will be developed.
Collapse
Affiliation(s)
- Youyin Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Rongqiu Mu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
11
|
Moon SH, Park TY, Cha HJ, Yang YJ. Photo-/thermo-responsive bioink for improved printability in extrusion-based bioprinting. Mater Today Bio 2024; 25:100973. [PMID: 38322663 PMCID: PMC10844750 DOI: 10.1016/j.mtbio.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Extrusion-based bioprinting has demonstrated significant potential for manufacturing constructs, particularly for 3D cell culture. However, there is a greatly limited number of bioink candidates exploited with extrusion-based bioprinting, as they meet the opposing requirements for printability with indispensable rheological features and for biochemical functionality with desirable microenvironment. In this study, a blend of silk fibroin (SF) and iota-carrageenan (CG) was chosen as a cell-friendly printable material. The SF/CG ink exhibited suitable viscosity and shear-thinning properties, coupled with the rapid sol-gel transition of CG. By employing photo-crosslinking of SF, the printability with Pr value close to 1 and structural integrity of the 3D constructs were significantly improved within a matter of seconds. The printed constructs demonstrated a Young's modulus of approximately 250 kPa, making them suitable for keratinocyte and myoblast cell culture. Furthermore, the high cell adhesiveness and viability (maximum >98%) of the loaded cells underscored the considerable potential of this 3D culture scaffold applied for skin and muscle tissues, which can be easily manipulated using an extrusion-based bioprinter.
Collapse
Affiliation(s)
- Seo Hyung Moon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Tae Yoon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science, Pohang, 37673, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
- Inha University Hospital, Incheon, 22332, Republic of Korea
| |
Collapse
|
12
|
Bas J, Dutta T, Llamas Garro I, Velázquez-González JS, Dubey R, Mishra SK. RETRACTED: Embedded Sensors with 3D Printing Technology: Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:1955. [PMID: 38544218 PMCID: PMC10974650 DOI: 10.3390/s24061955] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 12/17/2024]
Abstract
Embedded sensors (ESs) are used in smart materials to enable continuous and permanent measurements of their structural integrity, while sensing technology involves developing sensors, sensory systems, or smart materials that monitor a wide range of properties of materials. Incorporating 3D-printed sensors into hosting structures has grown in popularity because of improved assembly processes, reduced system complexity, and lower fabrication costs. 3D-printed sensors can be embedded into structures and attached to surfaces through two methods: attaching to surfaces or embedding in 3D-printed sensors. We discussed various additive manufacturing techniques for fabricating sensors in this review. We also discussed the many strategies for manufacturing sensors using additive manufacturing, as well as how sensors are integrated into the manufacturing process. The review also explained the fundamental mechanisms used in sensors and their applications. The study demonstrated that embedded 3D printing sensors facilitate the development of additive sensor materials for smart goods and the Internet of Things.
Collapse
Affiliation(s)
- Joan Bas
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| | - Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howarh 711103, India;
| | - Ignacio Llamas Garro
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (I.L.G.); (J.S.V.-G.)
| | - Jesús Salvador Velázquez-González
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (I.L.G.); (J.S.V.-G.)
| | - Rakesh Dubey
- Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland;
| | - Satyendra K. Mishra
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| |
Collapse
|
13
|
Kumari S, Mondal P, Tyeb S, Chatterjee K. Visible light-based 3D bioprinted composite scaffolds of κ-carrageenan for bone tissue engineering applications. J Mater Chem B 2024; 12:1926-1936. [PMID: 38314524 DOI: 10.1039/d3tb02179c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Three-dimensional (3D) printing of bone scaffolds using digital light processing (DLP) bioprinting technology empowers the treatment of patients suffering from bone disorders and defects through the fabrication of cell-laden patient-specific scaffolds. Here, we demonstrate the visible-light-induced photo-crosslinking of methacrylate-κ-carrageenan (MA-κ-CA) mixed with bioactive silica nanoparticles (BSNPs) to fabricate 3D composite hydrogels using digital light processing (DLP) printing. The 3D printing of complex bone structures, such as the gyroid, was demonstrated with high precision and resolution. DLP-printed 3D composite hydrogels of MA-κ-CA-BSNP were prepared and systematically assessed for their macroporous structure, swelling, and degradation characteristics. The viscosity, rheological, and mechanical properties were also investigated for the influence of nanoparticle incorporation in the MA-κ-CA hydrogels. The in vitro study performed with MC3T3-E1 pre-osteoblast-laden scaffolds of MA-κ-CA-BSNP revealed high cell viability, no cytotoxicity, and proliferation over 21 days with markedly enhanced osteogenic differentiation compared to neat polymeric scaffolds. Furthermore, no inflammation was observed in the 21-day study involving the in vivo examination of DLP-printed 3D composite scaffolds in a Wistar rat model. Overall, the observed results for the DLP-printed 3D composite scaffolds of MA-κ-CA and BSNP demonstrate their biocompatibility and suitability for bone tissue engineering.
Collapse
Affiliation(s)
- Sushma Kumari
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| | - Pritiranjan Mondal
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| | - Suhela Tyeb
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
14
|
Tsai AY, Greene AC. 3D printing in pediatric surgery. Semin Pediatr Surg 2024; 33:151385. [PMID: 38242062 DOI: 10.1016/j.sempedsurg.2024.151385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Pediatric surgery presents a unique challenge, requiring a specialized approach due to the intricacies of compact anatomy and the presence of distinct congenital features in young patients. Surgeons are tasked with making decisions that not only address immediate concerns but also consider the evolving needs of children as they grow. The advent of three-dimensional (3D) printing has emerged as a valuable tool to facilitate a personalized medical approach. This paper starts by outlining the basics of 3D modeling and printing. We then delve into the transformative role of 3D printing in pediatric surgery, elucidating its applications, benefits, and challenges. The paper concludes by envisioning the future prospects of 3D printing, foreseeing advancements in personalized treatment approaches, improved patient outcomes, and the continued evolution of this technology as an indispensable asset in the pediatric surgical arena.
Collapse
Affiliation(s)
- Anthony Y Tsai
- Division of Pediatric Surgery, Assistant Professor of Surgery and Pediatrics, Penn State Children's Hospital, 500 University Drive, Hershey, PA 17033, United States.
| | - Alicia C Greene
- Division of Pediatric Surgery, Assistant Professor of Surgery and Pediatrics, Penn State Children's Hospital, 500 University Drive, Hershey, PA 17033, United States
| |
Collapse
|
15
|
Trucillo P. Biomaterials for Drug Delivery and Human Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:456. [PMID: 38255624 PMCID: PMC10817481 DOI: 10.3390/ma17020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Biomaterials embody a groundbreaking paradigm shift in the field of drug delivery and human applications. Their versatility and adaptability have not only enriched therapeutic outcomes but also significantly reduced the burden of adverse effects. This work serves as a comprehensive overview of biomaterials, with a particular emphasis on their pivotal role in drug delivery, classifying them in terms of their biobased, biodegradable, and biocompatible nature, and highlighting their characteristics and advantages. The examination also delves into the extensive array of applications for biomaterials in drug delivery, encompassing diverse medical fields such as cancer therapy, cardiovascular diseases, neurological disorders, and vaccination. This work also explores the actual challenges within this domain, including potential toxicity and the complexity of manufacturing processes. These challenges emphasize the necessity for thorough research and the continuous development of regulatory frameworks. The second aim of this review is to navigate through the compelling terrain of recent advances and prospects in biomaterials, envisioning a healthcare landscape where they empower precise, targeted, and personalized drug delivery. The potential for biomaterials to transform healthcare is staggering, as they promise treatments tailored to individual patient needs, offering hope for improved therapeutic efficacy, fewer side effects, and a brighter future for medical practice.
Collapse
Affiliation(s)
- Paolo Trucillo
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Piazzale V. Tecchio, 80, 80125 Naples, Italy
| |
Collapse
|
16
|
Jeong HJ, Nam H, Kim JS, Cho S, Park HH, Cho YS, Jeon H, Jang J, Lee SJ. Dragging 3D printing technique controls pore sizes of tissue engineered blood vessels to induce spontaneous cellular assembly. Bioact Mater 2024; 31:590-602. [PMID: 37876874 PMCID: PMC10593581 DOI: 10.1016/j.bioactmat.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/23/2023] [Accepted: 07/24/2023] [Indexed: 10/26/2023] Open
Abstract
To date, several off-the-shelf products such as artificial blood vessel grafts have been reported and clinically tested for small diameter vessel (SDV) replacement. However, conventional artificial blood vessel grafts lack endothelium and, thus, are not ideal for SDV transplantation as they can cause thrombosis. In addition, a successful artificial blood vessel graft for SDV must have sufficient mechanical properties to withstand various external stresses. Here, we developed a spontaneous cellular assembly SDV (S-SDV) that develops without additional intervention. By improving the dragging 3D printing technique, SDV constructs with free-form, multilayers and controllable pore size can be fabricated at once. Then, The S-SDV filled in the natural polymer bioink containing human umbilical vein endothelial cells (HUVECs) and human aorta smooth muscle cells (HAoSMCs). The endothelium can be induced by migration and self-assembly of endothelial cells through pores of the SDV construct. The antiplatelet adhesion of the formed endothelium on the luminal surface was also confirmed. In addition, this S-SDV had sufficient mechanical properties (burst pressure, suture retention, leakage test) for transplantation. We believe that the S-SDV could address the challenges of conventional SDVs: notably, endothelial formation and mechanical properties. In particular, the S-SDV can be designed simply as a free-form structure with a desired pore size. Since endothelial formation through the pore is easy even in free-form constructs, it is expected to be useful for endothelial formation in vascular structures with branch or curve shapes, and in other tubular tissues such as the esophagus.
Collapse
Affiliation(s)
- Hun-Jin Jeong
- Department of Mechanical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
- Regenerative Engineering Laboratory, Columbia University, 630W 168th ST, New York, 10032, USA
| | - Hyoryung Nam
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 37673, Pohang, Gyeongbuk, Republic of Korea
| | - Jae-Seok Kim
- Department of Mechanical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
| | - Sungkeon Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, 37673, Pohang, Gyeongbuk, Republic of Korea
| | - Hyun-Ha Park
- Department of Mechanical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
| | - Young-Sam Cho
- Department of Mechanical and Design Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
| | - Hyungkook Jeon
- Department of Manufacturing Systems and Design Engineering, Seoul National University of Science and Technology, 01811, Seoul, Republic of Korea
| | - Jinah Jang
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 37673, Pohang, Gyeongbuk, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 37673, Pohang, Gyeongbuk, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673, Pohang, Gyeongbuk, Republic of Korea
- Institute of Convergence Science, Yonsei University, 03722, Seoul, Republic of Korea
| | - Seung-Jae Lee
- Department of Mechanical and Design Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
| |
Collapse
|
17
|
Zhu L, Cheng C, Liu S, Yang L, Han P, Cui T, Zhang Y. Advancements and application prospects of three-dimensional models for primary liver cancer: a comprehensive review. Front Bioeng Biotechnol 2023; 11:1343177. [PMID: 38188493 PMCID: PMC10771299 DOI: 10.3389/fbioe.2023.1343177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Primary liver cancer (PLC) is one of the most commonly diagnosed cancers worldwide and a leading cause of cancer-related deaths. However, traditional liver cancer models fail to replicate tumor heterogeneity and the tumor microenvironment, limiting the study and personalized treatment of liver cancer. To overcome these limitations, scientists have introduced three-dimensional (3D) culture models as an emerging research tool. These 3D models, utilizing biofabrication technologies such as 3D bioprinting and microfluidics, enable more accurate simulation of the in vivo tumor microenvironment, replicating cell morphology, tissue stiffness, and cell-cell interactions. Compared to traditional two-dimensional (2D) models, 3D culture models better mimic tumor heterogeneity, revealing differential sensitivity of tumor cell subpopulations to targeted therapies or immunotherapies. Additionally, these models can be used to assess the efficacy of potential treatments, providing guidance for personalized therapy. 3D liver cancer models hold significant value in tumor biology, understanding the mechanisms of disease progression, and drug screening. Researchers can gain deeper insights into the impact of the tumor microenvironment on tumor cells and their interactions with the surrounding milieu. Furthermore, these models allow for the evaluation of treatment responses, offering more accurate guidance for clinical interventions. In summary, 3D models provide a realistic and reliable tool for advancing PLC research. By simulating tumor heterogeneity and the microenvironment, these models contribute to a better understanding of the disease mechanisms and offer new strategies for personalized treatment. Therefore, 3D models hold promising prospects for future PLC research.
Collapse
Affiliation(s)
- Liuyang Zhu
- First Central Clinical College of Tianjin Medical University, Tianjin, China
| | | | - Sen Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Long Yang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Pinsheng Han
- Nankai University of Medicine College, Tianjin, China
| | - Tao Cui
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
18
|
Slavin BV, Ehlen QT, Costello JP, Nayak VV, Bonfante EA, Benalcázar Jalkh EB, Runyan CM, Witek L, Coelho PG. 3D Printing Applications for Craniomaxillofacial Reconstruction: A Sweeping Review. ACS Biomater Sci Eng 2023; 9:6586-6609. [PMID: 37982644 PMCID: PMC11229092 DOI: 10.1021/acsbiomaterials.3c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The field of craniomaxillofacial (CMF) surgery is rich in pathological diversity and broad in the ages that it treats. Moreover, the CMF skeleton is a complex confluence of sensory organs and hard and soft tissue with load-bearing demands that can change within millimeters. Computer-aided design (CAD) and additive manufacturing (AM) create extraordinary opportunities to repair the infinite array of craniomaxillofacial defects that exist because of the aforementioned circumstances. 3D printed scaffolds have the potential to serve as a comparable if not superior alternative to the "gold standard" autologous graft. In vitro and in vivo studies continue to investigate the optimal 3D printed scaffold design and composition to foster bone regeneration that is suited to the unique biological and mechanical environment of each CMF defect. Furthermore, 3D printed fixation devices serve as a patient-specific alternative to those that are available off-the-shelf with an opportunity to reduce operative time and optimize fit. Similar benefits have been found to apply to 3D printed anatomical models and surgical guides for preoperative or intraoperative use. Creation and implementation of these devices requires extensive preclinical and clinical research, novel manufacturing capabilities, and strict regulatory oversight. Researchers, manufacturers, CMF surgeons, and the United States Food and Drug Administration (FDA) are working in tandem to further the development of such technology within their respective domains, all with a mutual goal to deliver safe, effective, cost-efficient, and patient-specific CMF care. This manuscript reviews FDA regulatory status, 3D printing techniques, biomaterials, and sterilization procedures suitable for 3D printed devices of the craniomaxillofacial skeleton. It also seeks to discuss recent clinical applications, economic feasibility, and future directions of this novel technology. By reviewing the current state of 3D printing in CMF surgery, we hope to gain a better understanding of its impact and in turn identify opportunities to further the development of patient-specific surgical care.
Collapse
Affiliation(s)
- Blaire V Slavin
- University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
| | - Quinn T Ehlen
- University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
| | - Joseph P Costello
- University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
| | - Estavam A Bonfante
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Alameda Dr. Octávio Pinheiro Brisolla, Quadra 9 - Jardim Brasil, Bauru São Paulo 17012-901, Brazil
| | - Ernesto B Benalcázar Jalkh
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Alameda Dr. Octávio Pinheiro Brisolla, Quadra 9 - Jardim Brasil, Bauru São Paulo 17012-901, Brazil
| | - Christopher M Runyan
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, 475 Vine St, Winston-Salem, North Carolina 27101, United States
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, 345 E. 24th St., New York, New York 10010, United States
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York University, 222 E 41st St., New York, New York 10017, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, 6 MetroTech Center, Brooklyn, New York 11201, United States
| | - Paulo G Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, 1120 NW 14th St., Miami, Florida 33136, United States
| |
Collapse
|
19
|
S S, R G AP, Bajaj G, John AE, Chandran S, Kumar VV, Ramakrishna S. A review on the recent applications of synthetic biopolymers in 3D printing for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:62. [PMID: 37982917 PMCID: PMC10661719 DOI: 10.1007/s10856-023-06765-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/01/2023] [Indexed: 11/21/2023]
Abstract
3D printing technology is an emerging method that gained extensive attention from researchers worldwide, especially in the health and medical fields. Biopolymers are an emerging class of materials offering excellent properties and flexibility for additive manufacturing. Biopolymers are widely used in biomedical applications in biosensing, immunotherapy, drug delivery, tissue engineering and regeneration, implants, and medical devices. Various biodegradable and non-biodegradable polymeric materials are considered as bio-ink for 3d printing. Here, we offer an extensive literature review on the current applications of synthetic biopolymers in the field of 3D printing. A trend in the publication of biopolymers in the last 10 years are focused on the review by analyzing more than 100 publications. Their application and classification based on biodegradability are discussed. The various studies, along with their practical applications, are elaborated in the subsequent sections for polyethylene, polypropylene, polycaprolactone, polylactide, etc. for biomedical applications. The disadvantages of various biopolymers are discussed, and future perspectives like combating biocompatibility problems using 3D printed biomaterials to build compatible prosthetics are also discussed and the potential application of using resin with the combination of biopolymers to build customized implants, personalized drug delivery systems and organ on a chip technologies are expected to open a new set of chances for the development of healthcare and regenerative medicine in the future.
Collapse
Affiliation(s)
- Shiva S
- School of BioSciences and Technology, Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
| | - Asuwin Prabu R G
- School of BioSciences and Technology, Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gauri Bajaj
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Amy Elsa John
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sharan Chandran
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Vishnu Vijay Kumar
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
- Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
- Department of Mechanical and Industrial Engineering, Gadjah Mada University, Yogyakarta, 55281, Indonesia
- Department of Aerospace Engineering, Jain deemed to be University, Bangalore, India
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
20
|
Zhang Y. 3D Printing for Cancer Diagnosis: What Unique Advantages Are Gained? ACS MATERIALS AU 2023; 3:620-635. [PMID: 38089653 PMCID: PMC10636786 DOI: 10.1021/acsmaterialsau.3c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2024]
Abstract
Cancer is a complex disease with global significance, necessitating continuous advancements in diagnostics and treatment. 3D printing technology has emerged as a revolutionary tool in cancer diagnostics, offering immense potential in detection and monitoring. Traditional diagnostic methods have limitations in providing molecular and genetic tumor information that is crucial for personalized treatment decisions. Biomarkers have become invaluable in cancer diagnostics, but their detection often requires specialized facilities and resources. 3D printing technology enables the fabrication of customized sensor arrays, enhancing the detection of multiple biomarkers specific to different types of cancer. These 3D-printed arrays offer improved sensitivity, allowing the detection of low levels of biomarkers, even in complex samples. Moreover, their specificity can be fine-tuned, reducing false-positive and false-negative results. The streamlined and cost-effective fabrication process of 3D printing makes these sensor arrays accessible, potentially improving cancer diagnostics on a global scale. By harnessing 3D printing, researchers and clinicians can enhance early detection, monitor treatment response, and improve patient outcomes. The integration of 3D printing in cancer diagnostics holds significant promise for the future of personalized cancer care.
Collapse
Affiliation(s)
- Yu Zhang
- Division
of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78705, United States
- Pharmaceutics
and Drug Delivery, School of Pharmacy, The
University of Mississippi, Oxford, Mississippi 38677-1848, United States
| |
Collapse
|
21
|
Zilinskaite N, Shukla RP, Baradoke A. Use of 3D Printing Techniques to Fabricate Implantable Microelectrodes for Electrochemical Detection of Biomarkers in the Early Diagnosis of Cardiovascular and Neurodegenerative Diseases. ACS MEASUREMENT SCIENCE AU 2023; 3:315-336. [PMID: 37868357 PMCID: PMC10588936 DOI: 10.1021/acsmeasuresciau.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
This Review provides a comprehensive overview of 3D printing techniques to fabricate implantable microelectrodes for the electrochemical detection of biomarkers in the early diagnosis of cardiovascular and neurodegenerative diseases. Early diagnosis of these diseases is crucial to improving patient outcomes and reducing healthcare systems' burden. Biomarkers serve as measurable indicators of these diseases, and implantable microelectrodes offer a promising tool for their electrochemical detection. Here, we discuss various 3D printing techniques, including stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM), selective laser sintering (SLS), and two-photon polymerization (2PP), highlighting their advantages and limitations in microelectrode fabrication. We also explore the materials used in constructing implantable microelectrodes, emphasizing their biocompatibility and biodegradation properties. The principles of electrochemical detection and the types of sensors utilized are examined, with a focus on their applications in detecting biomarkers for cardiovascular and neurodegenerative diseases. Finally, we address the current challenges and future perspectives in the field of 3D-printed implantable microelectrodes, emphasizing their potential for improving early diagnosis and personalized treatment strategies.
Collapse
Affiliation(s)
- Nemira Zilinskaite
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Rajendra P. Shukla
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ausra Baradoke
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Center for
Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
22
|
Liu H, Chen S, Li C, Chen X, Li J, Chen P, Xie F, Jian H, Huang X, Liu L. Preparation and Characterization of Polycarbonate-Based Blend System with Favorable Mechanical Properties and 3D Printing Performance. Polymers (Basel) 2023; 15:4066. [PMID: 37896309 PMCID: PMC10610018 DOI: 10.3390/polym15204066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Recently, material extrusion (MEX) 3D printing technology has attracted extensive attention. However, some high-performance thermoplastic polymer resins, such as polycarbonate (PC), cannot be processed by conventional MEX printing equipment due to poor processing performance. In order to develop new PC-based printing materials suitable for MEX, PC/poly(butylene adipate-co-terephthalate) (PBAT) blends were prepared using a simple polymer blending technique. It was found that the addition of PBAT component significantly improved processing performance of the PC, making the blends processable at 250 °C. More importantly, the PC was completely compatible with the PBAT, and the PBAT effectively reduced the Tg of the blends, endowing the blends with essential 3D printing performance. Furthermore, methyl methacrylate-butadiene-styrene terpolymer (MBS) was introduced into the PC/PBAT blends to improve toughness. SEM observations demonstrated that MBS particles, as stress concentration points, triggered shear yielding of polymer matrix and absorbed impact energy substantially. In addition, the MBS had little effect on the 3D printing performance of the blends. Thus, a PC/PBAT/MBS blend system with favorable comprehensive mechanical properties and 3D printing performance was achieved. This work can provide guidance for the development of novel MEX printing materials and is of great significance for expanding the variety of MEX printing materials.
Collapse
Affiliation(s)
| | | | - Chengdi Li
- Xinyu Key Laboratory of Materials Technology and Application for Intelligent Manufacturing, School of Mechanical and Electrical Engineering, Xinyu University, Xinyu 338004, China
| | - Xiao Chen
- Xinyu Key Laboratory of Materials Technology and Application for Intelligent Manufacturing, School of Mechanical and Electrical Engineering, Xinyu University, Xinyu 338004, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Li N, Cui J, Chi M, Thieringer FM, Sharma N. Building a better bone: The synergy of 2D nanomaterials and 3D printing for bone tissue engineering. MATERIALS & DESIGN 2023; 234:112362. [DOI: 10.1016/j.matdes.2023.112362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Shah SWA, Xu Q, Ullah MW, Zahoor, Sethupathy S, Morales GM, Sun J, Zhu D. Lignin-based additive materials: A review of current status, challenges, and future perspectives. ADDITIVE MANUFACTURING 2023; 74:103711. [DOI: 10.1016/j.addma.2023.103711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
25
|
Noroozi R, Arif ZU, Taghvaei H, Khalid MY, Sahbafar H, Hadi A, Sadeghianmaryan A, Chen X. 3D and 4D Bioprinting Technologies: A Game Changer for the Biomedical Sector? Ann Biomed Eng 2023:10.1007/s10439-023-03243-9. [PMID: 37261588 DOI: 10.1007/s10439-023-03243-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Bioprinting is an innovative and emerging technology of additive manufacturing (AM) and has revolutionized the biomedical sector by printing three-dimensional (3D) cell-laden constructs in a precise and controlled manner for numerous clinical applications. This approach uses biomaterials and varying types of cells to print constructs for tissue regeneration, e.g., cardiac, bone, corneal, cartilage, neural, and skin. Furthermore, bioprinting technology helps to develop drug delivery and wound healing systems, bio-actuators, bio-robotics, and bio-sensors. More recently, the development of four-dimensional (4D) bioprinting technology and stimuli-responsive materials has transformed the biomedical sector with numerous innovations and revolutions. This issue also leads to the exponential growth of the bioprinting market, with a value over billions of dollars. The present study reviews the concepts and developments of 3D and 4D bioprinting technologies, surveys the applications of these technologies in the biomedical sector, and discusses their potential research topics for future works. It is also urged that collaborative and valiant efforts from clinicians, engineers, scientists, and regulatory bodies are needed for translating this technology into the biomedical, pharmaceutical, and healthcare systems.
Collapse
Affiliation(s)
- Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology, Lahore, Sialkot Campus, Lahore, 51041, Pakistan
| | - Hadi Taghvaei
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates
| | - Hossein Sahbafar
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Amin Hadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Sadeghianmaryan
- Postdoctoral Researcher Fellow at Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA.
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada.
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada
| |
Collapse
|
26
|
Abstract
Bioprinting as an extension of 3D printing offers capabilities for printing tissues and organs for application in biomedical engineering. Conducting bioprinting in space, where the gravity is zero, can enable new frontiers in tissue engineering. Fabrication of soft tissues, which usually collapse under their own weight, can be accelerated in microgravity conditions as the external forces are eliminated. Furthermore, human colonization in space can be supported by providing critical needs of life and ecosystems by 3D bioprinting without relying on cargos from Earth, e.g., by development and long-term employment of living engineered filters (such as sea sponges-known as critical for initiating and maintaining an ecosystem). This review covers bioprinting methods in microgravity along with providing an analysis on the process of shipping bioprinters to space and presenting a perspective on the prospects of zero-gravity bioprinting.
Collapse
Affiliation(s)
- Misagh Rezapour Sarabi
- Mechanical Engineering Department, School of Engineering, Koç University, Istanbul, Turkey 34450
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany 70569
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Savas Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University, Istanbul, Turkey 34450
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany 70569
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul, Turkey 34450
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul, Turkey 34450
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey 34684
| |
Collapse
|
27
|
Spanier C, Schwahn C, Krey KF, Ratzmann A. Fused filament fabrication (FFF): influence of layer height on forces and moments delivered by aligners-an in vitro study. Clin Oral Investig 2023; 27:2163-2173. [PMID: 36790628 PMCID: PMC10159977 DOI: 10.1007/s00784-023-04912-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVES To investigate the effect of layer height of FFF-printed models on aligner force transmission to a second maxillary premolar during buccal torquing, distalization, extrusion, and rotation using differing foil thicknesses. MATERIALS AND METHODS Utilizing OnyxCeph3™ Lab (Image Instruments GmbH, Chemnitz, Germany, Release Version 3.2.185), the following movements were programmed for the second premolar: buccal torque (0.1-0.5 mm), distalization (0.1-0.4 mm), extrusion (0.1-0.4 mm), rotation (0.1-0.5 mm), and staging 0.1 mm. Via FFF, 91 maxillary models were printed for each staging at different layer heights (100 µm, 150 µm, 200 µm, 250 µm, 300 µm). Hence, 182 aligners, made of polyethylene terephthalate glycol (PET-G) with two thicknesses (0.5 mm and 0.75 mm), were prepared. The test setup comprised an acrylic maxillary model with the second premolar separated and mounted on a sensor, measuring initial forces and moments exerted by the aligners. A generalized linear model for the gamma distribution was applied, evaluating the significance of the factors layer height, type of movement, aligner thickness, and staging on aligner force transmission. RESULTS Foil thickness and staging were found to have a significant influence on forces delivered by aligners, whereas no significance was determined for layer height and type of movement. Nevertheless, at a layer height of 150 µm, the most appropriate force transmission was observed. CONCLUSIONS Printing aligner models at particularly low layer heights leads to uneconomically high print time without perceptible better force delivery properties, whereas higher layer heights provoke higher unpredictability of forces due to scattering. A z-resolution of 150 µm appears ideal for in-office aligner production combining advantages of economic print time and optimal force transmission.
Collapse
Affiliation(s)
- Claudia Spanier
- Department of Orthodontics and Craniofacial Orthopedics, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Christian Schwahn
- Department for Prosthodontics, Gerostomatology and Biomaterials, University Medicine Greifswald, Greifswald, Germany
| | - Karl-Friedrich Krey
- Department of Orthodontics and Craniofacial Orthopedics, University Medicine Greifswald, 17475, Greifswald, Germany.
| | - Anja Ratzmann
- Department of Orthodontics and Craniofacial Orthopedics, University Medicine Greifswald, 17475, Greifswald, Germany
| |
Collapse
|
28
|
Hai R, Shao G, Ware HOT, Jones EH, Sun C. 3D Printing a Low-Cost Miniature Accommodating Optical Microscope. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208365. [PMID: 36624569 PMCID: PMC10198847 DOI: 10.1002/adma.202208365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/03/2022] [Indexed: 05/04/2023]
Abstract
This decade has witnessed the tremendous progress in miniaturizing optical imaging systems. Despite the advancements in 3D printing optical lenses at increasingly smaller dimensions, challenges remain in precisely manufacturing the dimensionally compatible optomechanical components and assembling them into a functional imaging system. To tackle this issue, the use of 3D printing to enable digitalized optomechanical component manufacturing, part-count-reduction design, and the inclusion of passive alignment features is reported here, all for the ease of system assembly. The key optomechanical components of a penny-sized accommodating optical microscope are 3D printed in 50 min at a significantly reduced unit cost near $4. By actuating a built-in voice-coil motor, its accommodating capability is validated to focus on specimens located at different distances, and a focus-stacking function is further utilized to greatly extend depth of field. The microscope can be readily customized and rapidly manufactured to respond to task-specific needs in form factor and optical characteristics.
Collapse
Affiliation(s)
- Rihan Hai
- Mechanical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Guangbin Shao
- Mechanical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Henry Oliver T Ware
- Mechanical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Evan Hunter Jones
- Mechanical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Cheng Sun
- Mechanical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
29
|
Pariskar A, Sharma PK, Murty US, Banerjee S. Effect of Tartrazine as Photoabsorber for Improved Printing Resolution of 3D Printed "Ghost Tablets": Non-Erodible Inert Matrices. J Pharm Sci 2023; 112:1020-1031. [PMID: 36410417 DOI: 10.1016/j.xphs.2022.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Stereolithography (SLA) 3D printing of pharmaceuticals suffers from the problem of light scattering, which leads to over-curing, resulting in the printing of objects that are non-compliant with design dimensions and the overloading of drugs. To minimize this problem, photoabsorbers such as tartrazine (food grade) can be used to absorb the stray light produced by scattering, leading to unintended photopolymerization. Ghost tablets (i.e., non-erodible inert matrices) were additively manufactured using SLA with varying ratios of polyethylene glycol diacrylate (PEGDA): polyethylene glycol (PEG) 300, along with tartrazine concentrations. The 3D printed ghost tablets containing maximum (0.03%) tartrazine were extremely precise in size and adhered to the nominal value of the metformin hydrochloride content. Resolution analysis reinstated the influence of tartrazine in achieving highly precise objects of even 0.07 mm2 area. Furthermore, 3D printed ghost tablets were characterized using analytical means, and swelling studies. Additionally, ghost tablets were tested for their mechanical robustness using dynamic mechanical and texture analysis, and were able to withstand strains of up to 5.0% without structural failure. The printed ghost tablets displayed a fast metformin hydrochloride release profile, with 93.14% release after 12 h when the PEG 300 ratio was at its maximum. Ghost tablets were also subjected to in vivo X-ray imaging, and the tablets remained intact even after four hours of administration and were eventually excreted in an intact form through fecal excretion.
Collapse
Affiliation(s)
- Amit Pariskar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India
| | - Peeyush Kumar Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India; National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| | | | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India; National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India.
| |
Collapse
|
30
|
Cheng KC, Sun YM, Hsu SH. Development of double network polyurethane-chitosan composite bioinks for soft neural tissue engineering. J Mater Chem B 2023; 11:3592-3606. [PMID: 36943068 DOI: 10.1039/d3tb00120b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Three-dimensional (3D) bioprinting is an emerging manufacturing technology to print materials with cells for tissue engineering applications. In this study, we prepared novel ternary soft segment-based biodegradable polyurethane (tPU) using waterborne processes. The ternary soft segment included poly(ε-caprolactone) (PCL), polylactide, and poly(3-hydroxybutyrate) (PHB). tPU2 with a soft segment of PCL, poly(D,L-lactide), and PHB in a molar ratio of 0.7 : 0.2 : 0.1 demonstrated lower stiffness (∼2.3 kPa) and a greater tan δ value (∼0.64) and maintained good vitality (91.3%) of neural stem cells (NSCs) among various tPUs. The bioprinted tPU2 constructs facilitated cell proliferation (∼200% in 7 days) and neural differentiation of NSCs. Meanwhile, tPU2 formed double network composite hydrogels with gelatin or agarose, and the composite hydrogels showed good biocompatibility and achieved high-resolution (∼80 μm nozzle) bioprinting. In addition, a new series of double network polyurethane-chitosan composite (PUC) hydrogels were developed by combining tPU2 with a self-healing chitosan hydrogel. The PUC hydrogel demonstrated self-healing properties and bioprintability without the need for a post-crosslinking process. The bioprinted PUC composite hydrogel promoted cell proliferation (∼300% in 7 days) and neural differentiation of NSCs better than the tPU2 bioink. This study revealed new formulae of a polyurethane bioink and a polyurethane-chitosan composite bioink for 3D bioprinting and tissue engineering applications.
Collapse
Affiliation(s)
- Kun-Chih Cheng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China.
| | - Yi-Ming Sun
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan, Republic of China
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li, Taoyuan, Taiwan, Republic of China
- R&D Center for Membrane Technology, Chung Yuan University, Chung-Li, Taoyuan, Taiwan, Republic of China
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China.
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, Republic of China
| |
Collapse
|
31
|
Lee H, Kim SH, Lee JS, Lee YJ, Lee OJ, Ajiteru O, Sultan MT, Lee SW, Park CH. Functional Skeletal Muscle Regeneration Using Muscle Mimetic Tissue Fabricated by Microvalve-Assisted Coaxial 3D Bioprinting. Adv Healthc Mater 2023; 12:e2202664. [PMID: 36469728 DOI: 10.1002/adhm.202202664] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/23/2022] [Indexed: 12/12/2022]
Abstract
3D-printed artificial skeletal muscle, which mimics the structural and functional characteristics of native skeletal muscle, is a promising treatment method for muscle reconstruction. Although various fabrication techniques for skeletal muscle using 3D bio-printers are studied, it is still challenging to build a functional muscle structure. A strategy using microvalve-assisted coaxial 3D bioprinting in consideration of functional skeletal muscle fabrication is reported. The unit (artificial muscle fascicle: AMF) of muscle mimetic tissue is composed of a core filled with medium-based C2C12 myoblast aggregates as a role of muscle fibers and a photo cross-linkable hydrogel-based shell as a role of connective tissue in muscles that enhances printability and cell adhesion and proliferation. Especially, a microvalve system is applied for the core part with even cell distribution and strong cell-cell interaction. This system enhances myotube formation and consequently shows spontaneous contraction. A multi-printed AMF (artificial muscle tissue: AMT) as a piece of muscle is implanted into the anterior tibia (TA) muscle defect site of immunocompromised rats. As a result, the TA-implanted AMT responds to electrical stimulation and represents histologically regenerated muscle tissue. This microvalve-assisted coaxial 3D bioprinting shows a significant step forward to mimicking native skeletal muscle tissue.
Collapse
Affiliation(s)
- Hanna Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Young Jin Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Olatunji Ajiteru
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Md Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Suk Woo Lee
- Department of Obstetrics and Gynecology, Hallym University Sacred Heart Hospital, Anyang, 14068, Republic of Korea
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| |
Collapse
|
32
|
Pulikkalparambil H, Babu A, Thilak A, Vighnesh N, Mavinkere Rangappa S, Siengchin S. A review on sliding wear properties of sustainable biocomposites: Classifications, fabrication and discussions. Heliyon 2023; 9:e14381. [PMID: 36942256 PMCID: PMC10023965 DOI: 10.1016/j.heliyon.2023.e14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Biocomposites have gained huge attention in the field of manufacturing. They are widely accepted over conventional petroleum-based composites due to less environmental footprint and safer living habitats, abundance, availability, recyclability, reusability, and end-life disposals. The potential applications of biocomposites are now widely accepted in key engineering areas such as automotive, construction, consumer products, and aerospace industries. Concurrently, tribological properties for biopolymer composites are an appealing research direction. In this review article, a comprehensive literature survey of recent progress made in sliding wear properties of biocomposites are discussed in detail. It summarizes natural and synthetic ways to attain tribological performances in biocomposites such as biopolymers with bio-fillers, biopolymers with synthetic/inorganic fillers, and non-biopolymers with bio-fillers. The study gives a deeper understanding of the crucial informations regarding sliding wear properties of biocomposites and thereby aid in the future research in the design and preparation of similar composites.
Collapse
Affiliation(s)
- Harikrishnan Pulikkalparambil
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Ajish Babu
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Patna, Bihta, Patna-801106, India
| | - Anusree Thilak
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology (CUSAT), Kochi, Kerala 682022, India
| | - N.P. Vighnesh
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology (CUSAT), Kochi, Kerala 682022, India
| | - Sanjay Mavinkere Rangappa
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
- Corresponding author.
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| |
Collapse
|
33
|
Khan J, Sun Y, Han L. A Comprehensive Review on Graphitic Carbon Nitride for Carbon Dioxide Photoreduction. SMALL METHODS 2022; 6:e2201013. [PMID: 36336653 DOI: 10.1002/smtd.202201013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Inspired by natural photosynthesis, harnessing the wide range of natural solar energy and utilizing appropriate semiconductor-based catalysts to convert carbon dioxide into beneficial energy species, for example, CO, CH4 , HCOOH, and CH3 COH have been shown to be a sustainable and more environmentally friendly approach. Graphitic carbon nitride (g-C3 N4 ) has been regarded as a highly effective photocatalyst for the CO2 reduction reaction, owing to its cost-effectiveness, high thermal and chemical stability, visible light absorption capability, and low toxicity. However, weaker electrical conductivity, fast recombination rate, smaller visible light absorption window, and reduced surface area make this catalytic material unsuitable for commercial photocatalytic applications. Therefore, certain procedures, including elemental doping, structural modulation, functional group adjustment of g-C3 N4 , the addition of metal complex motif, and others, may be used to improve its photocatalytic activity towards effective CO2 reduction. This review has investigated the scientific community's perspectives on synthetic pathways and material optimization approaches used to increase the selectivity and efficiency of the g-C3 N4 -based hybrid structures, as well as their benefits and drawbacks on photocatalytic CO2 reduction. Finally, the review concludes a comparative discussion and presents a promising picture of the future scope of the improvements.
Collapse
Affiliation(s)
- Javid Khan
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Adv. Mater. and Technology for Clean Energy, Hunan University, Changsha, 410082, China
| | - Yanyan Sun
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Lei Han
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Adv. Mater. and Technology for Clean Energy, Hunan University, Changsha, 410082, China
| |
Collapse
|
34
|
Carbon@ceramic 3D printed devices for bisphenol A and other organic contaminants extraction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Magnetically assisted drop-on-demand 3D printing of microstructured multimaterial composites. Nat Commun 2022; 13:5015. [PMID: 36028505 PMCID: PMC9418172 DOI: 10.1038/s41467-022-32792-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/17/2022] [Indexed: 11/08/2022] Open
Abstract
Microstructured composites with hierarchically arranged fillers fabricated by three-dimensional (3D) printing show enhanced properties along the fillers’ alignment direction. However, it is still challenging to achieve good control of the filler arrangement and high filler concentration simultaneously, which limits the printed material’s properties. In this study, we develop a magnetically assisted drop-on-demand 3D printing technique (MDOD) to print aligned microplatelet reinforced composites. By performing drop-on-demand printing using aqueous slurry inks while applying an external magnetic field, MDOD can print composites with microplatelet fillers aligned at set angles with high filler concentrations up to 50 vol%. Moreover, MDOD allows multimaterial printing with voxelated control. We showcase the capabilities of MDOD by printing multimaterial piezoresistive sensors with tunable performances based on the local microstructure and composition. MDOD thus creates a large design space to enhance the mechanical and functional properties of 3D printed electronic or sensing devices using a wide range of materials. 3D printed composites with hierarchically arranged fillers have been challenging to fabricate. Here, the authors make use of magnetically assisted droplet-based printing to 3D print voxelated structures with high filler content, localized control of filler material, and orientation.
Collapse
|
36
|
Papadimitriou P, Andriotis EG, Fatouros D, Tzetzis D. Design and Prototype Fabrication of a Cost-Effective Microneedle Drug Delivery Apparatus Using Fused Filament Fabrication, Liquid Crystal Display and Semi-Solid Extrusion 3D Printing Technologies. MICROMACHINES 2022; 13:1319. [PMID: 36014241 PMCID: PMC9415897 DOI: 10.3390/mi13081319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The current study describes the design of a cost-effective drug delivery apparatus that can be manufactured, assembled, and utilized as easily and quickly as possible, minimizing the time and expense of the supply chain. This apparatus could become a realistic alternative method of providing a vaccine or drug in harsh circumstances, including humanitarian disasters or a lack of medical and nursing staff, conditions that are frequently observed in developing countries. Simultaneously, with the use of microneedles (MNs), the apparatus can benefit from the numerous advantages offered by them during administration. The hollow microneedles in particular are internally perforated and are capable of delivering the active substance to the skin. The apparatus was designed with appropriate details in computer aided design software, and various 3D printing technologies were utilized in order to fabricate the prototype. The parts that required minimum accuracy, such as the main body of the apparatus, were fabricated with fused filament fabrication. The internal parts and the hollow microneedles were fabricated with liquid crystal display, and the substance for the drug loading carrier, which was an alginate gel cylinder, was fabricated with semi-solid extrusion 3D printing.
Collapse
Affiliation(s)
- Petros Papadimitriou
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, GR-57001 Thessaloniki, Greece
| | - Eleftherios G. Andriotis
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, GR-57001 Thessaloniki, Greece
| |
Collapse
|
37
|
Paci C, Iberite F, Arrico L, Vannozzi L, Parlanti P, Gemmi M, Ricotti L. Piezoelectric nanocomposite bioink and ultrasound stimulation modulate early skeletal myogenesis. Biomater Sci 2022; 10:5265-5283. [PMID: 35913209 DOI: 10.1039/d1bm01853a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the significant progress in bioprinting for skeletal muscle tissue engineering, new stimuli-responsive bioinks to boost the myogenesis process are highly desirable. In this work, we developed a printable alginate/Pluronic-based bioink including piezoelectric barium titanate nanoparticles (nominal diameter: ∼60 nm) for the 3D bioprinting of muscle cell-laden hydrogels. The aim was to investigate the effects of the combination of piezoelectric nanoparticles with ultrasound stimulation on early myogenic differentiation of the printed structures. After the characterization of nanoparticles and bioinks, viability tests were carried out to investigate three nanoparticle concentrations (100, 250, and 500 μg mL-1) within the printed structures. An excellent cytocompatibility was confirmed for nanoparticle concentrations up to 250 μg mL-1. TEM imaging demonstrated the internalization of BTNPs in intracellular vesicles. The combination of piezoelectric nanoparticles and ultrasound stimulation upregulated the expression of MYOD1, MYOG, and MYH2 and enhanced cell aggregation, which is a crucial step for myoblast fusion, and the presence of MYOG in the nuclei. These results suggest that the direct piezoelectric effect induced by ultrasound on the internalized piezoelectric nanoparticles boosts myogenesis in its early phases.
Collapse
Affiliation(s)
- Claudia Paci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Federica Iberite
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Lorenzo Arrico
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Paola Parlanti
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Mauro Gemmi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
38
|
Kumari S, Mondal P, Chatterjee K. Digital light processing-based 3D bioprinting of κ-carrageenan hydrogels for engineering cell-loaded tissue scaffolds. Carbohydr Polym 2022; 290:119508. [DOI: 10.1016/j.carbpol.2022.119508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 12/20/2022]
|
39
|
Xu J, Zhang M, Du W, Zhao J, Ling G, Zhang P. Chitosan-based high-strength supramolecular hydrogels for 3D bioprinting. Int J Biol Macromol 2022; 219:545-557. [PMID: 35907459 DOI: 10.1016/j.ijbiomac.2022.07.206] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/11/2022]
Abstract
The loss of tissues and organs is a major challenge for biomedicine, and the emerging 3D bioprinting technology has brought the dawn for the development of tissue engineering and regenerative medicine. Chitosan-based supramolecular hydrogels, as novel biomaterials, are considered as ideal materials for 3D bioprinting due to their unique dynamic reversibility and fantastic biological properties. Although chitosan-based supramolecular hydrogels have wonderful biological properties, the mechanical properties are still under early exploration. This paper aims to provide some inspirations for researchers to further explore. In this review, common 3D bioprinting techniques and the properties required for bioink for 3D bioprinting are firstly described. Then, several strategies to enhance the mechanical properties of chitosan hydrogels are introduced from the perspectives of both materials and supramolecular binding motifs. Finally, current challenges and future opportunities in this field are discussed. The combination of chitosan-based supramolecular hydrogels and 3D bioprinting will hold promise for developing novel biomedical implants.
Collapse
Affiliation(s)
- Jiaqi Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Manyue Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wenzhen Du
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiuhong Zhao
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
40
|
Panda S, Hajra S, Mistewicz K, Nowacki B, In-Na P, Krushynska A, Mishra YK, Kim HJ. A focused review on three-dimensional bioprinting technology for artificial organ fabrication. Biomater Sci 2022; 10:5054-5080. [PMID: 35876134 DOI: 10.1039/d2bm00797e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) bioprinting technology has attracted a great deal of interest because it can be easily adapted to many industries and research sectors, such as biomedical, manufacturing, education, and engineering. Specifically, 3D bioprinting has provided significant advances in the medical industry, since such technology has led to significant breakthroughs in the synthesis of biomaterials, cells, and accompanying elements to produce composite living tissues. 3D bioprinting technology could lead to the immense capability of replacing damaged or injured tissues or organs with newly dispensed cell biomaterials and functional tissues. Several types of bioprinting technology and different bio-inks can be used to replicate cells and generate supporting units as complex 3D living tissues. Bioprinting techniques have undergone great advancements in the field of regenerative medicine to provide 3D printed models for numerous artificial organs and transplantable tissues. This review paper aims to provide an overview of 3D-bioprinting technologies by elucidating the current advancements, recent progress, opportunities, and applications in this field. It highlights the most recent advancements in 3D-bioprinting technology, particularly in the area of artificial organ development and cancer research. Additionally, the paper speculates on the future progress in 3D-bioprinting as a versatile foundation for several biomedical applications.
Collapse
Affiliation(s)
- Swati Panda
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea.
| | - Sugato Hajra
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea.
| | - Krystian Mistewicz
- Institute of Physics - Center for Science and Education, Silesian University of Technology, Krasińskiego 8, Katowice, Poland
| | - Bartłomiej Nowacki
- Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, Katowice, Poland
| | - Pichaya In-Na
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Wangmai, Pathumwan, Bangkok-10330, Thailand
| | - Anastasiia Krushynska
- Engineering and Technology Institute Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, Netherlands
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Hoe Joon Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea. .,Robotics and Mechatronics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea
| |
Collapse
|
41
|
Chitosan-based biomaterials for the treatment of bone disorders. Int J Biol Macromol 2022; 215:346-367. [PMID: 35718150 DOI: 10.1016/j.ijbiomac.2022.06.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/22/2022]
Abstract
Bone is an alive and dynamic organ that is well-differentiated and originated from mesenchymal tissues. Bone undergoes continuous remodeling during the lifetime of an individual. Although knowledge regarding bones and their disorders has been constantly growing, much attention has been devoted to effective treatments that can be used, both from materials and medical performance points of view. Polymers derived from natural sources, for example polysaccharides, are generally biocompatible and are therefore considered excellent candidates for various biomedical applications. This review outlines the development of chitosan-based biomaterials for the treatment of bone disorders including bone fracture, osteoporosis, osteoarthritis, arthritis rheumatoid, and osteosarcoma. Different examples of chitosan-based formulations in the form of gels, micro/nanoparticles, and films are discussed herein. The work also reviews recent patents and important developments related to the use of chitosan in the treatment of bone disorders. Although most of the cited research was accomplished before reaching the clinical application level, this manuscript summarizes the latest achievements within chitosan-based biomaterials used for the treatment of bone disorders and provides perspectives for future scientific activities.
Collapse
|
42
|
Mirulla AI, Muccioli GMM, Fratini S, Zaffagnini S, Ingrassia T, Bragonzoni L, Innocenti B. Analysis of different geometrical features to achieve close-to-bone stiffness material properties in medical device: A feasibility numerical study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106875. [PMID: 35588661 DOI: 10.1016/j.cmpb.2022.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE In orthopedic medical devices, elasto-plastic behavior differences between bone and metallic materials could lead to mechanical issues at the bone-implant interface, as stress shielding. Those issue are mainly related to knee and hip arthroplasty, and they could be responsible for implant failure. To reduce mismatching-related adverse events between bone and prosthesis mechanical properties, modifying the implant's internal geometry varying the bulk stiffness and density could be the right approach. Therefore, this feasibility study aims to assess which in-body gap geometry improves, by reducing, the bulk stiffness. METHODS Using five finite element models, a uniaxial compression test in five cubes with a 20 mm thickness was simulated and analyzed. The displacements, strain and Young Modulus were calculated in four cubes, each containing internal prismatic gaps with different transversal sections (squared, hexagonal, octagonal, and circular). Those were compared with a fifth full-volume cube used as control. RESULTS The most significant difference have been achieved in displacement values, in cubes containing internal gaps with hexagonal and circular transversal sections (82 µm and 82.5 µm, respectively), when compared to the full-volume cube (69.3 µm). CONCLUSIONS This study suggests that hexagonal and circular shape of the gaps allows obtaining the lower rigidity in a size range of 4 mm, offering a starting approach to achieve a "close-to-bone" material, with a potential use in prosthetic devices with limited thickness.
Collapse
Affiliation(s)
- Agostino Igor Mirulla
- Department of Engineering, University of Palermo, Viale delle Scienze Ed.8, Palermo 90128, Italy; Department for Life Quality Studies, University of Bologna, Rimini 47921, Italy.
| | - Giulio Maria Marcheggiani Muccioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40136, Italy; 2nd Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Stefano Fratini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40136, Italy
| | - Stefano Zaffagnini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40136, Italy; 2nd Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Tommaso Ingrassia
- Department of Engineering, University of Palermo, Viale delle Scienze Ed.8, Palermo 90128, Italy
| | - Laura Bragonzoni
- Department for Life Quality Studies, University of Bologna, Rimini 47921, Italy
| | - Bernardo Innocenti
- BEAMS Department (Bio Electro and Mechanical Systems), Université Libre de Bruxelles, Bruxelles 1050, Belgium
| |
Collapse
|
43
|
Xie Y, Dai L, Yang Y. Microfluidic technology and its application in the point-of-care testing field. BIOSENSORS & BIOELECTRONICS: X 2022; 10:100109. [PMID: 35075447 PMCID: PMC8769924 DOI: 10.1016/j.biosx.2022.100109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 05/15/2023]
Abstract
Since the outbreak of the coronavirus disease 2019 (COVID-19), countries around the world have suffered heavy losses of life and property. The global pandemic poses a challenge to the global public health system, and public health organizations around the world are actively looking for ways to quickly and efficiently screen for viruses. Point-of-care testing (POCT), as a fast, portable, and instant detection method, is of great significance in infectious disease detection, disease screening, pre-disease prevention, postoperative treatment, and other fields. Microfluidic technology is a comprehensive technology that involves various interdisciplinary disciplines. It is also known as a lab-on-a-chip (LOC), and can concentrate biological and chemical experiments in traditional laboratories on a chip of several square centimeters with high integration. Therefore, microfluidic devices have become the primary implementation platform of POCT technology. POCT devices based on microfluidic technology combine the advantages of both POCT and microfluids, and are expected to shine in the biomedical field. This review introduces microfluidic technology and its applications in combination with other technologies.
Collapse
Affiliation(s)
- Yaping Xie
- Sansure Biotech Inc., Changsha, 410205, PR China
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Lizhong Dai
- Sansure Biotech Inc., Changsha, 410205, PR China
| | - Yijia Yang
- Sansure Biotech Inc., Changsha, 410205, PR China
| |
Collapse
|
44
|
Shao Y, Liao Z, Gao B, He B. Emerging 3D Printing Strategies for Enzyme Immobilization: Materials, Methods, and Applications. ACS OMEGA 2022; 7:11530-11543. [PMID: 35449952 PMCID: PMC9016833 DOI: 10.1021/acsomega.2c00357] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/10/2022] [Indexed: 05/03/2023]
Abstract
As the strategies of enzyme immobilization possess attractive advantages that contribute to realizing recovery or reuse of enzymes and improving their stability, they have become one of the most desirable techniques in industrial catalysis, biosensing, and biomedicine. Among them, 3D printing is the emerging and most potential enzyme immobilization strategy. The main advantages of 3D printing strategies for enzyme immobilization are that they can directly produce complex channel structures at low cost, and the printed scaffolds with immobilized enzymes can be completely modified just by changing the original design graphics. In this review, a comprehensive set of developments in the fields of 3D printing techniques, materials, and strategies for enzyme immobilization and the potential applications in industry and biomedicine are summarized. In addition, we put forward some challenges and possible solutions for the development of this field and some possible development directions in the future.
Collapse
Affiliation(s)
- Yun Shao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Zhijun Liao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
45
|
Gu PY, Kim PY, Chai Y, Ashby PD, Xu QF, Liu F, Chen Q, Lu JM, Russell TP. Visualizing Assembly Dynamics of All-Liquid 3D Architectures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105017. [PMID: 35142068 DOI: 10.1002/smll.202105017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/22/2021] [Indexed: 06/14/2023]
Abstract
To better exploit all-liquid 3D architectures, it is essential to understand dynamic processes that occur during printing one liquid in a second immiscible liquid. Here, the interfacial assembly and transition of 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin (H6 TPPS) over time provides an opportunity to monitor the interfacial behavior of nanoparticle surfactants (NPSs) during all-liquid printing. The formation of J-aggregates of H4 TPPS2- at the interface and the interfacial conversion of the J-aggregates of H4 TPPS2- to H-aggregates of H2 TPPS4- is demonstrated by interfacial rheology and in situ atomic force microscopy. Equally important are the chromogenic changes that are characteristic of the state of aggregation, where J-aggregates are green in color and H-aggregates are red in color. In all-liquid 3D printed structures, the conversion in the aggregate state with time is reflected in a spatially varying change in the color, providing a simple, direct means of assessing the aggregation state of the molecules and the mechanical properties of the assemblies, linking a macroscopic observable (color) to mechanical properties.
Collapse
Affiliation(s)
- Pei-Yang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Yu Chai
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Qing-Feng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Feng Liu
- Department of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiaotong University, Shanghai, 200240, P. R. China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Jian-Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
46
|
Stocco E, Porzionato A, De Rose E, Barbon S, Caro RD, Macchi V. Meniscus regeneration by 3D printing technologies: Current advances and future perspectives. J Tissue Eng 2022; 13:20417314211065860. [PMID: 35096363 PMCID: PMC8793124 DOI: 10.1177/20417314211065860] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 01/10/2023] Open
Abstract
Meniscal tears are a frequent orthopedic injury commonly managed by conservative
strategies to avoid osteoarthritis development descending from altered
biomechanics. Among cutting-edge approaches in tissue engineering, 3D printing
technologies are extremely promising guaranteeing for complex biomimetic
architectures mimicking native tissues. Considering the anisotropic
characteristics of the menisci, and the ability of printing over structural
control, it descends the intriguing potential of such vanguard techniques to
meet individual joints’ requirements within personalized medicine. This
literature review provides a state-of-the-art on 3D printing for meniscus
reconstruction. Experiences in printing materials/technologies, scaffold types,
augmentation strategies, cellular conditioning have been compared/discussed;
outcomes of pre-clinical studies allowed for further considerations. To date,
translation to clinic of 3D printed meniscal devices is still a challenge:
meniscus reconstruction is once again clear expression of how the integration of
different expertise (e.g., anatomy, engineering, biomaterials science, cell
biology, and medicine) is required to successfully address native tissues
complexities.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Enrico De Rose
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Silvia Barbon
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Veronica Macchi
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| |
Collapse
|
47
|
Murphy RD, Garcia RV, Heise A, Hawker CJ. Peptides as 3D printable feedstocks: Design strategies and emerging applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
48
|
Abstract
Hydrogen is a notoriously difficult substance to store yet has endless energy applications. Thus, the study of long-term hydrogen storage, and high-pressure bulk hydrogen storage have been the subject of much research in the last several years. To create a research path forward, it is important to know what research has already been done, and what is already known about hydrogen storage. In this review, several approaches to hydrogen storage are addressed, including high-pressure storage, cryogenic liquid hydrogen storage, and metal hydride absorption. Challenges and advantages are offered based on reported research findings. Since the project looks closely at advanced manufacturing, techniques for the same are outlined as well. There are seven main categories into which most rapid prototyping styles fall. Each is briefly explained and illustrated as well as some generally accepted advantages and drawbacks to each style. An overview of hydrogen adsorption on metal hydrides, carbon fibers, and carbon nanotubes are presented. The hydrogen storage capacities of these materials are discussed as well as the differing conditions in which the adsorption was performed under. Concepts regarding storage shape and materials accompanied by smaller-scale advanced manufacturing options for hydrogen storage are also presented.
Collapse
|
49
|
Affiliation(s)
- Patrick Imrie
- School of Chemical Sciences The University of Auckland Auckland New Zealand
- Dodd‐Walls Centre for Quantum and Photonic Technologies Dunedin New Zealand
| | - Jianyong Jin
- School of Chemical Sciences The University of Auckland Auckland New Zealand
- Dodd‐Walls Centre for Quantum and Photonic Technologies Dunedin New Zealand
| |
Collapse
|
50
|
Ravanbakhsh H, Karamzadeh V, Bao G, Mongeau L, Juncker D, Zhang YS. Emerging Technologies in Multi-Material Bioprinting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104730. [PMID: 34596923 PMCID: PMC8971140 DOI: 10.1002/adma.202104730] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Indexed: 05/09/2023]
Abstract
Bioprinting, within the emerging field of biofabrication, aims at the fabrication of functional biomimetic constructs. Different 3D bioprinting techniques have been adapted to bioprint cell-laden bioinks. However, single-material bioprinting techniques oftentimes fail to reproduce the complex compositions and diversity of native tissues. Multi-material bioprinting as an emerging approach enables the fabrication of heterogeneous multi-cellular constructs that replicate their host microenvironments better than single-material approaches. Here, bioprinting modalities are reviewed, their being adapted to multi-material bioprinting is discussed, and their advantages and challenges, encompassing both custom-designed and commercially available technologies are analyzed. A perspective of how multi-material bioprinting opens up new opportunities for tissue engineering, tissue model engineering, therapeutics development, and personalized medicine is offered.
Collapse
Affiliation(s)
- Hossein Ravanbakhsh
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - Vahid Karamzadeh
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3A0G1, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - David Juncker
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3A0G1, Canada
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|