1
|
Mondal A, Dutta S. Design and development of a bright NIR fluorescent probe for selective HSA detection in human blood serum and urine. Bioorg Chem 2025; 159:108356. [PMID: 40086185 DOI: 10.1016/j.bioorg.2025.108356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Human serum albumin (HSA), an important human blood protein, plays a critical role in maintaining osmotic pressure and facilitating the transport of various substances. Abnormal HSA levels are associated with diseases like kidney disease, heart problems, diabetes, and liver damage, necessitating the development of accurate methods for HSA detection. This paper describes the design, synthesis, and evaluation of four BODIPY-based near-infrared (NIR) fluorescent probes (BD1-BD4) for the selective detection of HSA. Among the synthesized probes, BD1 demonstrated exceptional sensitivity and specificity, exhibiting a 147-fold fluorescence enhancement at 660 nm (λex = 600 nm) with a Stokes shift of 60 nm. The probe achieved a low detection limit of 9.5 nM, enabling the effective quantification of HSA in complex biological samples such as human blood serum and artificial urine. Competitive binding studies using ibuprofen confirmed that BD1 binds selectively to binding site II of HSA, which was further supported by a molecular docking study. Additionally, BD1 demonstrated HSA detection with a high recovery rate in artificial urine.
Collapse
Affiliation(s)
- Arindam Mondal
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Subrata Dutta
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| |
Collapse
|
2
|
Li Z, Du L, Du B, Ullah Z, Zhang Y, Tu Y, Zhou Y, Guo B. Inorganic and hybrid nanomaterials for NIR-II fluorescence imaging-guided therapy of Glioblastoma and perspectives. Theranostics 2025; 15:5616-5665. [PMID: 40365286 PMCID: PMC12068291 DOI: 10.7150/thno.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/24/2025] [Indexed: 05/15/2025] Open
Abstract
Glioblastoma (GBM) is the most invasive and lethal brain tumor, with limited therapeutic options due to its highly infiltrative nature, resistance to conventional therapies, and blood-brain barriers. Recent advancements in near-infrared II (NIR-II) fluorescence imaging have facilitated greater tissue penetration, improved resolution, and real-time visualization of GBM, providing a promising approach for precise diagnosis and treatment. The inorganic and hybrid NIR-II fluorescent materials have developed rapidly for NIR-II fluorescence imaging-guided diagnosis and therapy of many diseases, including GBM. Herein, we offer a timely update to explore the contribution of inorganic/hybrid NIR-II fluorescent nanomaterials, such as quantum dots, rare-earth-doped nanoparticles, carbon-based nanomaterials, and metal nanoclusters in imaging-guided treatment for GBM. These nanomaterials provide high photostability, strong fluorescence intensity, and tunable optical properties, allowing for multimodal imaging and enhanced therapeutic efficacy. Additionally, their integration with modern therapeutic strategies, such as photothermal therapy, chemodynamic therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, has shown significant potential in overcoming the limitations of traditional treatments. Looking forward, future advancements including safe body clearance, long-term biocompatibility, efficient BBB penetration, and extended emission wavelengths beyond 1500 nm could enhance the theranostic outcomes. The integration of dual imaging with immunotherapy and AI-driven strategies will further enhance precision and accelerate the clinical translation of smart theranostic platforms for GBM treatment.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Lixin Du
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Binghua Du
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou City, Guangdong Province, China
| | - Ying Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Hernández JS, Atienzar P, Shamshurin M, Benassi E, Sokolov MN, Feliz M. Luminescence and Generation of Reactive Oxygen Species in Solution by Ta 6Br 12 Clusters. Chemistry 2025; 31:e202403384. [PMID: 39676056 DOI: 10.1002/chem.202403384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
An intrinsic metal cluster NIR-II emission of the {Ta6Br12}2+ aqua/hydroxocomplexes was determined in aqueous solutions under inert atmosphere. The photoluminescence (PL) is enhanced in D2O, and the lifetime scale expands from nanoseconds to microseconds. Possible cluster emission transitions have been assigned and analyzed from a computational perspective. In the presence of O2, the cluster compound kept its robustness but showed partial quenching of the PL. Stern-Volmer and laser-flash photolysis studies confirmed that quenching is mainly associated with O2 diffusion. Laser-flash photolysis experiments showed that singlet oxygen (1O2) was not detected under measurement conditions. Generation of peroxide and superoxide radical species after irradiation in D2O was confirmed by using luminol as a probe, whereas no hydroxide radical species were detected as evidenced by the emission of the 3-coumarin carboxylic acid (3-CCA) molecular sensor.
Collapse
Affiliation(s)
- Jhon Sebastián Hernández
- Instituto de Tecnología Química, Universitat Politècnica de València - Agencia Estatal Consejo Superior de Investigaciones Científicas, Avd. de los Naranjos s/n, 46022, Valencia, Spain
| | - Pedro Atienzar
- Instituto de Tecnología Química, Universitat Politècnica de València - Agencia Estatal Consejo Superior de Investigaciones Científicas, Avd. de los Naranjos s/n, 46022, Valencia, Spain
| | - Maxim Shamshurin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Akad. Lavrentiev Ave., 630090, Novosibirsk, Russian Federation
| | - Enrico Benassi
- Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russian Federation
- Present address: Dept. of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 213/B Giuseppe Campi Str., 41125, Modena, Italy
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Akad. Lavrentiev Ave., 630090, Novosibirsk, Russian Federation
| | - Marta Feliz
- Instituto de Tecnología Química, Universitat Politècnica de València - Agencia Estatal Consejo Superior de Investigaciones Científicas, Avd. de los Naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
4
|
Lee C, Park D, Shiu WT, Liu Y, Liu L. Enhanced Persistent Luminescence from Cr 3+-Doped ZnGa 2O 4 Nanoparticles upon Immersion in Simulated Physiological Media. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:247. [PMID: 39940223 PMCID: PMC11820434 DOI: 10.3390/nano15030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Near-infrared persistent luminescence (PersL) nanoparticles (NPs) have great potential in biomedical applications due to their ability to continuously emit tissue-penetrating light. Despite numerous reports on the distribution, biological safety and other consequences of PersL NPs in vitro and in vivo, there has been a lack of studies on the optical properties of these NPs in the physiological environment. In light of this, we investigated the effects of short-term immersion of the prominent Cr3+-doped ZnGa2O4 (CZGO) NPs in a simulated physiological environment for up to 48 h. This paper reports the changes in the structural and optical properties of CZGO NPs after their immersion in a phosphate-buffered saline (PBS) solution for pre-determined time intervals. Interestingly, the luminescence intensity and lifetime noticeably improved upon exposure to the PBS media, which is unusual among existing nanomaterials explored as bioimaging probes. After 48 h of immersion in the PBS solution, the CZGO NPs were approximately twice as bright as the non-immersed sample. X-ray spectroscopic techniques revealed the formation of ZnO, which results in an improvement in observed luminescence.
Collapse
Affiliation(s)
| | | | | | | | - Lijia Liu
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada; (C.L.); (D.P.); (W.-T.S.); (Y.L.)
| |
Collapse
|
5
|
Zhou M, Wang F, Jin Y, Chen S, Xia C. Improving Photophysical Properties and Hydrophily of Conjugated Polymers Simultaneously by Side-Chain Modification for Near-Infrared Cell Imaging. J Fluoresc 2024:10.1007/s10895-024-03878-4. [PMID: 39120746 DOI: 10.1007/s10895-024-03878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Conjugated polymers (CPs)-based near-infrared phototheranostics are receiving increasing attention due to their high molar extinction coefficient, wide emission wavelength, easy preparation and excellent biocompatibility. Herein, several new conjugated polymers with D2-D1-A structures were easily prepared through one-pot coupling using triphenylamine (D2) as well as thiophenes (D1) as electron donors and benzothiadiazole (A) as electron acceptors. Interesting, their optical performance and power conversion efficiency could be tuned by side chains on thiophenes (D1). The introduction of ethylenedioxy into D1 as side chain significantly improves fluorescence imaging brightness, photothermal conversion efficiency and hydrophilicity, and extends emission wavelength, which are beneficial for phototheranostic. The side chain modification provides new opportunity to design efficient phototheranostics without construction new fluorescent skeletons.
Collapse
Affiliation(s)
- Min Zhou
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Fenglei Wang
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Yongdong Jin
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Shanyong Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China.
| | - Chuanqin Xia
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China.
| |
Collapse
|
6
|
Wang Z, Wang S, Zhang Y, Ma M. Design, Synthesis, and Evaluation of Small Fluorescent Molecules with a 1,1-Dimethylnaphthalen-2-(1 H)-One Core. Molecules 2024; 29:3396. [PMID: 39064974 PMCID: PMC11280428 DOI: 10.3390/molecules29143396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
A series of fluorescent molecules with 1,1-dimethylnaphthalene-2(1H)-one as the core were synthesized to overcome aggregation quenching and emit bright green fluorescence. The low molecular weight of these molecules led to them to smoothly pass through the cell membrane and penetrate deep into the nucleus to emit the corresponding fluorescence. Among them, NC-4-Br and NC-5-3O have good optical and in vitro properties and showed potential for use as fluorescent probes.
Collapse
Affiliation(s)
- Zhengyang Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuting Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yuexing Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Mingliang Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
7
|
Zhang Z, Yu C, Wu Y, Wang Z, Xu H, Yan Y, Zhan Z, Yin S. Semiconducting polymer dots for multifunctional integrated nanomedicine carriers. Mater Today Bio 2024; 26:101028. [PMID: 38590985 PMCID: PMC11000120 DOI: 10.1016/j.mtbio.2024.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The expansion applications of semiconducting polymer dots (Pdots) among optical nanomaterial field have long posed a challenge for researchers, promoting their intelligent application in multifunctional nano-imaging systems and integrated nanomedicine carriers for diagnosis and treatment. Despite notable progress, several inadequacies still persist in the field of Pdots, including the development of simplified near-infrared (NIR) optical nanoprobes, elucidation of their inherent biological behavior, and integration of information processing and nanotechnology into biomedical applications. This review aims to comprehensively elucidate the current status of Pdots as a classical nanophotonic material by discussing its advantages and limitations in terms of biocompatibility, adaptability to microenvironments in vivo, etc. Multifunctional integration and surface chemistry play crucial roles in realizing the intelligent application of Pdots. Information visualization based on their optical and physicochemical properties is pivotal for achieving detection, sensing, and labeling probes. Therefore, we have refined the underlying mechanisms and constructed multiple comprehensive original mechanism summaries to establish a benchmark. Additionally, we have explored the cross-linking interactions between Pdots and nanomedicine, potential yet complete biological metabolic pathways, future research directions, and innovative solutions for integrating diagnosis and treatment strategies. This review presents the possible expectations and valuable insights for advancing Pdots, specifically from chemical, medical, and photophysical practitioners' standpoints.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Haotian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Yining Yan
- Department of Radiology, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Zhixin Zhan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| |
Collapse
|
8
|
Zong Y, Zong B, Zha R, Zhang Y, Li X, Wang Y, Fang H, Wong WL, Li C. An Antibacterial and Anti-Oxidative Hydrogel Dressing for Promoting Diabetic Wound Healing and Real-Time Monitoring Wound pH Conditions with a NIR Fluorescent Imaging System. Adv Healthc Mater 2023; 12:e2300431. [PMID: 37102624 DOI: 10.1002/adhm.202300431] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Indexed: 04/28/2023]
Abstract
The design and synthesis of multifunctional chitosan hydrogels based on polymerized ionic liquid and a near-infrared (NIR) fluorescent probe (PIL-CS) is a promising strategy, which not only prevents the transition from acute to chronic wounds, but also provides prompt measures regarding microenvironmental alterations in chronic wounds. PIL-CS hydrogel can real-time visualize wound pH through in vivo NIR fluorescent imaging and also feature the pH-responsive sustained drug release, such as antioxidant, to eliminate reactive oxygen species (ROS) and to boost diabetic wound healing. PIL-CS hydrogel is specific, sensitive, stable, and reversible in response to pH changes at the wound site. It, therefore, enables real-time monitoring for a dynamic pH change in the microenvironment of irregular wounds. PIL-CS hydrogel is also designed to possess many merits including high water containment and swelling rate, good biocompatibility, electrical conductivity, antifreeze, tissue adhesion, hemostatic performance, and efficient antibacterial activity against MRSA. In vivo studies showed that PIL-CS hydrogel provided fast diabetic wound healing support, promoted vascular endothelial growth factor (VEGF) production, and reduced ROS and tumor necrosis factor (TNF-α) generation. The results support that the hydrogels coupled with NIR fluorescent probes can be an excellent diabetic wound dressing for enhancing and real-time monitoring skin restoration and regeneration.
Collapse
Affiliation(s)
- Yuange Zong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Beige Zong
- Department of General surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chognqing School of Medicine, Chongqing University, Chongqing, 400000, China
| | - Ruyan Zha
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Yi Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Xianghong Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Yanying Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Huaifang Fang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Chunya Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
9
|
Wen Y, Sun D, Zhang Y, Zhang Z, Chen L, Li J. Molecular imprinting-based ratiometric fluorescence sensors for environmental and food analysis. Analyst 2023; 148:3971-3985. [PMID: 37528730 DOI: 10.1039/d3an00483j] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Environmental protection and food safety are closely related to the healthy development of human society; there is an urgent need for relevant analytical methods to determine environmental pollutants and harmful substances in food. Molecular imprinting-based ratiometric fluorescence (MI-RFL) sensors, constructed by combining molecular imprinting recognition and ratiometric fluorescence detection, possess remarkable advantages such as high selectivity, anti-interference ability, high sensitivity, non-destruction and convenience, and have attracted increasing interest in the field of analytical determination. Herein, recent advances in MI-RFL sensors for environmental and food analysis are reviewed, aiming at new construction strategies and representative determination applications. Firstly, fluorescence sources and possible sensing principles are briefly outlined. Secondly, new imprinting techniques and dual/ternary-emission fluorescence types that improve sensing performances are highlighted. Thirdly, typical analytical applications of MI-RFL sensors in environmental and food samples are summarized. Lastly, the challenges and perspectives of the MI-RFL sensors are proposed, focusing on improving sensitivity/visualization and extending applications.
Collapse
Affiliation(s)
- Yuhao Wen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Dani Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yue Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- School of Pharmacy, Binzhou Medical College, Yantai 264003, China
| | - Jinhua Li
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
10
|
He S, Liu Y, Gao T, Liu R, Chen G, Duan M, Cao M. Enhanced Luminescence of Long-Wavelength Broadband Near-Infrared Germanate Phosphors. ACS OMEGA 2023; 8:15698-15707. [PMID: 37151565 PMCID: PMC10157857 DOI: 10.1021/acsomega.3c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023]
Abstract
Long-wavelength broadband near-infrared (NIR) phosphors have attracted considerable interest in the fields of medical cosmetology and organic detection because of their special emission band. Herein, Ca2GeO4(CGO): Cr4+ NIR phosphor, presenting a broadband emission with longer wavelength ranging from 1100 to 1600 nm, has been synthesized. Further, the luminescence intensity and quantum efficiency of Cr4+ could be obviously improved via the energy transfer from Eu3+ to Cr4+. The energy transfer is dominated by the dipole-dipole mechanism, which can be inferred from the spectra and the decay curves. Furthermore, in order to evaluate the potential application, an NIR phosphor-converted light-emitting diode (pc-LED) based on blue chip has been prepared. Consequently, CGO: Eu3+, Cr4+ exhibits proper output power and wider half-width than the NIR LED chip, indicating its great prospect for long-wavelength NIR pc-LED applications.
Collapse
|
11
|
Zhang X, Yu F, Wang Z, Jiang T, Song X, Yu F. Fluorescence probes for lung carcinoma diagnosis and clinical application. SENSORS & DIAGNOSTICS 2023; 2:1077-1096. [DOI: 10.1039/d3sd00029j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
This review provides an overview of the most recent developments in fluorescence probe technology for the accurate detection and clinical therapy of lung carcinoma.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Department of Pulmonary and Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Feifei Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Zhenkai Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Xinyu Song
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medicine University, Guangzhou 510120, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
12
|
Wang Q, Li Z, Hao Y, Zhang Y, Zhang C. Near-Infrared Fluorescence Probe with a New Recognition Moiety for Specific Detection and Imaging of Aldehyde Dehydrogenase Expecting the Identification and Isolation of Cancer Stem Cells. Anal Chem 2022; 94:17328-17333. [PMID: 36453832 DOI: 10.1021/acs.analchem.2c04801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Aldehyde dehydrogenase (ALDH) is a vital enzyme that converts aldehyde to acetic acid during alcohol metabolism. ALDH is also a cellular marker of cancer stem cells (CSCs), which plays an important role in cancer diagnosis and prognosis assessment. Therefore, there is a need to explore convenient, selective, and sensitive methods for the detection and imaging of ALDH. Because of the low background fluorescence and high penetration, near-infrared (NIR) fluorescent probes are powerful tools for the detection of ALDH. Until now, only one NIR fluorescent probe has been reported for detecting ALDH. Hence, we synthesized a novel NIR fluorescent probe, Probe-ALDH, by linking the new specific recognition moiety 4-hydroxymethyl benzaldehyde with NIR fluorophore AXPI. Compared with the existing ALDH fluorescent probes, Probe-ALDH has excellent properties, such as a new specific recognition moiety without the substitution of benzaldehyde, a simple synthesis method, emission wavelength in the NIR region, reaction time of only 30 min, and a detection limit as low as 0.03 U·mL-1, which is better than those of the previously reported probes. The probe effectively eliminates the interference from reactive oxygen species (ROS), amino acids, and amines. More importantly, the flow cytometry results showed that Probe-ALDH has great potential applications in the identification and isolation of CSCs. Ultimately, it was successfully applied to the imaging analysis of endogenous ALDH in HepG2 cells by the addition of inhibitor disulfiram. The excellent performance of Probe-ALDH makes it a promising candidate for drug discovery, cancer diagnosis, and so forth.
Collapse
Affiliation(s)
- Qiuyue Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yitong Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yuan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
13
|
Wei Q, Xu D, Li T, He X, Wang J, Zhao Y, Chen L. Recent Advances of NIR-II Emissive Semiconducting Polymer Dots for In Vivo Tumor Fluorescence Imaging and Theranostics. BIOSENSORS 2022; 12:bios12121126. [PMID: 36551093 PMCID: PMC9775418 DOI: 10.3390/bios12121126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 05/31/2023]
Abstract
Accurate diagnosis and treatment of tumors, one of the top global health problems, has always been the research focus of scientists and doctors. Near-infrared (NIR) emissive semiconducting polymers dots (Pdots) have demonstrated bright prospects in field of in vivo tumor fluorescence imaging owing to some of their intrinsic advantages, including good water-dispersibility, facile surface-functionalization, easily tunable optical properties, and good biocompatibility. During recent years, much effort has been devoted to developing Pdots with emission bands located in the second near-infrared (NIR-II, 1000-1700 nm) region, which hold great advantages of higher spatial resolution, better signal-to-background ratios (SBR), and deeper tissue penetration for solid-tumor imaging in comparison with the visible region (400-680 nm) and the first near-infrared (NIR-I, 680-900 nm) window, by virtue of the reduced tissue autofluorescence, minimal photon scattering, and low photon absorption. In this review, we mainly summarize the latest advances of NIR-II emissive semiconducting Pdots for in vivo tumor fluorescence imaging, including molecular engineering to improve the fluorescence quantum yields and surface functionalization to elevate the tumor-targeting capability. We also present several NIR-II theranostic Pdots used for integrated tumor fluorescence diagnosis and photothermal/photodynamic therapy. Finally, we give our perspectives on future developments in this field.
Collapse
Affiliation(s)
- Qidong Wei
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Dingshi Xu
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Tianyu Li
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xuehan He
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jiasi Wang
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yi Zhao
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Lei Chen
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
14
|
Tang L, Zhang Y, Liao C, He L, Wu X, Liu Y, Sun L. Eye-Resolvable Surface-Plasmon-Enhanced Fluorescence Temperature Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4019. [PMID: 36432304 PMCID: PMC9695039 DOI: 10.3390/nano12224019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Temperature sensors are widely used in important fields such as daily home, medical care, and aerospace as a commonly used device for measuring temperature. Traditional temperature sensors such as thermocouples, thermal resistances, and infrared sensors are technically mature; however, they have limitations in the application environment, temperature measurement range, and temperature measurement accuracy. An eye-resolvable surface plasmon-enhanced fluorescence temperature sensor based on dual-emission Ag@SiO2@CdS/ZnS composite nanoparticle film with multiple-parameter detectable signals and high response sensitivity was proposed in this work. The temperature sensor's x-chromaticity coordinate varied from 0.299 to 0.358 in the range of 77-297 K, while the y-chromaticity coordinate varied from 0.288 to 0.440, displaying eye-resolvable surface plasmon-enhanced fluorescence. The ratiometric response of two isolated photoluminescence (PL) peak-integrated areas located around 446 and 592 nm was found to be significantly temperature dependent, with a thermal sensitivity of 1.4% K-1, which can be used as an additional parameter to measure the precise temperature. Furthermore, the surface state emission peak intensity was linearly related to temperature, with a correlation index Adj. R-Square of 99.8%. Multiple independent temperature estimates can help with self-calibration and improve the measurement accuracy. Our findings show that the designed sensors can detect low temperatures while maintaining stability and reproducibility.
Collapse
Affiliation(s)
- Luping Tang
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Yangyang Zhang
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Liao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Longbing He
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Xing Wu
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai 200241, China
| | - Yiwei Liu
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
15
|
Liu RL. Editorial: Optical technologies for disease diagnosis and therapy in deep tissues. Front Bioeng Biotechnol 2022; 10:1012949. [PMID: 36159670 PMCID: PMC9501869 DOI: 10.3389/fbioe.2022.1012949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
|
16
|
Kumar J, Roy I. Highly Selective and Sensitive Ratiometric Detection of Sn 2+ Ions Using NIR-Excited Rhodamine-B-Linked Upconversion Nanophosphors. ACS OMEGA 2022; 7:29840-29849. [PMID: 36061706 PMCID: PMC9434793 DOI: 10.1021/acsomega.2c02671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Detection of Sn2+ ions in environmental and biological samples is essential owing to the toxicological risk posed by excess use tin worldwide. Herein, we have designed a nanoprobe involving upconversion nanophosphors linked with a rhodamine-based fluorophore, which is selectively sensitive to the presence of Sn2+ ions. Upon excitation with near-infrared (NIR) light, the green emission of the nanophosphor is reabsorbed by the fluorophore with an efficiency that varies directly with the concentration of the Sn2+ ions. We have explored this NIR-excited fluorescence resonance energy transfer (FRET) process for the quantitative and ratiometric detection of Sn2+ ions in an aqueous phase. We have observed an excellent linear correlation between the ratiometric emission signal variation and the Sn2+ ion concentration in the lower micromolar range. The detection limit of Sn2+ ions observed using our FRET-based nanoprobe is about 10 times lower than that observed using other colorimetric or fluorescence-based techniques. Due to the minimal autofluorescence and great penetration depth of NIR light, this method is ideally suited for the selective and ultrasensitive detection of Sn2+ ions in complex biological or environmental samples.
Collapse
|
17
|
Ding N, Li Z, Hao Y, Zhang C. Design of a New Hydrazine Moiety-Based Near-Infrared Fluorescence Probe for Detection and Imaging of Endogenous Formaldehyde In Vivo. Anal Chem 2022; 94:12120-12126. [PMID: 36005545 DOI: 10.1021/acs.analchem.2c02166] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formaldehyde (FA), the smallest molecular aldehyde with strong reducing properties, could regulate body homeostasis endogenously during physiological and pathological processes. The effective near-infrared (NIR) fluorescent probe is needed as a visualizer of FA in biologic organisms. In this work, a novel NIR fluorescent Probe-NHNH2 was designed on the basis of Probe-NH2 via introducing a strong nucleophilic hydrazine group, which can be used as a quenching and recognizing moiety for the detection of FA. With the treatment of FA, the hydrazine group of Probe-NHNH2 undergoes condensation and achieves a turn-on NIR fluorescence signal at a wavelength of 706 nm. The spectroscopic performance of Probe-NHNH2 for FA was evaluated, and it exhibited high sensitivity and selectivity for the detection of FA in solution. Moreover, compared to the amine moiety-based Probe-NH2, which our group reported, we found that hydrazine moiety-based Probe-NHNH2, exhibited a better reaction time of within 10 min and a lower detection limit of 0.68 μM, reflecting that the reaction of FA with hydrazine moiety is faster and more sensitive than that of FA with the amino group. More importantly, Probe-NHNH2 was successfully applied to real-time imaging of endogenous FA by reacting with effective stimulant tetrahydrofolate and scavenger sodium bisulfite in zebrafish and mice. It is expected that we can provide a new rapid, sensitive NIR fluorescence theoretical basis for FA detection and in vivo imaging applications.
Collapse
Affiliation(s)
- Ning Ding
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yitong Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
18
|
Ding J, Kang X, Feng M, Tan J, Feng Q, Wang X, Wang J, Liu J, Li Z, Guan W, Qiao T. A novel active mitochondrion-selective fluorescent probe for the NIR fluorescence imaging and targeted photodynamic therapy of gastric cancer. Biomater Sci 2022; 10:4756-4763. [PMID: 35837996 DOI: 10.1039/d2bm00684g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The annual morbidity and mortality due to gastric cancer are still high across the world, posing a serious threat to public health. Improving the diagnosis rate of gastric cancer and exploring new treatments are urgent issues in the clinical field. In recent years, photosensitizer (PS)-based photodynamic therapy (PDT) has proven to be an effective cancer treatment strategy and can be used to treat a variety of cancers. Developing PSs with tumor-targeting ability and high singlet oxygen yield (Φ(1O2)) is the key to improving the PDT effect. Herein, we developed a novel diagnosis and treatment system (Cy1395-NPs). Our active thio-photosensitizer is based on the sulfur substitution strategy as it can reduce the S1-T1 energy gap, which can promote the process of intersystem crossing (ISC), thus resulting in high ROS generation efficiency. Cy1395-NPs exhibited stable spectral characteristics, satisfactory biocompatibility and high 1O2 yield under laser irradiation due to the introduction of the sulfur atom. In cellular studies, Cy1395-NPs could specifically target MKN45 cells via integrin αvβ3-mediated cRGD endocytosis and selectively aggregate in the mitochondria. Cy1395-NPs had no obvious cytotoxicity for MKN45 cells and exerted obvious phototoxicity due to the production of 1O2 under laser irradiation. The in vivo results showed that the fluorescence signal from the tumor site was obviously enhanced in 16-48 h, and Cy1395-NPs could selectively target solid tumors with a retention time of about 32 h. Under laser irradiation, Cy1395-NPs significantly inhibited tumor growth and led to significant tumor suppression and apoptosis. In summary, the developed Cy1395-NPs could actively target tumors and exert mitochondrial selectivity, showing an excellent fluorescence imaging effect. Under the irradiation of an 808 nm laser, Cy1395-NPs achieved good inhibition of gastric cancer cells both in vitro and in vivo, thus displaying the functions of tumor targeting, mitochondrial selectivity, fluorescence imaging and tumor inhibition. Our strategy provides a new diagnostic and treatment method for gastric cancers in clinical settings.
Collapse
Affiliation(s)
- Jie Ding
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China. .,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Xing Kang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Jiangkun Tan
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China.
| | - Qingzhao Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Xingzhou Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Jiafeng Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jiang Liu
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210004, China
| | - Zan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China.
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
19
|
Abstract
Gold nanoparticle (AuNPs)-mediated photothermal therapy (PTT) has attracted increasing attention both in laboratory research and clinical applications. Due to its easily-tuned properties of irradiation light and inside-out hyperthermia ability, it has demonstrated clear advantages in cancer therapy over conventional thermal ablation. Despite this great advancement, the therapeutic efficacy of AuNPs mediated PTT in tumor treatment remains compromised by several obstacles, including low photothermal conversion efficiency, tissue penetration limitation of excitation light, and inherent non-specificity. In view of the rapid development of AuNPs mediated PTT, we present an in-depth review of major breakthroughs in the advanced development of gold nanomaterials for PTT, with emphasis on those from 2010 to date. In particular, the current state of knowledge for AuNPs based photothermal agents within a paradigm of key structure-optical property relationships is presented in order to provide guidance for the design of novel AuNP based photothermal agents to meet necessary functional requirements in specific applications. Furthermore, potential challenges and future development of AuNP mediated PTT are also elucidated for clinical translation. It is expected that AuNP mediated PTT will soon constitute a markedly promising avenue in the treatment of cancer.
Collapse
|
20
|
Fluorescent probes and functional materials for biomedical applications. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractDue to their simplicity in preparation, sensitivity and selectivity, fluorescent probes have become the analytical tool of choice in a wide range of research and industrial fields, facilitating the rapid detection of chemical substances of interest as well as the study of important physiological and pathological processes at the cellular level. In addition, many long-wavelength fluorescent probes developed have also proven applicable for in vivo biomedical applications including fluorescence-guided disease diagnosis and theranostics (e.g., fluorogenic prodrugs). Impressive progresses have been made in the development of sensing agents and materials for the detection of ions, organic small molecules, and biomacromolecules including enzymes, DNAs/RNAs, lipids, and carbohydrates that play crucial roles in biological and disease-relevant events. Here, we highlight examples of fluorescent probes and functional materials for biological applications selected from the special issues “Fluorescent Probes” and “Molecular Sensors and Logic Gates” recently published in this journal, offering insights into the future development of powerful fluorescence-based chemical tools for basic biological studies and clinical translation.
Collapse
|
21
|
Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2022; 51:329-375. [PMID: 34897302 PMCID: PMC9135580 DOI: 10.1039/c9cs00621d] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review article deals with the concepts, principles and applications of visible-light and near-infrared (NIR) fluorescence and surface-enhanced Raman scattering (SERS) in in vitro point-of-care testing (POCT) and in vivo bio-imaging. It has discussed how to utilize the biological transparency windows to improve the penetration depth and signal-to-noise ratio, and how to use surface plasmon resonance (SPR) to amplify fluorescence and SERS signals. This article has highlighted some plasmonic fluorescence and SERS probes. It has also reviewed the design strategies of fluorescent and SERS sensors in the detection of metal ions, small molecules, proteins and nucleic acids. Particularly, it has provided perspectives on the integration of fluorescent and SERS sensors into microfluidic chips as lab-on-chips to realize point-of-care testing. It has also discussed the design of active microfluidic devices and non-paper- or paper-based lateral flow assays for in vitro diagnostics. In addition, this article has discussed the strategies to design in vivo NIR fluorescence and SERS bio-imaging platforms for monitoring physiological processes and disease progression in live cells and tissues. Moreover, it has highlighted the applications of POCT and bio-imaging in testing toxins, heavy metals, illicit drugs, cancers, traumatic brain injuries, and infectious diseases such as COVID-19, influenza, HIV and sepsis.
Collapse
Affiliation(s)
- Yingjie Hang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Jennifer Boryczka
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
22
|
Hsu KF, Su SP, Lu HF, Liu MH, Chang YJ, Lee YJ, Chiang HK, Hsu CP, Lu CW, Chan YH. TADF-based NIR-II semiconducting polymer dots for in vivo 3D bone imaging. Chem Sci 2022; 13:10074-10081. [PMID: 36128252 PMCID: PMC9430315 DOI: 10.1039/d2sc03271f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Intraoperative fluorescence imaging in the second near-infrared (NIR-II) region heralds a new era in image-guided surgery since the success in the first-in-human liver-tumor surgery guided by NIR-II fluorescence. Limited by the conventional small organic NIR dyes such as FDA-approved indocyanine green with suboptimal NIR-II fluorescence and non-targeting ability, the resulting shallow penetration depth and high false positive diagnostic values have been challenging. Described here is the design of NIR-II emissive semiconducting polymer dots (Pdots) incorporated with thermally activated delayed fluorescence (TADF) moieties to exhibit emission maxima of 1064–1100 nm and fluorescence quantum yields of 0.40–1.58% in aqueous solutions. To further understand how the TADF units affect the molecular packing and the resulting optical properties of Pdots, in-depth and thorough density-functional theory calculations were carried out to better understand the underlying mechanisms. We then applied these Pdots for in vivo 3D bone imaging in mice. This work provides a direction for future designs of NIR-II Pdots and holds promising applications for bone-related diseases. A series of NIR-II fluorescent TADF-incorporated polymer dots were successfully synthesized. The function of the TADF moiety was fully studied and the bio-applications of these polymer dots including bone imaging were also demonstrated.![]()
Collapse
Affiliation(s)
- Keng-Fang Hsu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30050
| | - Shih-Po Su
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan 11221
| | - Hsiu-Feng Lu
- Institute of Chemistry, Academia Sinica, 128 Section 2, Academia Road, Nankang, Taipei 115, Taiwan
- National Center for Theoretical Sciences, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Ming-Ho Liu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30050
| | - Yuan Jay Chang
- Department of Chemistry, Tunghai University, Taichung City 40704, Taiwan
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan 11221
| | - Huihua Kenny Chiang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan 11221
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, 128 Section 2, Academia Road, Nankang, Taipei 115, Taiwan
- National Center for Theoretical Sciences, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Chin-Wei Lu
- Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30050
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30010
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan 80708
| |
Collapse
|
23
|
Qin S, Xu Y, Li H, Chen H, Yuan Z. Recent advances in in situ oxygen-generating and oxygen-replenishing strategies for hypoxic-enhanced photodynamic therapy. Biomater Sci 2021; 10:51-84. [PMID: 34882762 DOI: 10.1039/d1bm00317h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer is a leading cause of death worldwide, accounting for an estimated 10 million deaths by 2020. Over the decades, various strategies for tumor therapy have been developed and evaluated. Photodynamic therapy (PDT) has attracted increasing attention due to its unique characteristics, including low systemic toxicity and minimally invasive nature. Despite the excellent clinical promise of PDT, hypoxia is still the Achilles' heel associated with its oxygen-dependent nature related to increased tumor proliferation, angiogenesis, and distant metastases. Moreover, PDT-mediated oxygen consumption further exacerbates the hypoxia condition, which will eventually lead to the poor effect of drug treatment and resistance and irreversible tumor metastasis, even limiting its effective application in the treatment of hypoxic tumors. Hypoxia, with increased oxygen consumption, may occur in acute and chronic hypoxia conditions in developing tumors. Tumor cells farther away from the capillaries have much lower oxygen levels than cells in adjacent areas. However, it is difficult to change the tumor's deep hypoxia state through different ways to reduce the tumor tissue's oxygen consumption. Therefore, it will become more difficult to cure malignant tumors completely. In recent years, numerous investigations have focused on improving PDT therapy's efficacy by providing molecular oxygen directly or indirectly to tumor tissues. In this review, different molecular oxygen supplementation methods are summarized to alleviate tumor hypoxia from the innovative perspective of using supplemental oxygen. Besides, the existing problems, future prospects and potential challenges of this strategy are also discussed.
Collapse
Affiliation(s)
- Shuheng Qin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Hua Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| |
Collapse
|
24
|
Skripka A, Mendez-Gonzalez D, Marin R, Ximendes E, Del Rosal B, Jaque D, Rodríguez-Sevilla P. Near infrared bioimaging and biosensing with semiconductor and rare-earth nanoparticles: recent developments in multifunctional nanomaterials. NANOSCALE ADVANCES 2021; 3:6310-6329. [PMID: 36133487 PMCID: PMC9417871 DOI: 10.1039/d1na00502b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/03/2021] [Indexed: 05/17/2023]
Abstract
Research in novel materials has been extremely active over the past few decades, wherein a major area of interest has been nanoparticles with special optical properties. These structures can overcome some of the intrinsic limitations of contrast agents routinely used in medical practice, while offering additional functionalities. Materials that absorb or scatter near infrared light, to which biological tissues are partially transparent, have attracted significant attention and demonstrated their potential in preclinical research. In this review, we provide an at-a-glance overview of the most recent developments in near infrared nanoparticles that could have far-reaching applications in the life sciences. We focus on materials that offer additional functionalities besides diagnosis based on optical contrast: multiple imaging modalities (multimodal imaging), sensing of physical and chemical cues (multivariate diagnosis), or therapeutic activity (theranostics). Besides presenting relevant case studies for each class of optically active materials, we discuss their design and safety considerations, detailing the potential hurdles that may complicate their clinical translation. While multifunctional nanomaterials have shown promise in preclinical research, the field is still in its infancy; there is plenty of room to maximize its impact in preclinical studies as well as to deliver it to the clinics.
Collapse
Affiliation(s)
- Artiom Skripka
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Diego Mendez-Gonzalez
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar km. 9.100 Madrid 28034 Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
| | - Erving Ximendes
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar km. 9.100 Madrid 28034 Spain
| | - Blanca Del Rosal
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University 124 La Trobe St Melbourne VIC 3000 Australia
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar km. 9.100 Madrid 28034 Spain
| | - Paloma Rodríguez-Sevilla
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
| |
Collapse
|
25
|
Qin Z, Qiu M, Zhang Q, Yang S, Liao G, Xiong Z, Xu Z. Development of copper vacancy defects in a silver-doped CuS nanoplatform for high-efficiency photothermal-chemodynamic synergistic antitumor therapy. J Mater Chem B 2021; 9:8882-8896. [PMID: 34693959 DOI: 10.1039/d1tb01629f] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of chemodynamic and photothermal materials can not only improve the therapeutic effect of chemodynamic therapy (CDT) by thermal stimulation, but also play a synergistic therapeutic role. Benefitting from the strong near-infrared absorption ability, copper sulfide (CuS) nanomaterials are widely used in photothermal therapy. However, due to the harsh preparation conditions, low photothermal efficiency and poor biocompatibility, further biomedical application is limited. In this work, silver-doped copper sulfide nanoparticles (BSA-Ag:CuS) were synthesized using a biomineralization strategy using bovine serum albumin (BSA) as a template and stabilizer. Silver doping greatly improved the near-infrared absorption and photothermal efficiency of CuS nanoparticles, which can be used for 1064 nm laser-guided photothermal therapy (PTT). Meanwhile, BSA-Ag:CuS nanoparticles had a synergistic therapeutic effect with CDT and thus showed excellent antitumor performance. In vivo and in vitro biological experiments have shown that BSA-Ag:CuS nanoparticles have good stability, low toxicity, good biocompatibility and strong antitumor ability, and are promising as antitumor agents for future clinical cancer treatment.
Collapse
Affiliation(s)
- Zizhen Qin
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Mengjun Qiu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Quanyuan Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Shenli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Guangfu Liao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.
| | - Zhifan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
26
|
Li D, Pan J, Xu S, Fu S, Chu C, Liu G. Activatable Second Near-Infrared Fluorescent Probes: A New Accurate Diagnosis Strategy for Diseases. BIOSENSORS 2021; 11:436. [PMID: 34821652 PMCID: PMC8615551 DOI: 10.3390/bios11110436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 05/12/2023]
Abstract
Recently, second near-infrared (NIR-II) fluorescent imaging has been widely applied in biomedical diagnosis, due to its high spatiotemporal resolution and deep tissue penetration. In contrast to the "always on" NIR-II fluorescent probes, the activatable NIR-II fluorescent probes have specific targeting to biological tissues, showing a higher imaging signal-to-background ratio and a lower detection limit. Therefore, it is of great significance to utilize disease-associated endogenous stimuli (such as pH values, enzyme existence, hypoxia condition and so on) to activate the NIR-II probes and achieve switchable fluorescent signals for specific deep bioimaging. This review introduces recent strategies and mechanisms for activatable NIR-II fluorescent probes and their applications in biosensing and bioimaging. Moreover, the potential challenges and perspectives of activatable NIR-II fluorescent probes are also discussed.
Collapse
Affiliation(s)
- Dong Li
- Correspondence: (D.L.); (G.L.)
| | | | | | | | | | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging, Translational Medicine School of Public Health, Xiamen University, Xiamen 361102, China; (J.P.); (S.X.); (S.F.); (C.C.)
| |
Collapse
|
27
|
Oe M, Miki K, Ueda Y, Mori Y, Okamoto A, Funakoshi Y, Minami H, Ohe K. Deep-Red/Near-Infrared Turn-On Fluorescence Probes for Aldehyde Dehydrogenase 1A1 in Cancer Stem Cells. ACS Sens 2021; 6:3320-3329. [PMID: 34445866 DOI: 10.1021/acssensors.1c01136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accumulating evidence supports that cancer stem cells (CSCs) are responsible for cancer proliferation, metastasis, and therapy resistance; therefore, an effective strategy to identify and isolate CSCs is required urgently. Because of their low invasiveness and high signal/noise ratio, "turn-on" fluorescence probes working in the deep-red/near-infrared (DR/NIR) region are one of the most attractive yet undeveloped tools for CSC detection. Herein, we report DR/NIR turn-on fluorescence probes, CS5-A and CS7-A, targeted to aldehyde dehydrogenase 1A1 as an intracellular CSC marker. In contrast to the conventional "always-on" green-fluorescent ALDEFLUOR, we succeeded in generating high-contrast (signal/noise ratio > 8.3) and wash-free in vitro CSC imaging with the DR probe C5S-A. This probe can facilitate CSC isolation with minimal contamination by autofluorescence from other tissues through fluorescence-activated cell sorting. Furthermore, the NIR absorbance/emission and turn-on properties of C7S-A allow simple and rapid CSC detection in vivo within 15 min.
Collapse
Affiliation(s)
- Masahiro Oe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshifumi Ueda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Aoi Okamoto
- Division of Breast and Endocrine Surgery, Department of Surgery, Kobe University Hospital and Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yohei Funakoshi
- Division of Breast and Endocrine Surgery, Department of Surgery, Kobe University Hospital and Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Cancer Center, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
28
|
Gon M, Ito S, Tanaka K, Chujo Y. Design Strategies and Recent Results for Near-Infrared-Emissive Materials Based on Element-Block π-Conjugated Polymers. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunichiro Ito
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|