2
|
Cheng Y, Cheng A, Jia Y, Yang L, Ning Y, Xu L, Zhong Y, Zhuang Z, Guan J, Zhang X, Lin Y, Zhou T, Fan X, Li J, Liu P, Yan G, Wu R. pH-Responsive Multifunctional Theranostic Rapamycin-Loaded Nanoparticles for Imaging and Treatment of Acute Ischemic Stroke. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56909-56922. [PMID: 34807583 DOI: 10.1021/acsami.1c16530] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stroke is the second leading cause of death globally and the most common cause of severe disability. Several barriers need to be addressed more effectively to treat stroke, including efficient delivery of therapeutic agents, rapid release at the infarct site, precise imaging of the infarct site, and drug distribution monitoring. The present study aimed to develop a bio-responsive theranostic nanoplatform with signal-amplifying capability to deliver rapamycin (RAPA) to ischemic brain tissues and visually monitor drug distribution. A pH-sensitive theranostic RAPA-loaded nanoparticle system was designed since ischemic tissues have a low-pH microenvironment compared with normal tissues. The nanoparticles demonstrated good stability and biocompatibility and could efficiently load rapamycin, followed by its rapid release in acidic environments, thereby improving therapeutic accuracy. The nano-drug-delivery system also exhibited acid-enhanced magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging signal properties, enabling accurate multimodal imaging with minimal background noise, thus improving drug tracing and diagnostic accuracy. Finally, in vivo experiments confirmed that the nanoparticles preferentially aggregated in the ischemic hemisphere and exerted a neuroprotective effect in rats with transient middle cerebral artery occlusion (tMCAO). These pH-sensitive multifunctional theranostic nanoparticles could serve as a potential nanoplatform for drug tracing as well as the treatment and even diagnosis of acute ischemic stroke. Moreover, they could be a universal solution to achieve accurate in vivo imaging and treatment of other diseases.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Airong Cheng
- Department of Neurology, Chengwu County People's Hospital, Chengwu 274200, Shandong, China
| | - Yanlong Jia
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei 441021, China
| | - Lin Yang
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yan Ning
- Department of TCM, Shenzhen Maternity & Child Healthcare Hospital Affiliated to Southern Medical University, Shenzhen 518028, Guangdong, China
| | - Liang Xu
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yazhi Zhong
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zerui Zhuang
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, Guangdong, China
- Department of Neurosurgery, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jitian Guan
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaolei Zhang
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yan Lin
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Teng Zhou
- Department of Computer Science, Shantou University, Shantou 515041, China
| | - Xiusong Fan
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Jianwu Li
- Transfusion Department, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361023, Fujian, China
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
3
|
Jin J, Li M, Li J, Li B, Duan L, Yang F, Gu N. Xenon Nanobubbles for the Image-Guided Preemptive Treatment of Acute Ischemic Stroke via Neuroprotection and Microcirculatory Restoration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43880-43891. [PMID: 34493044 DOI: 10.1021/acsami.1c06014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Early lesion site diagnosis and neuroprotection are crucial to the theranostics of acute ischemic stroke. Xenon (Xe), as a nontoxic gaseous neuroprotectant, holds great promise for ischemic stroke therapy. In this study, Xe-encapsulated lipid nanobubbles (Xe-NBs) have been prepared for the real-time ultrasound image-guided preemptive treatment of the early stroke. The lipids are self-assembled at the interface of free Xe bubbles, and the mean diameter of Xe-NBs is 225 ± 11 nm with a Xe content of 73 ± 2 μL/mL. The in vitro results show that Xe-NBs can protect oxygen/glucose-deprived PC12 cells against apoptosis and oxidative stress. Based on the ischemic stroke mice model, the biodistribution, timely ultrasound imaging, and the therapeutic effects of Xe-NBs for stroke lesions were investigated in vivo. The accumulation of Xe-NBs to the ischemic lesion endows ultrasound contrast imaging with the lesion area. The cerebral blood flow measurement indicates that the administration of Xe-NBs can improve microcirculatory restoration, resulting in reduced acute microvascular injury in the lesion area. Furthermore, local delivery of therapeutic Xe can significantly reduce the volume of cerebral infarction and restore the neurological function with reduced neuron injury against apoptosis. Therefore, Xe-NBs provide a novel nanosystem for the safe and rapid theranostics of acute ischemic stroke, which is promising to translate into the clinical management of stroke.
Collapse
Affiliation(s)
- Juan Jin
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Mei Li
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, P. R. China
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Jing Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Bin Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Lei Duan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Ning Gu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
4
|
Zhang Y, Zhang H, Huang D, Tan B, Zhang C, Deng Z. Naphthalene-facilitated self-assembly of a Gd-chelate as a novel T2 MRI contrast agent for visualization of stem cell transplants. J Mater Chem B 2021; 9:5729-5737. [PMID: 34231635 DOI: 10.1039/d1tb00424g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naphthalene is coupled with DOTA via a peptide sequence to yield an amphipathic MRI probe Nap-CFGKTG-DOTA-Gd (Nap-Gd) that can self-assemble into nanofibers. Incubation of NSCs, hMSCs and L929 cells in the presence of Nap-Gd in the μM level can introduce a significant amount of Nap-Gd into the cells as nanoclusters or nanofibers. The resultant intracellular Gd content is 10-60 times that achieved by incubation with Dotarem at the same concentration. The labelled cells exhibit a significant hyperintensive effect under T1-weighted MRI and a significant hypointensive effect under T2-weighted MRI. The hypointensive effect is more persistent than the hyperintensive effect, which allows in vivo tracking of labelled hMSCs for over 12 days under T2-weighted MRI. A comprehensive interpretation of the MRI signal intensity and the associated relaxation times reveals the structure-function relationship between the binding status of Nap-Gd in cells (structure) and the magnetic relaxation processes (function) toward a full understanding of the observed hyperintensive and hypointensive effects.
Collapse
Affiliation(s)
- Yanhui Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, P. R. China. and CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Hailu Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Dehua Huang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Bo Tan
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Chengxing Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Zongwu Deng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, P. R. China. and CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| |
Collapse
|